连续时间系统的时域分析卷积法

合集下载

第二章 连续系统的时域分析

第二章  连续系统的时域分析
c2 du 2 (t ) u1 (t ) − u 2 (t ) = R2 dt
du (t ) 整理方程组得:d 2u2 (t ) + 7 2 + 6u2 (t ) = 6e(t ) dt 2 dt 特征方程:a2+7a+6=0 特征根:a=-1, a=-6 齐次解:rh(t) = A1e-t +A2e-6t
5
第二章 连续系统的时域分析
② 选定特解后,将它代入到原微分方程,即得到一个由 yh(t)及其各阶导数以及激励共同组成的一个非齐次微 分方程,依据此方程求出待定系数,然后可确定方程 的特解。
3. 求系统的全响应y(t)
y(t)=方程的全解y(t)=齐次解yh(t) + 特解 yP(t)
=自由响应+强迫响应 将上面方程的全解代入系统的初始条件即可得齐次解中 的待定系数,从而进一步得到系统的全响应。此时, 方程的齐次解yh(t)为系统的自由响应,特解yP(t)为系 统的强迫响应(固有响应)。
解: 由原方程可得
dh 2 (t ) dh(t ) +3 + 2h(t ) = 2δ ′(t ) + 3δ (t ) 2 dt dt
(t ≥ 0)
特征方程: λ2+3λ+2 = 0 特征根: λ1= -1,λ2= -2,且n > m
h (t ) = Ae − t u (t ) + e −2 t (t ) u(t)
20
第二章 连续系统的时域分析
式中A、B为待定系数,将h(t)代入原方程 式,解得A=1,B=1。因此,系统的冲激 响应为 h(t ) = e − t u(t ) + e −2 t (t )
21
第二章 连续系统的时域分析

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

信号与系统杨晓非课后答案

信号与系统杨晓非课后答案

信号与系统杨晓非课后答案【篇一:《信号与系统》考试大纲】>(一)信号与系统的基本概念信号的基本概念及其分类,信号的表示方法,典型连续信号及其性质,典型离散信号及性质,信号的基本运算和变换,系统的基本概念及其分类,线性非时变系统及其性质,系统性质的判定,连续系统与离散系统的数学模型,离散系统数学模型的建立,连续系统的时域模拟。

(二)连续系统的时域卷积分析法 lti连续系统的时域经典分析法。

冲激响应、阶跃响应及其与冲激响应的关系;任意波形信号的时域分解与卷积积分的定义,卷积积分的图解法和阶跃函数法、求解卷积的运算性质,lti连续系统零状态响应的卷积分析法,运用杜阿密尔积分求解系统的零状态响应。

lti离散系统的时域经典分析法。

单位序列响应、阶跃响应及其与单位序列响应的关系;任意波形离散信号的时域分解与积卷和的定义,卷积和的图解法、时限序列卷积和的不进位乘法和算式法求解、卷积和的运算性质,lti离散系统零状态响应的卷积和分析法。

(三)信号的频谱分析与傅里叶变换分析法周期信号表为傅里叶级数,周期信号的频谱及其特点,周期信号的功率谱。

非周期信号的傅里叶变换,频谱密度及其特点,典型信号的傅里叶变换,傅里叶变换的性质,周期信号的傅里叶变换,能量谱密度和功率谱密度。

频域系统函数h(j?),lti连续系统零状态响应的傅里叶变换分析法,系统无失真传输的条件;无失真传输系统和理想低通滤波器的冲激响应与阶跃响应,抽样定理。

(四)拉普拉斯变换分析法拉普拉斯变换及其收敛域,单边拉普拉斯变换,典型信号的单边拉普拉斯变换,单边拉普拉斯变换的性质,求拉普拉斯反变换的部分分式展开法和留数法,单边拉普拉斯变换与傅里叶变换的关系。

微分方程的拉普拉斯变换解,lti连续系统的s域分析法,电路的s 域分析法,系统函数h(s)在系统分析中的意义及求取,系统信号流图及其化简与模拟。

系统函数的零、极点概念,零极点图,连续系统函数h(s)的零极点分布与系统的时间特性、频率特性、因果性以及稳定性的定性关系,系统稳定性的判别。

考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解

考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解

第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。

解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。

讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。

τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。

解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。

第二章 连续时间系统的时域分析 重要公式

第二章 连续时间系统的时域分析 重要公式

零状态响应 rzs ( t ) 的求解有两种方法 方法一:直接求解微分方程 步骤: (1)求出通解;
(k ) (0 + ) = r (k ) (0 + ) − r (k ) (0 − ) 确定 n 个待定常数。 (2)由跳变量 rzs
方法二:卷积积分法 步骤: (1)先求冲激响应 h(t ) ; (2)再利用 rzs (t ) = h(t ) ∗ e(t ) 求零状态响应。 五、冲激响应 h ( t ) 和阶跃响应 g ( t ) 1、冲激响应 h ( t ) 的定义 定义: 系统在单位冲激信号 δ ( t ) 的激励下产生的零状态响应, 称为冲激响应。 冲激响应 h ( t ) 满足的微分方程为:
4
方法一:比较系数(等式两端奇异函数项相平衡)法求 h ( t ) 步骤:a. 先求特征根,直接写出冲激响应的函数形式; b. 再用冲激函数平衡法确定系数 Ak 。 方法二:利用系统的线性时不变特性求 h ( t ) 对于 h ( t ) 满足的微分方程
dn d n −1 d h(t ) + a n −1 n −1 h(t ) + + a1 h(t ) + a 0 h(t ) n dt dt dt
dn d n −1 d ( ) r t a + r (t ) + + a1 r (t ) + a 0 r (t ) n −1 n n −1 dt dt dt
= bm dm d m −1 d ( ) e t b e(t ) + + b1 e(t ) + b0 e(t ) + m −1 m m −1 dt dt dt
dn d n −1 d ( ) h t a h(t ) + + a1 h(t ) + a 0 h(t ) + n −1 n n −1 dt dt dt

信号与系统-第2章

信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.

《信号与系统》30道思考参考答案

《信号与系统》30道思考参考答案
(2)周期信号的频谱具有收敛性,即谱线幅度随 n 趋近于无穷而衰减到零,而 非周期信号不一定收敛,如单位冲激信号的频谱恒为 1。
13、试说明傅里叶变换、拉普拉斯变换和 Z 变换在信号分析中的作用、各自的 局限性及他们之间的联系。
答:傅里叶变换将系统的激励和响应关系从时域变换到频域来研究,从解微分方 程转化为解代数方程;拉普拉斯变换则将信号从时域变换到了复频域,同样也是 从解微分方程转化为解代数方程;z 变换是将时域离散时间序列变换成为 z 域的 连续函数,将离散问题转化成了连续问题。
对信号能够完成某种变换或运算功能的集合体称为系统。系统在哲学上有着 更为广泛的涵义:一般是指由若干相互作用和相互依赖的事物组合而成的具有某 种特定功能的整体。
系统分析与信号分析密不可分,对信号进行传输和加工处理,必须借助于系 统;离开了信号,系统将失去意义,分析系统就是分析某一个特定的信号,分析 信号与信号的相互作用,信号分析是系统分析的基础。所以信号与系统之间的关 系是相辅相成的,离开了信号谈论系统是毫无意义的,系统只能依靠信号的作用 才能显示出特性及用途,信号离开了系统,也就不能发挥其应有的作用。
方法是根据题意列出微分方程,然后求解微分方程。步骤是:(1)求解通解: 由方程左边部分得到的特征方程所得到的特征频率解得的系统的自然响应(或自 由响应);(2)求特解:由激励得到系统的受迫响应;(3)代入初始条件,确定 通解和特解中的待定系数。
卷积法:将响应分成两个部分:(1)零输入响应:系统在没有输入激励的情
Step4:乘积,把变换后的两信号相乘; 例如: x(τ )h(t −τ )
Step5:积分,根据位移不同导致的信号乘积的不同结果,在非零区间进行积分
∫ 运算; 即 t2 x(τ )h(t −τ )dτ 。 t1

系统的时域分析 连续系统的冲击响应 卷积积分及其性质

系统的时域分析  连续系统的冲击响应  卷积积分及其性质
则 f1(t t1) * f2(t t2) = y(t t1 t2)
5) 展缩特性 已知 f1(t) * f2(t) = y(t) 1 则 f1` (at ) f 2 (at ) y (at ) a
17
二、卷积的性质
6) 微分特性 已知 则 7) 积分特性 已知 则 8) 等效特性 已知 则
c) 0 < t £ 1
y(t )
d) t >1

0.5
0.5+t
d 1 t
1 0.5 + t 0.5 + t
y ( t) = 0
14
[例] 计算 y(t) = p1(t) * p1(t)。 a) t £ 1 b) 1 < t £ 0 y ( t) = 0
p1 (t ) 1
p1 ( )
-0.5 0.5
0.5+t 0.5

t
y(t )
c) 0 < t £ 1
dt 1 + t
p1 (t ) p1 (t ) 1
y(t )
d) t >1
0.5 0.5+t
dt 1 t
y ( t) = 0
t -1 1
15
练习1:u(t) u(t) = r(t) 练习2:计算 y (t) = f (t) h(t)。 f (t ) h(t )
证明:
f1 (t t1 ) f 2 (t t2 )



f1 ( t1 ) f 2 (t t2 )d
t1 x



f1 ( x) f 2 (t t1 t2 x)dx

信号与系统连续时间LTI系统的几种响应求解方法及例题

信号与系统连续时间LTI系统的几种响应求解方法及例题
连续时间LTI系统的响应
1. 经典时域分析方法: 求解微分方程 2. 卷积法:
系统完全响应 = 零输入响应 + 零状态响应
y(t) yzi (t) yzs (t) yzi (t) f (t) * h(t)
✓ 求解齐次微分方程得到零输入响应 ✓ 利用卷积积分可求出零状态响应
二、卷积法
系统完全响应 = 零输入响应 + 零状态响应 1.系统的零输入响应是输入信号为零,仅由系统的
卷积法求解系统零状态响应yf (t)的思路
1) 将任意信号分解为单位冲激信号的线性组合 2) 求出单位冲激信号作用在系统上的响应
—— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意
信号f(t)激励下系统的零状态响应yf (t) 。
卷积法求解系统零状态响应yf (t)推导
(t) h(t)
特征方程为
s2 6s 8 0
特征根为
s1 2,s2 4
齐次解yh(t)
yh (t)
K1e2t
K
e4t
2
t>0
[例] 已知某二阶线性时不变连续时间系统的动态方程
y"(t) 6y'(t) 8y(t) f (t), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t),求 系统的完全响应y(t)。
[例2-4-3] 已知某二阶线性时不变连续时间系统的动
态方程 y"(t) 6y'(t) 8y(t) f (t), t 0
初始条件y(0+)=1, y ‘(0+)=2, 输入信号f (t)=et u(t), (1)求系统的零状态响应y(t) 。
解:
(1) 求齐次方程y''(t)+6y'(t)+8y(t) = 0的齐次解yh(t)

信号与系统-第3章

信号与系统-第3章

第3章连续系统的时域分析本章内容LTI系统的时域分析方法线性微分方程的经典解法零输入-零状态微分算子与传输算子冲激响应和阶跃响应冲激响应阶跃响应卷积积分及其应用卷积积分的概念卷积积分的性质卷积积分在LTI系统分析中的应用LTI 连续系统的时域分析1)建立系统数学模型;2)求解线性微分方程。

由于在其分析过程涉及的函数变量均为时间t ,故称为时域分析法。

这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。

其过程可以归结为:线性微分方程的经典解法)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t ya t y m m m m n n n +′+++=+′+++−−−−L L 微分方程的经典解:y (t ) = y c (t ) + y p (t )(完全解)(齐次解)(特解)经典解法-齐次解不同特征根对应的齐次解的解。

y c (t )的函数形式由上述微分方程的特征根确定。

齐次解是齐次微分方程0)()()()(01)1(1)(=+′+++−−t y a t y a t y a t y n n n L经典解法-齐次解(续)=)(t y c 例如::则微分方程的齐次解为个根是单根,其余,即有重根,是特征方程的假设 - 211r n r r λλλλ===L ∑+=+nr j tj j e c 1λ∑=−r i t i r i i e t c 1λ经典解法-特解特解的函数形式与激励函数的形式有关。

表3-1 不同激励对应的特解A(常数)B(常数)线性微分方程的经典解法1)根据齐次方程的特征根求齐次解;2) 根据激励信号的函数形式求特解;3) 将特解代入原微分方程,根据方程两端对应项系数相等,求得特解中的待定系数;4) 将系统的n个初始条件代入全解中,确定齐次解中n个待定系数。

线性微分方程的经典解法(续)激励信号在t =0时刻接入系统:由于激励信号的作用,响应y (t )及其各阶导数有可能在t =0时刻发生跳变,为区分跳变前后的数值,我们用0-表示激励接入之前的瞬间,并称此时刻为“起始时刻”;而用0+表示激励接入之后的瞬间,并称此时刻为“初始时刻”。

信号与系统(郑君里)第二版 讲义 第二章

信号与系统(郑君里)第二版 讲义 第二章

第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。

2.来自元件伏安关系的约束:与元件的连接方式无关。

例2-1 如图2-1所示电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。

因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。

(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。

时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分方程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

郑君里信号与系统习题解答第二章

郑君里信号与系统习题解答第二章

第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。

状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。

解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。

方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。

本题也可以用卷积积分求系统的零状态响应。

方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。

信号与系统第二章

信号与系统第二章

§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

《信号与系统》考研试题解答第二章连续系统的时域分析

《信号与系统》考研试题解答第二章连续系统的时域分析

第二章 连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是 。

(A )该系统一定是二阶系统 (B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于 。

(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是 。

[])()(*)()()()(*)()()(*)()(*)()()(*)()(*)()(2121210201t f t t f D t f t t f C t f dt d t f dt d t f t f dt d B t f t f t t f t t f A ='='⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==+-δδ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。

(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。

[ ] (2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。

[ ] (3)卷积的方法只适用于线性时不变系统的分析。

[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。

[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 计算
例2 计算
R(t)
f (t) 1
0
t 1
h(t) 1
0
2t
二、卷积的性质
已知 f (t) f1(t) f2 (t) 则 f1(t t1) f2 (t t2 ) f (t t1 t2 )
f1(at) f2(at)
1 a
f (at)
位移特性证明:
f1(t t1) f2 (t t2 ) f1( t1) f2 (t t2 )d
0
3
例1
卷积积分的计算和性质
一、卷积积分的计算
f (t)
f1(t)
f2(t)
f1
(
)
f2
(t
)d
1)将 f1(t)和f2(t)中的自变量由 t 和 ,成为函数的
自变量; 2)把其中一个信号翻转、平移;
f2 ( ) 翻转 f2 ( ) 平移 t f2 (( t)) f2 (t
3)将 f1(t)与 f2(t 相乘;对乘积后的图形积分。
已知 f (t) f1(t) f2 (t)
则 f1(t t1) f2 (t t2 ) f1(t t2 ) f2 (t t1) f (t t1 t2 )
证明:
f1(t t1) f2(t t2) f1(t) (t t1) f2(t) (t t2) f1(t) (t t2) f2(t) (t t1)
代入方程
a (t) b (t) c (t) du(t) 7a (t) b (t) cu(t)
10[a (t) bu(t)] (t) 6 (t) 4 (t)
得a 1 b 7a 6 c 7b 10a 4
a 1 b 1 c 1
代入h(t)
A12A1A2
1 5A2
d
2r dt
(t
2
)
4
dr(t dt
)
4r
(t
)
2
de(t dt
)
3e(t
),
t0
系统的初始状态为 r(0) 2,r(0) 1 ,求系统的零
输入响应 rzi (t) 。 解:系统的特征方程为 4 4
( 2
系统的特征根为
2 (两相等实根)
rzi (t) ( A1 A2t)e2t
5 6 ( 3
系统的特征根为
2, 3
rzi (t) A1e2t A2e3t
r(0) rzi (0) A1 A2 1
解得 A1 6, A2 5
r(0) rzi (0) 2A1 3A2 3
rzi (t) 6e2t 5e3t , t 0
例2 已知某线性时不变连续系统的动态方程式为:
试求系统的单位冲激响应。
解:当 e(t) (t)时,r(t) h(t), 即 dh(t) 3h(t) 2 (t)
dt
动态方程式的根 ,且n m,故h(t)的形式为
h(t) Ae3tu(t)
d [ Ae3tu(t)] 3Ae3tu(t) 2 (t)
dt
Ae3t (t) 3Ae3tu(t) 3Ae3tu(t) 2 (t) Ae 3t (t) 2 (t)
由于t 0 后,方程右端为零,故n m时
h(t
)
(
n
Ak
e
k
t
)u
(t
)
k 1
n m时,为使方程两边平衡,h(t)应含有冲激函数及其 各阶导数
h(t)
(
n
Ak
ekt
)u(t)
mn
Bl
l
(t)
k 1
l 0
将h(t )代入微分方程,使方程两边平衡,确定系数Ak,Bl
例1 已知某线性时不变连续系统的动态方程式为: dr(t) 3r(t) 2e(t), t 0 dt
Ae6t (t) B (t) 6B (t) 2 (t) 3 (t)
A 6B 2 B 3
解得 A 16, B 3
h(t) 3 (t) 16e6tu(t)
例2-9 对例2-5所示电路,求电流i(t)对激励e(t) (t)
的冲激响应。
解:
d2 dt 2
i(t)
7
d dt
i(t)
1
a
f1(x) f2 (at x))dx
1 a
f (at)
二、卷积的性质
6)微分特性
d dt
[
f1(t
)
f2 (t)]
f1(t
)
df2 (t dt
)
f1(t)
f (1) 2
(t
)
7)积分特性
df1(t) dt
f2 (t)
f2(t)
f (1)
1
(t
)
t[ f1(
f2 ( )]d
f1(t) t
e(t) e( ) t )d
rzs (t) e( )h(t d
rzs (t) e( )h(t d e(t) h(t)
例4已知某LTI系统的动态方程式为 r(t) 3r(t) 2e(t), 系统的冲激响应h(t) 2e3tu(t),e(t) 3u(t), 试求系统的
零状态响应rzs (t) 。
10i(t)
d2 dt 2
e(t)
6
d dt
e(t
)
4e(t)
系统冲激响应h(t),满足方程
d2 dt 2
h(t)
7
d dt
h(t)
10h(t)
(t)
6
(t)
4
(t)
它的奇次解形式为 h(t) A1e2t A2e5t (t 0 )
用冲激函数匹配法求h(0 )和h(0 )
h(t) a (t) b (t) c (t) du(t) h(t) a (t) b (t) cu(t) h(t) a (t) bu(t)
1
因为a 1,即h(t)中有一项a (t)
hh((00))
b h(0) c h(0)
1 1
A1 A2
4 13
3
h(t)
(t)
4 3
e2t
1 3
e5t
u(t)
冲激平衡法小结
n
mn
h(t) ( Akekt )u(t) Bl l (t)
k 1
l 0
n
1)由系统的特征根来确定 Akekt的形式。 k 1
t[ f1(
f2 ( )]d
f2
(t
)
t
f1()d
例:利用位移特性及u(t) u(t) R(t),计算y(t) f (t) h(t)。
f (t)
h(t)
1
1
0
t
1
0
t 2
y(t) f (t) h(t) [u(t) u(t 1)][u(t) u(t 2)] u(t) u(t) u(t) u(t 1) u(t) u(t 2) u(t 1) u(t 2) R(t) R(t 1) R(t 2) R(t 3)
f2 ( )d
f1(t)
f
( 1) 2
(t
)
f2
(t
)
t
f1()d
f2(t)
f (1)
1
(t
)
推广导高阶导数或多重积分
设 s(t) [ f1(t) f2 (t)]
则有
s(i) (t)
f1( j) (t)
f
(i 2
j
)
(t
)
微分特性证明:
同理
d
dt
[
f1 (t )
f2 (t)]
d dt
f1( ) f2 (t )d
t0
系统的初始状态为 r(0) 1,r(0) 3 ,求系统的零
输入响应 rzi (t) 。 解:系统的特征方程为 2 5
系统的特征根为 1 2 j, 1 2 j
rzi (t) et ( A1 cos 2t A2 sin 2t)
r(0) rzi (0) A1 1 r(0) rzi (0) A1 2 A2 3
dt 动态方程式的特征根 6, 且 n m, 故 h(t) 的形式为
h(t) Ae6tu(t) B t)
d [ Ae6tu(t) B (t)] 6[ Ae6tu(t) B (t)] 2 (t) 3 (t)
dt
Ae6t (t) 6Ae6tu(t) B (t) 6Ae6tu(t) 6B (t) 2 (t) 3 (t)
f (t) (k) (t) f (k) (t) f (t) (k) (t t0 ) f (k) (t t0 )
例3
f1(t t2 ) f2 (t t1)
f1(t t1) f2(t t2) f1(t) (t t1) f2(t) (t t2)
f1(t) f2 (t) (t t2 ) (t t1) f (t) (t t1 t2)
f (t t1 t2 )
三、奇异信号的卷积
t1x
f1(x) f2 (t t2 t1 x)dx
f (t t1 t2 )
展缩特性证明:
f1(at) f2 (at) f1(a ) f2(a(t ))d
a x
1 a
f1(x) f2 (at x))dx
1 a
f1(x) f2 (at x))dx
a0 a0
f1
(
)
d dt
f2 (t )d
f1
(t
)
df2 (t dt
)
d[ dt
f1(t)
f2 (t)]
df1 (t ) dt
f2 (t)
积分特性证明:
t[ f1( f2()]d
t
t
f1( ) f2 (
)d d
t
f1
相关文档
最新文档