高中物理解题模型详解归纳[1]
高中物理知识点总结高考物理48个解题模型
高中物理知识点总结高考物理48 个解题模型
高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。
1 高中物理解题模型汇总必修一
1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。
图像法等)
3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。
必修二
1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。
2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
3 、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)
选修 3-1
1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,力和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三。
高一物理48个解题模型
高一物理48个解题模型高一物理48个解题模型物理是一门理论与实践相结合的学科,对于高中生来说,掌握解题模型是学好物理的关键。
下面将介绍一些高一物理常见的解题模型,帮助学生更好地应对各种物理问题。
1. 运动学模型:根据物体在运动中的速度、位移、加速度等信息,分析物体的运动规律。
2. 动量守恒模型:根据系统内物体的质量和速度,分析碰撞、爆炸等情况下动量的守恒关系。
3. 能量守恒模型:根据物体的势能、动能等信息,分析物体在能量转化过程中的关系。
4. 弹性碰撞模型:根据碰撞物体的质量和速度,分析碰撞后物体的速度和能量转化情况。
5. 万有引力模型:根据物体的质量和距离,分析物体之间的引力关系。
6. 电路分析模型:根据电路中的电阻、电容、电流等元件,分析电路中的电流、电压等参数。
7. 磁场分析模型:根据磁场的大小和方向,分析磁场对物体的作用力和磁感应强度等参数。
8. 电磁感应模型:根据磁感应强度和导线运动情况,分析感应电动势和感应电流等问题。
9. 光学成像模型:根据光的传播规律,分析凸透镜、凹透镜成像的特点和规律。
10. 热力学模型:根据物体的温度、热量和热容等参数,分析热力学过程中的能量转化和热平衡问题。
11. 物质结构模型:根据物质的化学成分和结构,分析物质的性质和变化规律。
12. 机械振动模型:根据弹簧振子、摆锤等物体的振动特性,分析振动频率和振幅等问题。
13. 波动模型:根据波的传播规律,分析波的频率、波速和波长等参数。
14. 电磁波模型:根据电磁波的特性,分析电磁波的频率、波长和传播速度等问题。
15. 电磁场分析模型:根据电磁场的大小和方向,分析电磁场对物体的作用力和电磁感应等问题。
除了上述模型外,还有很多其他解题模型,如力学模型、静电模型、波粒二象性模型等等。
在解题过程中,学生可以根据具体问题的要求选择合适的模型进行分析和计算。
同时,掌握解题方法也是解决物理问题的关键。
学生需要注重理论知识的学习,建立良好的物理思维和逻辑能力,通过大量的练习和实践,熟悉不同模型的应用,培养自己的解题能力。
高中物理知识点总结 高考物理48个解题模型
高中物理知识点总结高考物理48 个解题模型高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。
1高中物理解题模型汇总必修一1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。
图像法等)3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。
必修二1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。
2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。
选修3-11、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,力和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。
4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。
选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。
2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。
选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。
2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。
选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。
2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。
1 高考物理必考知识点总结一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S 比t ,a 用Δv与t 比。
高中物理解题模型详解归纳[1]
高中物理解题模型详解归纳[1]高考物理解题模型目录第一章运动和力(1)一、追及、相遇模型(1)二、先加速后减速模型(4)三、斜面模型(6)四、挂件模型(11)五、弹簧模型(动力学)(18)第二章圆周运动(20)一、水平方向的圆盘模型(20)二、行星模型(23)第三章功和能(1)一、水平方向的弹性碰撞(1)二、水平方向的非弹性碰撞(6)三、人船模型(9)四、爆炸反冲模型(11)第四章力学综合(13)一、解题模型:(13)二、滑轮模型(19)三、渡河模型(23)第五章电路(1)一、电路的动态变化(1)二、交变电流(6)第六章电磁场(10)一、电磁场中的单杆模型(10)二、电磁流量计模型(16)三、回旋加速模型(19)四、磁偏转模型(24)第1页第一章运动和力一、追及、相遇模型模型讲解:1.火车甲正以速度v1向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21vv-、加速度为a的匀减速运动。
若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。
因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d即:dvvaadvv2)(2)(0221221-=-=,故不相撞的条件为dvva2)(221-≥2.甲、乙两物体相距,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。
甲物体在前,初速度为v1,加速度大小为a1。
乙物体在后,初速度为v2,加速度大小为a2且知v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?解析:若是2211avav≤,说明甲物体先停止运动或甲、乙同时停止运动。
在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为2212122avav-+=若是2221avav>,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据tavtavv2211-=-=共,求得212aavvt=在t时间内甲的位移tvv21+=共乙的位移tvv222+=共代入表达式21-+=求得)(2)(1212aavv-=3.如图1、01所示,声源S和观察者A都沿轴正方向运动,相对于地面的速率分别为Sv和Av空气中声音传播的速率为Pv,设PAPSvvvv<<,空气相对于地面没有流动。
高一物理必修一解题模型
高一物理必修一的解题模型主要包括以下几种:1. 质点模型:质点模型是物理学中最基本的模型之一,它将物体看作一个有质量的点。
在研究物体的运动时,如果物体的大小和形状对研究结果的影响可以忽略,那么可以将物体看作质点。
质点模型有助于简化问题,提高解题效率。
2. 追击问题模型:追击问题模型主要研究两个物体之间的运动关系。
当两个物体的运动速度和方向相同时,可以根据相对速度求解它们之间的距离变化;当两个物体的运动速度和方向不同时,可以分别研究它们在各个方向上的运动,然后求解它们之间的距离变化。
3. 自由落体运动模型:自由落体运动模型是指物体在重力作用下,沿着竖直方向做自由下落运动。
在自由落体运动中,物体的初速度为零,加速度为重力加速度g。
可以根据运动学公式求解物体在自由落体运动过程中的速度、位移等物理量。
4. 匀速直线运动模型:匀速直线运动模型是指物体在相等时间内,沿着直线方向做匀速运动。
在匀速直线运动中,物体的速度保持不变,可以根据运动学公式求解物体在匀速直线运动过程中的位移、路程等物理量。
5. 竖直上抛运动模型:竖直上抛运动模型是指物体在重力作用下,沿着竖直方向做向上抛的运动。
在竖直上抛运动中,物体的初速度为向上抛的初速度,加速度为重力加速度g。
可以根据运动学公式求解物体在竖直上抛运动过程中的速度、位移等物理量。
6. 平抛运动模型:平抛运动模型是指物体在重力作用下,沿着水平方向做抛出的运动。
在平抛运动中,物体的初速度为抛出的初速度,加速度为重力加速度g。
可以根据运动学公式求解物体在平抛运动过程中的水平位移、竖直位移等物理量。
以上是高一物理必修一的一些常见解题模型,掌握这些模型有助于提高解题效率。
高中物理经典解题模型归纳
高中物理经典解题模型归纳
虽然说高中物理学习的内容比较多,但是高考考察的重点内容归纳一下就是一些模型。
以下就是小编整理的高中物理经典阶梯模型,供参考。
1高中物理24个经典模型1、”皮带”模型:摩擦力.牛顿运动定律.功能及摩擦
生热等问题.
2、”斜面”模型:运动规律.三大定律.数理问题.
3、”运动关联”模型:一物体运动的同时性.独立性.等效性.多物体参与的独立
性和时空联系.
4、”人船”模型:动量守恒定律.能量守恒定律.数理问题.
5、”子弹打木块”模型:三大定律.摩擦生热.临界问题.数理问题.
6、”爆炸”模型:动量守恒定律.能量守恒定律.
7、”单摆”模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.
8.电磁场中的”双电源”模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.
9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.
10、”平抛”模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).
11、”行星”模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.
临界问题).
12、”全过程”模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.
13、”质心”模型:质心(多种体育运动).集中典型运动规律.力能角度.
14、”绳件.弹簧.杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问。
高考物理模型专题归纳总结
高考物理模型专题归纳总结一、引言高考物理考试中的物理模型是学生们备考的重点内容之一。
物理模型的理解和应用能力是解题的关键。
在高考物理考试中,常见的物理模型包括力学模型、电磁感应模型、光学模型等等。
本文将对这些物理模型进行归纳总结,帮助广大考生更好地掌握和应用这些知识。
二、力学模型1. 牛顿运动定律模型牛顿第一定律、牛顿第二定律、牛顿第三定律是力学模型中最基础的内容。
牛顿第一定律指出物体如果没有外力作用,将保持匀速直线运动或静止状态。
牛顿第二定律则给出了物体力学模型的数学表达式F=ma,其中F为物体所受合力,m为物体质量,a为物体加速度。
牛顿第三定律则说明了作用力与反作用力相等并方向相反的关系。
2. 弹性模型弹簧弹性模型是高考中常见的题型,通过应用胡克定律和弹簧势能公式进行计算。
胡克定律描述了弹簧伸长或缩短的变形与所受力的关系,F=kx,其中F为作用在弹簧上的力,k为弹簧的劲度系数,x为弹簧的伸长或缩短量。
弹簧势能公式为E=1/2kx²,其中E为弹簧的势能。
3. 圆周运动模型圆周运动模型中,角速度、角加速度、圆周位移与线位移的关系是基础内容。
角速度ω定义为角位移θ与时间t的比值,单位为弧度/秒。
角加速度α定义为角速度的变化率,单位为弧度/秒²。
圆周位移和线位移之间的关系为s=rθ,其中s为圆周位移,r为半径,θ为角位移。
三、电磁感应模型1. 法拉第电磁感应模型法拉第电磁感应模型是高考物理中的重要内容,应用于电磁感应的计算和分析。
法拉第电磁感应定律指出,通过导线的磁通量的变化率产生感应电动势,其大小和方向由导线所围成的回路和磁场变化率决定。
可以通过Faraday公式ε=-dΦ/dt进行计算,其中ε为感应电动势,Φ为磁通量,t为时间。
2. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过导体的电流所产生的磁场与导体所受磁场力的关系。
根据该定律,通过导体的电流所产生的磁场方向垂直于电流方向,其大小与电流强度和导线到磁场中心的距离正比。
高中物理解题模型详解(20套精讲)
= 1 mv2 − 0 2
物体 A 克服摩擦力做功,机械能转化为内能:
Wf
=
mg
⋅
g
(2
−µ 4
)t
2
+
L
−
m3g 2 8q 2 B 2
4、如图 1.05 所示,在水平地面上有一辆运动的平板小车, 车上固定一个盛水的杯子,杯子的直径为 R。当小车作匀加速运动 时,水面呈如图所示状态,左右液面的高度差为 h,则小车的加速 度方向指向如何?加速度的大小为多少?
(2)、加磁场之前,物体 A 做匀加速运动,据牛顿运动定律有:
mg sinθ + qE cosθ − Ff = ma 又FN + qE sinθ − mg cosθ = 0, Ff = µFN
解出 a = g(2 − µ) 2
A 沿斜面运动的距离为:
s = 1 at2 = g(2 − µ)t2
2
4
加上磁场后,受到洛伦兹力 F洛 = Bqv
C. 物体前 10s 内和后 10s 内加速度大小之比为 2:1
D. 物体所受水平恒力和摩擦力大小之比为 3:1
答案:ACD
三、斜面模型
1、相距为 20cm 的平行金属导轨倾斜放置,如图 1.03, 导轨所在平面与水平面的夹角为θ = 37° ,现在导轨上放一 质量为 330g 的金属棒 ab,它与导轨间动摩擦系数为 µ = 0.50 ,整个装置处于磁感应强度 B=2T 的竖直向上的匀 强磁场中,导轨所接电源电动势为 15V,内阻不计,滑动变 阻器的阻值可按要求进行调节,其他部分电阻不计,取 g = 10m / s 2 ,为保持金属棒 ab 处于静止状态,求:
解析:设以火车乙为参照物,则甲相对乙做初速为 (v1 − v2 ) 、加速度为 a 的匀减速运动。
高中物理经典解题模型归纳
高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
高中物理经典解题模型归纳
高中物理经典解题模型归纳高中物理作为一门全人类必修的基础课程,其内容涉及到了广泛的领域,涵盖了牛顿力学、电磁学、光学等知识。
在学习高中物理过程中,学生们会遇到各种各样的问题和难题,要解决这些问题,我们需要掌握一些常见的解题模型。
本文将会介绍几种高中物理中常见的解题模型,这些模型在解决不同类型的物理问题中非常有帮助。
一、运动问题的解题模型1、匀变速直线运动问题这类问题需要根据基本的运动公式来进行解答。
我们需要根据题目所给定的量去确定需要使用的公式,并将所需要的各种量代入计算从而求解出题目所需的答案。
2、含时间加速度的匀变速直线运动问题对于这类问题,我们需要使用高中物理中比较常见的运动学方程组来求解。
如下所示:v = u + at (1)s = ut + 1/2at² (2)v² = u² + 2as (3)其中 u、v、a、s、t 分别表示初速度、末速度、加速度、位移和时间。
3、抛体运动问题对于抛体运动问题,我们需要将其分成水平方向和竖直方向两个方向的分量进行分析。
通常需要使用初速度分解和运动中速度的叠加原理两个基本的解题方法。
二、力学问题的解题模型1、平衡问题对于平衡问题,我们需要采用受力分析的方法来解答。
受力分析就是根据牛顿第二定律,将物体所受到的各种力进行分析,最终确定物体所处的平衡条件。
通常情况下,我们会根据物体所受到的力和重力的大小进行分析,从而确定物体所处的平衡点位置。
2、动力学问题对于动力学问题,我们需要采用牛顿第二定律来解答。
根据牛顿第二定律的公式 F = ma,我们就可以根据物体所受到的作用力和其所处的速度来计算出物体所受到的加速度。
进一步地,我们也可以通过计算物体所处的加速度来得出物体所受到的作用力的大小。
三、电学问题的解题模型1、电路分析问题在电路分析问题中,我们需要根据欧姆定律、基尔霍夫定律、电容定律等来进行分析。
对于简单的电路问题,我们可以使用欧姆定律及串、并联电阻的等效电阻进行求解。
高考物理模型归纳总结简洁
高考物理模型归纳总结简洁高考物理是每个学生都面临的一门重要学科,其中模型题是考试中的重点和难点。
在高考物理中,模型题是通过物理概念和定律,将现实问题转换为数学模型进行求解的题目。
在这篇文章中,我将对高考物理中常见的模型进行归纳总结,并提供简洁的解题方法。
一、匀速直线运动模型匀速直线运动是高考物理中最简单的一种模型,也是容易出现的题型。
在这种模型中,物体在直线上做匀速运动,其速度恒定不变。
解题方法:1. 根据题目给出的条件,确定物体的速度和时间。
2. 列出物体在不同时刻的位置,根据速度公式计算物体在不同时刻的位移。
3. 根据相应的物理定律,求解题目中所需的物理量,如速度、时间等。
二、自由落体模型自由落体是高考物理中常见的一种模型,也是较为基础的题型。
自由落体是指物体只受重力作用,在重力的作用下沿垂直方向自上而下运动的过程。
解题方法:1. 根据题目给出的条件,确定物体的初速度、时间和位移等。
2. 列出物体在不同时刻的速度和位移,根据自由落体运动的规律计算物体在不同时刻的相关物理量。
3. 根据相应的物理定律,求解题目中所需的物理量,如时间、位移等。
三、受力平衡模型受力平衡是高考物理中常见的一种模型,也是较为复杂的题型。
在受力平衡的情况下,物体所受的合力为零,物体处于静止或匀速直线运动的状态。
解题方法:1. 根据题目给出的条件,确定物体所受的各个力、角度等。
2. 根据受力平衡条件,列出物体所受各个力的合力为零的方程。
3. 根据方程求解未知物理量,如物体的质量、受力的大小等。
四、简谐振动模型简谐振动是高考物理中较为复杂的一种模型,也是考试中的难点题型。
在简谐振动中,物体围绕平衡位置作往复运动,其加速度与位移成正比。
解题方法:1. 根据题目给出的条件,确定物体的振幅、周期、频率等。
2. 列出物体在不同时刻的位移、速度和加速度等,根据简谐振动的规律计算相关物理量。
3. 根据相应的物理定律,求解题目中所需的物理量,如振幅、周期等。
高中物理解题模型详解归纳--超好用
两车等速时恰好追及 两车只相遇一次
间距会逐渐增大
两车等速时 车 动 车前面
能再次相遇 即能相遇两次
二、先 速后减速模型
模型概述
物体先加速后减速的问题是 动学中典型的综合问题,也是 几年的高考热点,同学在求
解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象就更明确
过程了。
模型讲解
d
即
0 − (v1 − v2 )2 = −2ad
a = (v1 − v2 )2 2d
故 相撞的条
a ≥ (v1 − v2 )2 2d
2
两物体相距 s 在同一直线 同方向做匀 速 动 速
零 就保 静 动 物
体在前 初速 v1 速 大小 a1 物体在 初速 v2 速 大小 a2 知 v1<v2
但两物体一直没有相遇 求
第六章 电磁场 ............................................................................................................................ 10
一 电磁场中的单杆模型...................................................................................................10 电磁流 计模型............................................................................................................16 回旋 速模型 ................................................................................................................19
高中物理总复习经典物理模型归纳全解全析
滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -• ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
高中物理超全大题解题模型+公式汇总。全掌握轻松多得20分
高中物理超全大题解题模型+公式汇总。
全掌握轻松多得20分!
一、匀变速直线运动
二、共点力平衡
三、牛顿运动定律
1.斜面模型
2.板块模型
3.传送带模型
四、曲线运动
ω增大,F增大。
五、天体运动
1.相关物理量的关系图
2.变轨模型
六、碰撞和动量守恒
1.弹性正碰
满足动量守恒定律和机械能守恒定律
解得:
2.冲击摆
七、带电粒子在电场中的运动
1.加速+偏转模型
电加速:
电偏转:
水平方向:
竖直方向:
偏转角:
荧光屏上的偏移量:
2.电场+重力场的叠加场
▲图中qE=mg,则θ=45°
八、带电粒子在磁场中的运动
1.找圆心、求半径、算时间
物理方程:
几何关系:
速度偏向角:
▲算时间:
2.磁聚焦“透镜”
磁场圆半径与轨迹圆半径相等,即
2.有效切割长度
▲三种情况中有效切割长度均为d
3.电磁感应中的杆+导轨模型
运动过程中:
先做a减小的加速运动,后做匀速:
十、理想变压器
十一、原子物理
1.光电效应
2.氢原子能级。
高中物理68个解题模型
高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。
在高中物理学习中,解题是一个重要的环节。
为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。
一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。
2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力模型:物体受到的重力与物体的质量成正比。
5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。
6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。
7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。
8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。
9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。
二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。
11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。
12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。
13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。
14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。
15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。
三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。
17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。
18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。
19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。
20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。
21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。
22. 光的偏振模型:光的振动方向只在一个平面上。
四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。
高中物理解题模型详解 套精讲
(2)、物体 A 在斜面上运动过程中有多少能量转化为内能?(结果用字母表示)
解:
(1)、物体 A 在斜面上受重力、电场力、支持力和滑动摩擦力的作用,<1>小物体 A 在
恒力作用下,先在斜面上做初速度为零的匀加速直线运动;<2>加上匀强磁场后,还受方向 垂直斜面向上的洛伦兹力作用,方可使 A 离开斜面,故磁感应强度方向应垂直纸面向里。 随着速度的增加,洛伦兹力增大,斜面的支持力减小,滑动摩擦力减小,物体继续做加速 度增大的加速运动,直到斜面的支持力变为零,此后小物体 A 将离开地面。
3、如图 1.01 所示,声源 S 和观察者 A 都沿 x 轴正方向运动,相对于地面的速率分别 为 vS 和 vA 。空气中声音传播的速率为 vP ,设 vS < vP,vA < vP ,空气相对于地面没有流动。
(1)、若声源相继发出两个声信号。时间间隔为 ∆t ,请根据发出的这两个声信号从声 源传播到观察者的过程。确定观察者接收到这两个声信号的时间间隔 ∆t' 。
若 L < 25m ,则两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两 次。
二、先加速后减速模型
模型概述:
物体先加速后减速的问题是运动学中典型的综合问题,也是近几年的高考热点,同学 在求解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象 就更明确过程了。
模型讲解:
,
故不相撞的条件为 a ≥ (v1 − v2 )2 2d
2、甲、乙两物体相距 s,在同一直线上同方向做匀减速运动,速度减为零后就保持静 止不动。甲物体在前,初速度为 v1,加速度大小为 a1。乙物体在后,初速度为 v2,加速度 大小为 a2 且知 v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距 离为多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理解题模型目录第一章运动和力 (1)一、追及、相遇模型 (1)二、先加速后减速模型 (4)三、斜面模型 (6)四、挂件模型 (11)五、弹簧模型(动力学) (18)第二章圆周运动 (20)一、水平方向的圆盘模型 (20)二、行星模型 (23)第三章功和能 (1)一、水平方向的弹性碰撞 (1)二、水平方向的非弹性碰撞 (6)三、人船模型 (9)四、爆炸反冲模型 (11)第四章力学综合 (13)一、解题模型: (13)二、滑轮模型 (19)三、渡河模型 (23)第五章电路 (1)一、电路的动态变化 (1)二、交变电流 (6)第六章电磁场 (10)一、电磁场中的单杆模型 (10)二、电磁流量计模型 (16)三、回旋加速模型 (19)四、磁偏转模型 (24)第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。
若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。
因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。
即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。
甲物体在前,初速度为v 1,加速度大小为a 1。
乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。
在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122a v a v s s -+=∆ 若是2221a v a v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a v v t --=在t 时间内甲的位移t v v s 211+=共乙的位移t v v s 222+=共代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。
空气中声音传播的速率为P v ,设P A P S v v v v <<,,空气相对于地面没有流动。
图1.01(1) 若声源相继发出两个声信号。
时间间隔为t ∆,请根据发出的这两个声信号从声源传播到观察者的过程。
确定观察者接收到这两个声信号的时间间隔't ∆。
(2) 请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式。
解析:作声源S 、观察者A 、声信号P (P 1为首发声信号,P 2为再发声信号)的位移—时间图象如图2所示图线的斜率即为它们的速度P A S v v v 、、则有:图2)'('')(00t t v t v s t t v t v s P A P S -∆⋅=∆⋅=∆-∆⋅=∆⋅=∆两式相减可得:)'('t t v t v t v P S A ∆-∆⋅=∆⋅-∆⋅解得t v v v v t AP SP ∆--=∆'(2)设声源发出声波的振动周期为T ,这样,由以上结论,观察者接收到的声波振动的周期为T v v v v T AP SP --='由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为f v v v v f SP AP --='4. 在一条平直的公路上,乙车以10m/s 的速度匀速行驶,甲车在乙车的后面作初速度为15m/s ,加速度大小为0.5m/s 2的匀减速运动,则两车初始距离L 满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。
答案:设两车速度相等经历的时间为t ,则甲车恰能追及乙车时,应有L t v t a t v +=-乙甲甲22其中甲乙甲a v v t -=,解得m L 25=若m L 25>,则两车等速时也未追及,以后间距会逐渐增大,及两车不相遇。
若m L 25=,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大。
若m L 25<,则两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两次。
二、先加速后减速模型模型概述:物体先加速后减速的问题是运动学中典型的综合问题,也是近几年的高考热点,同学在求解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象就更明确过程了。
模型讲解:1. 一小圆盘静止在桌面上,位于一方桌的水平桌面的中央。
桌布的一边与桌的AB 边重合,如图1.02所示。
已知盘与桌布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。
现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边。
若圆盘最近未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)图1.02解析:根据题意可作出物块的速度图象如图2所示。
设圆盘的质量为m ,桌边长为L ,在桌布从圆盘下抽出的过程中,盘的加速度为1a ,有11ma mg =μ图2桌布抽出后,盘在桌面上做匀减速运动,以2a 表示加速度的大小,有22ma mg =μ设盘刚离开桌布时的速度为1v ,移动的距离为1x ,离开桌布后在桌面上再运动距离2x 后便停下,由匀变速直线运动的规律可得:11212x a v =①22212x a v =②盘没有从桌面上掉下的条件是:221L x x ≤+ ③设桌布从盘下抽出所经历时间为t ,在这段时间内桌布移动的距离为x ,有:21122121t a x at x ==,,而21Lx x =-,求得: 1a a L t -=,及1111a a La t a v -== 联立解得2121)2(μμμμga +≥2. 一个质量为m=0.2kg 的物体静止在水平面上,用一水平恒力F 作用在物体上10s ,然后撤去水平力F ,再经20s 物体静止,该物体的速度图象如图3所示,则下面说法中正确的是( ) A. 物体通过的总位移为150m B. 物体的最大动能为20JC. 物体前10s 内和后10s 内加速度大小之比为2:1D. 物体所受水平恒力和摩擦力大小之比为3:1 答案:ACD图3三、斜面模型1. 相距为20cm 的平行金属导轨倾斜放置,如图1.03,导轨所在平面与水平面的夹角为︒=37θ,现在导轨上放一质量为330g 的金属棒ab ,它与导轨间动摩擦系数为50.0=μ,整个装置处于磁感应强度B=2T 的竖直向上的匀强磁场中,导轨所接电源电动势为15V ,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取2/10s m g =,为保持金属棒ab 处于静止状态,求:(1)ab 中通入的最大电流强度为多少? (2)ab 中通入的最小电流强度为多少?图1.03导体棒ab 在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。
当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。
(1)ab 中通入最大电流强度时受力分析如图2,此时最大静摩擦力N f F F μ=沿斜面向下,建立直角坐标系,由ab 平衡可知,x 方向:)sin cos (sin cos max θθμθθμ+=+=N N N F F F Fy 方向:)sin (cos sin cos θμθθμθ-=-=N N N F F F mg 由以上各式联立解得:A BLFI L BI F NmgF 5.16,6.6sin cos sin cos max maxmax max max ====-+=有θμθθθμ(2)通入最小电流时,ab 受力分析如图3所示,此时静摩擦力N f F F ''μ=,方向沿斜面向上,建立直角坐标系,由平衡有:x 方向:)cos (sin 'cos 'sin 'min θμθθμθ-=-=N N N F F F F y 方向:)cos sin ('cos 'sin 'θθμθθμ+=+=N N N F F F mg联立两式解得:N mgF 6.0cos sin cos sin min =+-=θθμθμθ由A BLF I L BI F 5.1,minmin min min ===2. 物体置于光滑的斜面上,当斜面固定时,物体沿斜面下滑的加速度为1a ,斜面对物体的弹力为1N F 。
斜面不固定,且地面也光滑时,物体下滑的加速度为2a ,斜面对物体的弹力为2N F ,则下列关系正确的是:A. 2121,N N F F a a >>B. 2121,N N F F a a ><C. 2121,N N F F a a <<D. 2121,N N F F a a <>当斜面可动时,对物体来说是相对斜面这个加速参考系在作加速运动,而且物体和参考系的运动方向不在同一条直线上,利用常规的方法难于判断,但是利用矢量三角形法则能轻松获解。
如图4所示,由于重力的大小和方向是确定不变的,斜面弹力的方向也是惟一的,由共点力合成的三角形法则,斜面固定时,加速度方向沿斜面向下,作出的矢量图如实线所示,当斜面也运动时,物体并不沿平行于斜面方向运动,相对于地面的实际运动方向如虚线所示。
所以正确选项为B 。
3. 带负电的小物体在倾角为)6.0(sin =θθ的绝缘斜面上,整个斜面处于范围足够大、方向水平向右的匀强电场中,如图1.04所示。
物体A 的质量为m ,电量为-q ,与斜面间的动摩擦因素为μ,它在电场中受到的电场力的大小等于重力的一半。
物体A 在斜面上由静止开始下滑,经时间t 后突然在斜面区域加上范围足够大的匀强磁场,磁场方向与电场强度方向垂直,磁感应强度大小为B ,此后物体A 沿斜面继续下滑距离L 后离开斜面。
(1)物体A 在斜面上的运动情况?说明理由。
(2)物体A 在斜面上运动过程中有多少能量转化为内能?(结果用字母表示)图1.04(1)物体A 在斜面上受重力、电场力、支持力和滑动摩擦力的作用,<1>小物体A 在恒力作用下,先在斜面上做初速度为零的匀加速直线运动;<2>加上匀强磁场后,还受方向垂直斜面向上的洛伦兹力作用,方可使A 离开斜面,故磁感应强度方向应垂直纸面向里。