9总复习易错题集锦 人教新课标 (2014秋)(含答案)

合集下载

九年级物理全册第十四章内能的利用易错题集锦(带答案)

九年级物理全册第十四章内能的利用易错题集锦(带答案)

九年级物理全册第十四章内能的利用易错题集锦单选题1、关于热值下列说法正确的是()A.燃料如果燃烧不完全,热值会变小B.燃料热值越大,燃烧放出的热量越多C.2kg煤的热值大于1kg同种煤的热值D.燃料的热值是燃料的特性,与其他因素无关答案:DA.燃料如果燃烧不完全,热值的大小不变,热值只与燃料的种类有关,与燃烧的程度无关,故A错误;B.燃料热值越大,质量未知,燃烧放出的热量未知,故B错误;C.热值与质量无关,故2kg煤的热值等于1kg同种煤的热值,故C错误;D.燃料的热值是燃料的特性,只与种类有关,与其他因素无关,故D正确。

故选D。

2、在我们家乡的公路上有时能看到这样的照明灯。

如图,它“头顶”小风扇,“肩扛”光电池板,“腰挎”照明灯,“脚踩”蓄电池。

下列解释合理的是()A.光电池板将电能转化为光能B.蓄电池夜晚放电,将电能转化为化学能C.照明灯将内能转化为电能D.小风扇利用风力发电,将机械能转化为电能答案:DA.光电池板工作时,消耗了太阳能,获得了电能,是将光能转化为电能,故A不符合题意;B.蓄电池在夜晚放电,将化学能转化为电能,而不是将电能转化为化学能,故B不符合题意;C.照明灯工作时,消耗了电能,获得了光能,将电能转化为光能,故C不符合题意;D.小风扇利用风力发电,消耗了机械能,获得了电能,将机械能转化为电能,故D符合题意。

故选D。

3、2022年6月5日,长征2F火箭顺利将载有三名航天员的神舟十四号飞船送入预定轨道,飞船变轨后与天和核心舱成功对接。

下列说法错误的是()A.火箭升空过程中,燃料燃烧产生的内能转化为火箭的机械能B.飞船进入预定轨道后,飞船仍然具有惯性C.飞船与核心舱对接后,以核心舱为参照物,飞船是静止的D.航天员在核心舱里做实验时,仍然可以用天平测量物体的质量答案:DA.火箭升空过程中,火箭速度增大,高度增大,因此动能和势能都增加,即机械能增大,而消耗了燃烧,因此燃料燃烧产生的内能转化为火箭的机械能,故A正确,A不符合题意;B.惯性只与质量有关,而质量与位置无关,因此飞船进入预定轨道后,质量不变,飞船仍然具有惯性,故B正确,B不符合题意;C.飞船与核心舱对接后,以核心舱为参照物,飞船的位置保持不变,因此飞船相对于核心舱是静止的,故C正确,C不符合题意;D.航天员在核心舱里做实验时,处于完全失重状态,无法用天平测量物体的质量,故D错误,D符合题意。

五年级数学下册学案- 9 总复习 -人教新课标(2014秋)(含答案) -人教新课标(2014秋)

五年级数学下册学案- 9 总复习 -人教新课标(2014秋)(含答案) -人教新课标(2014秋)

总复习班级:组别:组号:姓名:因数与倍数【复习要求】复习因数与倍数的相关知识,掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别,会辨析和理解知识间的区别和联系。

☆温馨提醒:养成认真学习、勤于思考的好习惯。

【知识梳理】1.阅读书本第5-17页,60-72有关因数和倍数的内容,并完成书本第116页第1、3题。

2.试着整理本单元知识,形成网络图。

3.你还有哪些地方不理解?【易错防范】1.在判断中辨析概念。

①一个数的倍数都比它的因数大。

()②4.2÷0.6=7,我们说4.2是0.6的倍数。

()③24÷6=4,我们说24是倍数,6是因数。

()④是互质数的两个数一定是质数。

()⑤如果一个自然数是6的倍数,那么它一定是2的倍数。

()2.把2米长的铁丝平均截成5段,每段占全长的(),每段长()米。

3.预习后,你还有什么疑问?【精练反馈】A档1.选择题。

(1)正方形的边长是一个奇数,它的面积一定是()。

A.奇数B.偶数C.质数D.合数(2)自然数a除以自然数b(b≠0)商是5,那么a和b的最大公因数是(),最小公倍数是()。

A.a B.b C.1 D.ab(3)要使7□25这个四位数是3的倍数,在□里可以填上()。

A.0、3、6、9 B.1、4、7 C.2、5、8 D.任意数(4)著名的“哥德巴赫猜想”有一个命题是:每一个大于4的偶数都可以表示成两个奇质数的和。

下面式子中反映这个猜想的是()。

A.26=5+21 B.18=1+17 C.24=11+13 D.14=2×72.填空。

(1)既是2的倍数,又有因数3的最大两位数是();同时是2、3、5的倍数的最小三位数是()。

(2)甲数=2×3×5,乙数=2×5×7,甲、乙两数的最大公因数是(),最小公倍数是()。

(3)a与b是互质数,它们的最大公因数是(),最小公倍数是()。

(4)一个两位数,个位和十位上的数是不同的合数,并且是互质数,这个数最大是()。

二年级上册数学试题-总复习 易错题3(无答案)人教新课标(2014秋)

二年级上册数学试题-总复习 易错题3(无答案)人教新课标(2014秋)

二年级4班错题集
拟卷人钱咏梅
1.看下图,交换天平两边的数字球,使天平两边的三个数这和相等,
2.7名男生排成一列,如果在每2名相邻的男生之间插进2名女生,一共要插进多少名女生?
3.第一小组的6名少先队员一共种了26棵树,除了组长王英多种了2棵树外,其余同学种的棵数同样多,王英种了多少棵树?
如果又买来6盒钢笔,算一算,又买来多少枝钢笔?
5.把一根20米长的绳子,剪成相同的几段,一共剪了4下,每段长多少米?
6.一块橡皮1元2角,如果全付2角的纸币,那么需要付几张才够1元2角?
7.装配车间运来12个轮子。

(1)全部用来装三轮车,可以装几辆?
(2)全部用来装自行车,可以装几辆?
(3)如果有15个轮子,那么全部用来装哪种车比较合适?可以装几辆?
8.把下图分成两个三角形和一个平行四边形。

9.在一块长方形池塘的四边栽树,每边栽6棵,至少要准备多少棵树苗?
10.先想一想怎么改写算式能使计算简便些,再计算。

5+5+5+5+5+3
3+3+3+3+3+3-2
7+4+4+4+4
11.有两块一样长的木板,如下图所所示钉在一起,成了一块木板,如果每块木板长6米,中间钉在一起的部分长2米,现在木板长多少米?
12.同学们去看演出,每排座位坐4人,则每排还空2个座位,如果把5排座位全坐满,那么可以坐多少人?。

2014年六年级上册数学期末易错题复习新人教版

2014年六年级上册数学期末易错题复习新人教版

2014年六年级上册数学期末易错题复习新人教版2014年六年级上册数学期末易错题复(新人教版)一单元:分数乘法1.分数乘整数时,分子乘整数的积作为分子,分母不变。

如果能够约分,则先约分再计算。

2.分数乘整数的意义有两种:a) 表示几个相同的分数的和;b) 表示求这个整数的几分之几。

3.在小数乘以分数时,应该先把小数化成分数或把分数化成小数,再进行计算。

4.分数乘分数时,应该用分子相乘的积作为分子,用分母相乘的积作为分母。

如果能够约分,则先进行约分再计算。

5.整数乘法的交换律、结合律和分配律同样适用于分数乘法。

一、填空。

1.4 × (5/13) = 20/13;5 × (7/5) = 7;7 × (10/17) = 4;0.6 ×(5/8) = 0.3752.5m³ = 5,000 dm³;12时 = 720分3.15的倒数是1/15;1的倒数仍是它本身。

4.每段长为5/8m,每段占全长的5/8.5.535,233 × 8/3.626,744;812 × 5/8 < 535,233;3 = 3二、选择。

1.当a。

1时,它的倒数小于1,所以选B。

2.当9乘以一个小于1的分数时,积一定小于9,所以选B。

3.甲数的8等于乙数的9,所以甲数小于乙数,选A。

三、判断。

1.错误,自然数m的倒数是1/m。

2.错误,无法判断a和b的大小关系。

3.错误,吃了1/2kg后还剩1/2kg。

4.正确,用去1/10后再接上1/10,长度仍然是50m。

四、计算。

1.80 × 5 = 400;10 × 20 = 200;8 × 3 = 24;8 × 21 = 168;16/5 × 13/5 = 52/25;12 × 11 + 124 × 3 + 4 × 320 = 1,708;2008 × 2009 = 4,036,072五、解决问题。

人教版-初中数学九年级上册期末复习01—易错题精选(含答案在前)

人教版-初中数学九年级上册期末复习01—易错题精选(含答案在前)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期末复习—易错题精选答案一、 1.【答案】B 2.【答案】C 3.【答案】C 4.【答案】D 5.【答案】D 6.【答案】C 7.【答案】B 8.【答案】D . 二、1.【答案】211y x =--()(答案不唯一)2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF 与O 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠⊥,∥ .OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠,,(2)解:BAG ∠与DAC ∠相等.理由如下: 如图②,连接BC ,则B AGD ∠=∠.AB 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=, °90B BAC ∴∠+∠=, °90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-. 211101022S t t t t ∴=⨯⨯-=-()().(2)1502ABC S AB BC ==△, 211010502PCQ t S t t ∴=-=△当<秒时,().整理,得2101000t t -+=,无解. 当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变. 证明:过Q 作QM AC ⊥,交直线AC 于点M . 易证APE QCM △≌△,AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==DE ∴=∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1)(2)过点C 作CD OB ⊥,垂足为点D . 连接OC ,则°30CBD ∠=.1AB BC ==,∴在Rt CBD △中,12CD =,BD =,1OD ∴=.∴在Rt CDO △中,OC =.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤.设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=,.1DE =,∴可得M 的半径为MD ME MO ===MD ME =,DF EF =,MF ∴垂直平分DE . 1122MN DE ∴==,NF ==122OF OM MF ∴+=+≤OF ∴=最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩,即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3), ∴将原抛物线沿y 轴向下平移2个单位后过点C . ∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=,OB O B '=, ∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又抛物线1L 的表达式为241y x x =-+, ∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.期末复习—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( ) A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( ) A .至少有两名学生生日相同 B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( )A .12B .13C .14D .165.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =-B .可能是y 轴C .在y 轴右侧D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________; (1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小; (3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________. 3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________. 4.如图,AB 是O 的弦,6AB =,点C 是O 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O 的直径,AC 是弦,直线EF 和O 相切于点C ,AD EF ⊥,垂足为D . (1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.。

【数学】九年级全册期末复习试卷易错题(Word版 含答案)

【数学】九年级全册期末复习试卷易错题(Word版 含答案)

【数学】九年级全册期末复习试卷易错题(Word 版 含答案)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 2.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,23.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .234.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .235.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α 7.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断8.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A.100°B.110°C.120°D.130°9.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3 10.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=11.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1212.二次函数y=()21x++2的顶点是( )A.(1,2)B.(1,−2)C.(−1,2)D.(−1,−2)13.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③14.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:215.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题16.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.17.抛物线y =3(x+2)2+5的顶点坐标是_____.18.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)19.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.20.方程290x 的解为________.21.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空) 22.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.23.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).24.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.25.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.26.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.27.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.28.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.29.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?32.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率. 33.解下列方程: (1)()2239x += (2)2430x x --= 34.解方程 (1)(x +1)2﹣25=0 (2)x 2﹣4x ﹣2=035.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率.四、压轴题36.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.37.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.38.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.39.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.40.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)............(.包括边界....x.轴上方的部分围成的图形中【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.C解析:C 【解析】 【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可. 【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m ≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:b 2-4ac=4-4m=0, 解得:m=1. ∴m=0或m=1 故选:C. 【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.3.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得32EF CF BE AB ==,于是设EF =3x ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°, ∴BD =23,∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴3EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.4.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.5.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为2、2、10、只有选项B的各边为1、2、5与它的各边对应成比例.故选B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.7.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.10.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 13.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.14.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC =. 故选D .15.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题16.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.17.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,顶点坐标为(h ,k ),对称轴为x=h .18.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 19.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:25﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =25,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.【详解】解:如图,取BC 中点G ,连接HG ,AG ,∵CH ⊥DB ,点G 是BC 中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2,故答案为:2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 20.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.21.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 22.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求解析:2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.23.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.24.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.25.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可. 【详解】 解:当时,, 解得,(舍去),. 故答案为10. 【点睛】本题考查了二次函数的实际应用,解析式中自解析:10 【解析】 【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可. 【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =. 故答案为10. 【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.26.【解析】 【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率; 【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100解析:9π【解析】 【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率; 【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2, 边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π.本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.27.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.28.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.29.2或3【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可. 【详解】解:设AP =xcm .则解析:2或3 【解析】 【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可. 【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似, ①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3. ②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3. 【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.30.> 【解析】 【分析】根据二次函数y =ax2+bx+c(a >0)图象的对称轴为直线x =1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系. 【详解】 解:∵二次解析:> 【解析】 【分析】根据二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2)和二次函数的性质可以判断y 1 和y 2的大小关系. 【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)y= -3x2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【解析】【分析】(1)根据毛利润=销售价−进货价可得y关于x的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x2+330x-8568;(2)y=-3x2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.32.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A 落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况, ∴点A 落在第三象限的概率是29.33.(1)13x =-,20x =;(2)12x =,22x = 【解析】 【分析】(1)直接用开平方求解即可. (2)用配方法解方程即可. 【详解】(1)解:由()2239x += 得233x +=±即233x +=-或233+=x∴26x =-,或20x =解得13x =-,20x = (2)解:243x x -= ∴24434x x -+=+ ∴2(2)7x -=∴2x -=∴12x =,22x =. 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.34.(1)x 1=4,x 2=﹣6;(2)x 1=,x 2=2 【解析】 【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程. 【详解】解:(1)(x +1)2﹣25=0, (x +1)2=25, x +1=±5, x =±5﹣1, x 1=4,x 2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x=426=2±6,即x1=2+6,x2=2﹣6.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.35.(1)见解析;(2)1 9【解析】【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y=x2﹣5x+6的图象上的结果数,再根据概率公式计算即可解答.【详解】(1)根据题意列表如下:纵坐标横坐标312﹣1(﹣1,3)(﹣1,1)(﹣1,2)0(0,3)(0,1)(0,2)1(1,3)(1,1)(1,2)2(2,3)(2,1)(2,2)3(3,3)(3,1)(3,2)4(4,3)(4,1)(4,2)(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)①18;②t=4或t=-1;(2)48;,或;(3)。

九年级上册数学 全册期末复习试卷易错题(Word版 含答案)

九年级上册数学 全册期末复习试卷易错题(Word版 含答案)

九年级上册数学 全册期末复习试卷易错题(Word 版 含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒3.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A 10B 310C .13D 104.一元二次方程x 2-x =0的根是( )A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-1 5.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定 6.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( )A .相交B .相切C .相离D .无法确定 7.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x = 8.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7212.下列方程中,关于x 的一元二次方程是( )A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 13.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变14.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x ﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根 15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.20.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.21.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.22.数据2,3,5,5,4的众数是____.23.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.24.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.25.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;26.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.27.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.28.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.29.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.30.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,的面积为__________.与AD交于点F,则CDF三、解答题31.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?32.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).33.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.34.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),35.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.四、压轴题36.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)若10,6AB AF ==,求AE 的长.38.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x .(1)求证:四边形AGDH 为菱形;(2)若EF =y ,求y 关于x 的函数关系式;(3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C 的度数.【详解】∵四边形ABCD 内接于⊙O ,∠A =400,∴∠C =1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补3.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 4.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x 2-x =0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.5.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.6.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.7.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.10.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13 DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6 S△AGH,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.12.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A 、方程2x ﹣3=x 为一元一次方程,不符合题意;B 、方程2x +3y =5是二元一次方程,不符合题意;C 、方程2x ﹣x 2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意, 故选:C .【点睛】 本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.13.D解析:D【解析】【分析】作PB ⊥OA 于B ,如图,根据垂径定理得到OB =AB ,则S △POB =S △PAB ,再根据反比例函数k 的几何意义得到S △POB =12|k |,所以S =2k ,为定值. 【详解】作PB ⊥OA 于B ,如图,则OB =AB ,∴S △POB =S △PAB .∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 20.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.21.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 22.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.23.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).24.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.25.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴22221086 AC AB BC=-=-=,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上, ∴AE 1=6+3=9, 同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.26.【解析】 【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标. 【详解】 解:∵解析:2(1010,1010)-【解析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标. 【详解】解:∵A 点坐标为()1,1, ∴直线OA 为y x =,()11,1A -, ∵12A A OA ∕∕, ∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A , ∴()32,4A -, ∵34A A OA ∕∕, ∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A , ∴()53,9A - …,∴()220191010,1010A -, 故答案为()21010,1010-.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.27.【解析】 【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. 【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数 解析:3k <【解析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.29.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.30.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:32【解析】 【分析】运用切线长定理和勾股定理求出DF ,进而完成解答. 【详解】 解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x 在Rt △CDF 中,由勾股定理得: DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22 解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32故答案为32. 【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题31.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件. 【解析】 【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解; (2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解; (3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论. 【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(30,100)、(45,70)代入一次函数表达式得:100307045k bk b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==,故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.32.(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);。

第九单元总复习(同步练习)-2024-2025学年六年级上册数学人教版

第九单元总复习(同步练习)-2024-2025学年六年级上册数学人教版

六年级上册人教版第九单元总复习1 数与代数(1)过综合关 阶段滚动综合练 1 填一填。

(1)0.25:4.5化为最简单的整数比是( ),比值是( )。

(2)如果 a ÷54=b ×58=c ×57=d ÷45(a 、b 、c 、d 均不为0),那么a 、b 、c 、d 中最大的是( ),最小的是( )。

(3)3÷()=54×(√)=5:()=1.25=()16=()%(4)一堆煤共9 吨,用 23₃吨,还剩( )吨;一堆煤共9吨,用 23,,还剩( )吨。

(5)4吨货物,如果每天运 18吨,( )天才能运完;如果每天运走这堆货物 14( )天可以运完。

3 计算下面各题,能简算的要简算。

59×(95+18) 518÷712+1318×127 2.4×(712+34−23) 711÷[25−(1−710)]4 (易错题)已知2023 年 A 市的“蓝天”天数(空气质量不低于二级的天数)是180天,求B 市的“蓝天”天数。

找出下列条件和算式的对应关系,连一连。

①B 市的“蓝天”天数比 A 市的 12 a.180÷(1+12) ②A 市的“蓝天”天数比 B 市的 12 b.180×(1−12)③A 市的“蓝天”天数是 B 市 12 c.180÷12 ④A 市的“蓝天”天数比B 市的 12 d.180×(1+12) ⑤B 市的“蓝天”天数比A 市的 12 c.180÷(1−12) ⑥B 市的“蓝天”天数是 A 市 12 1.180×125 (开放题)根据下面的信息提出一个数学问题并解答。

李明看一本书,第一天看了45页,第二天看的页数比第一天看的 15,第二天看了全书 16,三天看的页数比第一天看的 13问题:6 如图,一辆客车从 A 地出发经过1 小时到达B 地,再从B 地行驶2 小时到达C 地。

九年级上册数学 全册期末复习试卷易错题(Word版 含答案)

九年级上册数学 全册期末复习试卷易错题(Word版 含答案)

九年级上册数学 全册期末复习试卷易错题(Word 版 含答案)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙 B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断5.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定6.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大. 7.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-28.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .239.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6D .这组数据的方差是10.210.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断12.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 13.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=14.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86 B .87C .88D .8915.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .13二、填空题16.已知tan (α+15°)=3,则锐角α的度数为______°. 17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.23.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若5∠EAF=45°,则AF 的长为_____.24.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .25.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)26.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.27.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”) 29.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.在平面直角坐标系中,二次函数y=ax2+bx+2 的图象与x 轴交于A(﹣3,0),B (1,0)两点,与y 轴交于点C.(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.32.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=033.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了户贫困户;(2)本次共抽查了户C类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?34.如图,抛物线y=﹣13x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.(1)求此抛物线的表达式;(2)求过B、C两点的直线的函数表达式;(3)点P是第一象限内抛物线上的一个动点.过点P作PM⊥x轴,垂足为点M,PM交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点P 的坐标,若不存在,请说明理由;35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.39.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.A解析:A【解析】【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离.故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.C解析:C 【解析】分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.6.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.7.D解析:D 【解析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.8.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.9.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.12.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.13.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 14.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.15.A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题16.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 602︒=得出()1 S 82x x =-. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC ,设AF=x ,则,DF=2-x ,∴CF=2+x ,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.()【解析】设它的宽为xcm.由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm.由题意得1:202x=.∴10x= .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.22.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.23.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410 3【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+= 410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,24..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.25.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,a>0;图像开口方向向下,a<0.26.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27.【解析】【分析】如图,过点F 作FH⊥AE 交AE 于H ,过点C 作CM⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH =HF =x ,则EH =xtan30°x . ∵AB=2AD ,AD=AE ,∴AE=12AB=1,∴x+33x=1,解得x=33233-=+.∴S△AEF=12×1×33-=33-.故答案为:33 -.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.30.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)24233y x x=--+,13x<-或21>x;(2)P35,22⎛⎫-⎪⎝⎭;(3)1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q【解析】【分析】(1)将点A(﹣3,0),B(1,0)带入y=ax2+bx+2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时y﹤0;(2)设出P点坐标224233m m m⎛⎫--+⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACOS S S S=+-,带入各个三角形面积算法可得出PACS与m之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.【详解】解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:093202a ba b=-+⎧⎨=++⎩解得:2343ab⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x=--+.由图像可知,当x3<-或x1>时y﹤0;综上:二次函数解析式为24233y x x=--+,当x3<-或x1>时y﹤0;(2)设点P坐标为224233m m m⎛⎫--+⎪⎝⎭,,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO SS S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC Sm m =--有最大值, 当()33m 212-=-=-⨯-时,PAC S 有最大值,此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫- ⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+= ∴34(27,0),(27,0)Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.32.(1)x 1=3,x 2=﹣7;(2)x 1=7572+x 2=7572- 【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x 2+4x ﹣21=0(x ﹣3)(x+7)=0解得x 1=3,x 2=﹣7;(2)x 2﹣7x ﹣2=0∵△=49+8=57∴x 757±解得x 1757+x 2757- 【点睛】。

人教版初中物理总复习易错题集锦与总结

人教版初中物理总复习易错题集锦与总结

初中物理总复习易错题集锦1.__________和沸腾都是汽化现象,高压锅内水的沸点________100℃.2.斜插在水中的筷子,在水中的部分,看起来好象向______弯折,潜水员从海面下看海边的房子稍________于房子的实际高度.3.在燃烧过程中,燃料的_________能转化为_________能.4.安装家用电路时,电灯开关必须接在______线上,螺旋灯泡螺旋套应接在________上.5.发电机是根据______________现象制成的,电动机是根据______________的原理制成的.6.电热器是利用_______________制成的.它的主要部分发热体是由___________________的合金丝制成的.7.如图所示,A,B 两个滑轮重均为2牛,物体G重为10牛,两个滑轮中属于定滑轮的是_____.属于动滑轮的是______.如果不计摩擦,力F的大小为_______牛,如果绳子能承受的最大拉力为15牛,当不计摩擦时,物体的最大重力可以是_________牛.8.___________电路的一部分_____________在磁场里做___________磁感线运动时,____________中就会产生电流的现象叫电磁感应,产生的电流叫_________电流,在这个现象里,__________能转化为__________能,发现电磁感应的科学家是__________.9.摩擦起电并没有创造电,只是_________从一个物体转移到另一个物体.10.体积为500厘米3的物体有2/5的体积浸在水中,它受到的浮力为_______牛,若把它浸在煤油中,受到的浮力为___________牛.11.一个质量为8.9千克的实心铜球,浸没在水中,受到的浮力为__________牛,如果把它放入水银中它受到的浮力为________牛.12.一物体放入密度为 的液体中,露出液体表面的体积占总体积的1/5,把它放入另一种液体中有1/9的体积露出液面,则后一种液体的密度为_________.13.质量相同的实心木球和实心铁球放入水银中,它们所受到的省浮力是( )A.木块受到的浮力大B.铁块受到的浮力大C.一样大D.无法确定14.如图:开关闭合时,使滑动变阻器的滑片P向b端移动,电流表和电压表的变化情况是( )A.两表的示数都减小B.两表的示数都增大C.○A示数减小,○V示数增大D.○A示数增大,○V示数减小15.质量相等的水和铝球:初温度相等,吸收了相等的热量后,再将铝球放入水中,则( )A.水和铝球之间没有热传递B.热从水传给铝球C.热从铝球传给水D.温度从铝球传给水.16.把一个装满水的轻塑料袋密封好挂在弹簧秤的挂钩上,当塑料袋浸没在水中时,弹簧秤的示数为( )A.略小于袋中水的重量B.略大于袋中水的重量C.等于袋中水的重量D.没有示数17.甲,乙,丙三个小球,将它们两两靠近,它们都相互吸引,下面说法中正确的是( )A. 这三个球都带电B. 只有一个球带电C. 有两个球带电D. 这三个小球都不带电.18.如图所示,将温度计正确的放在沸水中测沸水的温度,示数如图,那么,此时水面气压的大小是( )A. 小于一标准大气压B. 等于一标准大气压C. 大于一标准大气压D. 无法确定.19.用凸透镜做物体成像实验,马民的像为倒立,放大的实像时,物体到凸透镜的距离u的大小为( )A. u<fB. u>2fC. 2f>u>fD. 无法确定.20.如图所示,物体甲重5牛,,物体乙重3牛,甲,乙均保持静止状态,则物体乙受到绳子的拉力的大小为________牛,地面受到的压力_______牛,弹簧秤的读数为________牛,(滑轮重不计).21.一辆汽车,在公路上以30米/秒的速度匀速行驶,阻力为2000牛,这辆车的功率是______瓦.22.如图所示,灯L标有”3V 1.5W”的字样,R=30欧,当开关S2闭合,S1断开时,灯正常发光,此时电流表的读数是_______安,电压表的读数为________伏;如果S1闭合,S2断开,电阻R消耗的功率为_________瓦.23.如图所示,电源电压不变,当S1闭合,为使电流表和电压表示数均减小,下列操作可行的是( )A. 断开S2,滑片向左移动B. 断开S2,滑片向右移动C. 保持滑片P不动,使S2由闭合到断开D. 保持滑片P不动,使S2由断开到闭合.24.如图所示的装置0中,甲物重5牛,乙物重3牛.甲,乙均保持静止状态,不计弹簧秤自重,则甲受到的合力和弹簧秤的示数分别是( )A. 0牛3牛B. 0牛5牛C. 2牛5牛D. 2牛3牛25.图6所示电路,电源电压保持不变, 在甲,乙两处分别接入电压表,闭合开关S, 测的U甲:U乙=1:3,断开开关S ,折去电压表并在甲,乙两处分别接入电流表,此时I甲:I乙是( )A. 3:1B. 1:1C. 1:3D. 4:326.地面上有一条大木杆,抬起A端需用力300牛,抬起B端需用力200牛。

六年级上册数学总复习(2)A卷 人教新课标(2014秋)(含解析)

六年级上册数学总复习(2)A卷 人教新课标(2014秋)(含解析)

人教版数学六年级上册总复习(2)A卷一、填空题。

1.把平均分成4份,求每份是多少,就是求的________是多少。

2.60千克的是________千克;米是________的;6小时45分=________小时;2 吨=________吨________千克。

3.把:化成最简整数比是________:________,比值是________。

4.一种木料,立方米重吨,1立方米重________吨。

5.一种药水中的药和水是按1:8的质量比混合而成的,在18千克药水中,药的质量占药水的________,水的质量占药水的________。

6.甲数和乙数的比是9:8,乙数是甲数的________,甲数比乙数多________。

7.用一根铁丝围成一个圆,半径正好是5分米,如果把这根铁丝改围成一个正方形,它的边长是________分米。

(π=3.14)8.一个圆的周长是6.28分米,半圆的周长是________分米。

(π=3.14)9.两个圆半径的比是5:6,那么它们直径的比是________:________,周长的比是________:________,面积的比是________:________。

二、判断题。

10.比的前项扩大3倍,后项缩小为原来的,比值扩大9倍。

()11.已知两个因数的积是,一个因数是1 ,另一个因数是2 。

()12.如果a:b=4:5,那么a=4,b=5。

()13.在同一个圆里,所有半径的长度都相等。

()14.长方形、圆、正方形、平行四边形和三角形都是轴对称图形。

()三、选择题。

15.a÷的商与a比较,正确的是()。

A. 大于aB. 小于aC. 等于aD. 小于或等于a16.在400克盐水中,含盐80克,盐与水的比是()。

A. 1:6B. 1:5C. 1:417.育苗小学六年级有男生150人,比女生人数的多20人,六年级有女生()人。

A. 120B. 255C. 19518.小圆的直径是5厘米,大圆的半径是5厘米,小圆面积是大圆面积的()。

(2021年整理)2013-2014中考数学易错题分类汇编[经典]

(2021年整理)2013-2014中考数学易错题分类汇编[经典]

(完整)2013-2014中考数学易错题分类汇编[经典]编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2013-2014中考数学易错题分类汇编[经典])的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2013-2014中考数学易错题分类汇编[经典]的全部内容。

初中数学易错题一、数与式例题:(A)2,(B(C)2±,(D)例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )112112a a a a ++=--,(D )22a x a bx b =. 二、方程与不等式⑴字母系数例题:不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.⑵判别式例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214x x x x <+-,求实数的范围.⑶增根例题:m 为何值时,22111x m x x x x --=+--无实数解. ⑷应用背景例题:某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A 、C 两地间距离为2千米,求A 、B 两地间的距离.⑸失根例题:解方程(1)1x x x -=-.三、函数例题:函数y 中,自变量x 的取值范围是_______________. ⑵字母系数例题:若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.⑶函数图像例题:如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式.⑷应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.四、直线型⑴指代不明,则斜边上的高等于________.⑵相似三角形对应性问题例题:在ABC △中,9AB =,12AC =18BC =,D 为AC 上一点,:2:3DC AC =,在AB 上取点E ,得到ADE △,若两个三角形相似,求DE 的长.⑶等腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为________.⑷三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?例题:有一块三角形ABC 铁片,已知最长边BC =12cm ,高AD =8cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?⑹比例问题 例题:若b c c a a b k a b c+++===,则k =________. 五、圆中易错问题⑴点与弦的位置关系例题:已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为点D ,点D 分这条直径成2:3两部分,如果⊙O 的半径等于5,那么BC = ________.⑵点与弧的位置关系例题:PA 、PB 是⊙O 的切线,A 、B 是切点,78APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠= ________.⑶平行弦与圆心的位置关系例题: 半径为5cm 的圆内有两条平行弦,长度分别为6cm 和8cm ,则这两条弦的距离等于________.⑷相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为5,则这两圆的圆心距等于________. ⑸相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.练习题:一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.2._________的倒数是它本身;_________的立方是它本身.3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围_________.4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________. 5.若()2211a a a +--=,则a =_________.6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.15.矩形ABCD 的对角线交于点O .一条边长为1,OAB △是正三角形,则这个矩形的周长为______.17.已知线段AB =10cm,端点A 、B 到直线l 的距离分别为6cm 和4cm,则符合条件的直线有___条.19.在Rt ABC △中,90C ∠=︒,3AC =,5AB =,以C 为圆心,以r 为半径的圆,与斜边AB 只有一个交点,求r 的取值范围.20.直角坐标系中,已知(1,1)P ,在x 轴上找点A ,使AOP △为等腰三角形,这样的点P 共有多少个?21.在同圆中,一条弦所对的圆周角的关系是______________.24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少? 26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.29.在函数y =中,自变量的取值范围为_______.30.已知445x x -+=,则22x x -+=________.31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.33.若22022(43)x x x x --=-+,则x =?.35.关于x 的方程2210x k +-=有实数解,求k 的取值范围.36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?38.若对于任何实数x ,分式214x x c ++总有意义,则c 的值应满足______.中考数学试题之选择题100题1、在实数123.0,330tan ,60cos ,722,2121121112.0,,14.3,64,3,80032---- π中,无理数有()A 、3个B 、4个C 、5个D 、6个2、下列运算正确的是( )A 、x 2 x 3 =x 6B 、x 2+x 2=2x 4C 、(—2x )2 =4x 2D 、(—2x)2 (—3x )3=6x 53、算式22222222+++可化为( )A 、42B 、28C 、82D 、1624、“世界银行全球扶贫大会"于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11。

【易错题】中考九年级历史下第一单元殖民地人民的反抗与资本主义制度的扩展一模试题附答案(3)

【易错题】中考九年级历史下第一单元殖民地人民的反抗与资本主义制度的扩展一模试题附答案(3)

一、选择题1.美国内战清除了资本主义发展的最大障碍,为以后经济的迅速发展创造了条件。

“最大障碍”是A.种植园奴隶制B.英国的殖民统治C.国王的专制统治D.农奴制2.英国史学家威廉•G 比斯利认为:“对于日本来说,明治维新的重要性有如英国革命之于英国,法国革命之于法国。

”作者认为,日本通过明治维新A.彻底铲除了封建制的残余B.走上了资本主义道路C.增添了浓厚军国主义色彩D.实现了工业的近代化3.某学校九(3)同学进行了美国两次资产阶级革命的专题复习,作出如下比较表,请指出比较有误的一项是A.A B.B C.C D.D4.历史学家罗英渠在《美洲史论》中写道:“他所指挥的军队解放的国士十倍于西班牙的国土,比西、法、德、英、意五个国家加在一起还大一倍半……成为委内瑞拉、哥伦比亚、厄瓜多尔、秘鲁、玻利维亚、巴拿马六个国家的奠基者。

”材料中的“他”是()A.玻利瓦尔B.章西女王C.卡斯特罗D.纳塞尔5.在美国南北战争爆发后,北方军队虽然士气高昂,作战勇猛,在战争初期却一再失利,请问北方军队战争失利的原因有①准备不足②军队人数少③缺乏优秀将领④指挥严重失误A.①②③B.②③C.①③D.②③④6.19世纪六七十年代,为顺应时代潮流,世界上许多国家不约而同地进行了改革或革命。

某班同学对此进行了探究并得出结论,下列史实与结论对应正确的是( )A.史实:俄国废除农奴制结论:彻底消除了封建残余B.史实:中国洋务运动结论:是中国近代史的开端C.史实:日本明治维新结论:是一次资产阶级改革D.史实:美国南北战争结论:实现了美国的独立7.关于俄国彼得一世改革和1861年农奴制改革的相同点,表述正确的是A.都是自上而下的改革B.都促进了资本主义的发展C.都废除了农奴制度D.都改变了俄国的社会制度8.《新全球史》中写到:“很多人认为,这种制度(农奴制)已经成为经济发展和国家生存的障碍……为了保持俄罗斯的大国地位,沙皇政府着手开始了一项改革计划……使俄罗斯社会在19世纪最后十年发生了转型。

人教新课标六年级上册数学一课一练-9总复习易错题集锦 (含答案)

人教新课标六年级上册数学一课一练-9总复习易错题集锦  (含答案)

1、一种盐水的含盐率是20%,盐与水的比是()。

2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是()。

3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(),货车的速度比客车慢()%。

4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是()。

5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是()。

6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为()。

7、六(1)班今天到校40人,请病假的5人,该班的出勤率是()。

8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是(),面积是()。

8、两个数的差相当于被减数的40%,减数与差的比是()。

9、()米比9米多40% , 9米比()少55% ,200千克比160千克多()%;160千克比200千克少()%;16米比()米多它的60%;( )比32少30% 。

10、钟面上时针的长1dm,一昼夜时针扫过的面积是()。

11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的()。

12、某种皮衣价格为1650元,打八折出售可盈利10%.那么若以1650元出售,可盈利()元。

13、正方形边长增加10%,它的面积增加()% 。

02判断题。

(分)1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。

()2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。

()3、如果甲数比乙数多25%,那么乙数就比甲数少25%。

()4、半径是2厘米的圆,它的周长和面积相等。

()5、直径相等的两个圆,面积不一定相等。

()6、比的前项和后项都乘或除以同一个数,比值大小不变。

()03选择题。

(分)1、数学小组共有20名学生,则男、女人数的比不可能是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学模拟练习一、填空题。

(42分)1、一种盐水的含盐率是20%,盐与水的比是()。

2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是()。

3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(),货车的速度比客车慢()%。

4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是()。

5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是()。

6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为()。

7、六(1)班今天到校40人,请病假的5人,该班的出勤率是()。

8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是(),面积是()。

9、两个数的差相当于被减数的40%,减数与差的比是()。

10、()米比9米多40% , 9米比()少55% ,200千克比160千克多()%;160千克比200千克少()%;16米比()米多它的60%;( )比32少30% 。

11、钟面上时针的长1dm,一昼夜时针扫过的面积是()。

12、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的()。

13、某种皮衣价格为1650元,打八折出售可盈利10%.那么若以1650元出售,可盈利()元。

14、正方形边长增加10%,它的面积增加()% 。

二、判断题。

(12分)15、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。

()16、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。

()17、如果甲数比乙数多25%,那么乙数就比甲数少25%。

()18、半径是2厘米的圆,它的周长和面积相等。

()19、直径相等的两个圆,面积不一定相等。

()20、比的前项和后项都乘或除以同一个数,比值大小不变。

()三、选择题。

(12分)21、数学小组共有20名学生,则男、女人数的比不可能是()。

A.5︰1 B.4︰1 C.3︰1 D.1︰122、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是()。

A、6︰1B、5︰1C、5︰6D、6︰523、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是()。

A、1︰4B、1︰2C、1︰8D、无法确定24、利息与本金相比()A、利息大于本金B、利息小于本金C、利息不一定小于本金四、解决问题。

(34分)25、A、B两地相距408KM,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?(4分)26、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占质量的50%,五年级收集的树种比六年级少20千克。

五六年级一共收集树种多少千克?(5分)27、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?(5分)28、将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。

这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?(5分)29、一块长方形土地,周长是160m,长和宽的比是5:3,这块长方形土地的面积是多少平方米?(5分)30、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?(5分)*31、看一本书,第一天读的页数与未读页数的比是1:3,第二天看了120页,这时已读的与未读页数的比是2:3,这本书有多少页?(5分)易错题集锦(1)参考答案01填空题。

(分)1、一种盐水的含盐率是20%,盐与水的比是(1:5)。

2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是(3:2)。

【解析:将这批零件看作单位“1”,则小张的工作效率为:1÷4=1/4 小李的工作效率为:1÷6=1/6 两人的工作效率比为:1/4:1/6,化简后就是3:2】3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(5:4),货车的速度比客车慢(20)%。

【解析:求速度比的方法同第2题。

货车的速度比客车慢((5-4)÷5=20%)】4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是(1:10)。

【解析:此题关键是要先算出原来的糖水是多少克:100÷12.5%=800(克)。

再求加水后糖与糖水的比:100:(800+200)=100:1000=1:10】5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是(5:4)。

【解析:用方程来解答:设六(1)人数有a人,六(2)班人数有b人。

根据题意列出方程后并求解:通过解方程得出a与b的比为10:8,即六(1)班与六(2)班的人数为10:8,化简后为5:4。

】6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为(2:1)。

【解析:方法同第5题。

】7、六(1)班今天到校40人,请病假的5人,该班的出勤率是(88.9%)。

【解析:用到校人数就是出勤人数。

出勤人数÷全班人数×100%=出勤率。

40÷(40+5)×100%≈88.9%】8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是(62.8cm),面积是(228cm2)。

【解析:拼成的长方形的周长就是这个半径为10cm的圆的周长:3.14×10×2=62.8cm;根据周长先算出长方形的一条长与一条宽的和:62.8÷2=31.4cm,假设一条长为20cm,则一条宽就为11.4(只要一条长与一条宽加起来等于31.4即可。

),那么面积就是:20×11.4=228平方厘米。

】8、两个数的差相当于被减数的40%,减数与差的比是(3:2)。

【解析:方法参考第5题。

】9、(12.6)米比9米多40%【9×(1+40%)=12.6】, 9米比(20)少55%【9÷(1-55%)=20】,200千克比160千克多(25)%【(200-160)÷160=25%】;160千克比200千克少(20)%【(200-160)÷200=20%】;16米比(6.4)米多它的60%【16×(1-60%)=6.4 注意:“它”是指16。

】;( )比32少30%【32×(1-30%)=22.4】。

【解析:本题主要是考查单位“1”(总量)、对应量、对应分率之间的关系。

单位“1”(总量)×对应分率=对应量】10、钟面上时针的长1dm,一昼夜时针扫过的面积是(31.4dm2)。

【解析:时针的长就是圆的半径,“一昼夜时针扫过的面积”就是指半径为1dm的圆的面积(“一昼夜”指24小时,时针走了24小时就是一周)。

】11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的(3/4)。

【解析:1/4+(1-1/4)×2/3=3/4】12、某种皮衣价格为1650元,打八折出售可盈利10%。

那么若以1650元出售,可盈利(450)元。

【解析:本题关键是要先算出进价,原题中的“10%”是针对进价的。

设皮衣的进价为x元。

(1+10%)x=1650*80% 解得:x=1200。

以1650元出售,可盈利:1650-1200=450(元)】13、正方形边长增加10%,它的面积增加(21)% 。

【解析:{[1×(1+10%)]2-1}÷1=21%】02判断题。

(分)1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。

(×)【解析:错。

两个5%的单位“1”不一样。

1×(1+5%)×(1-5%)=0.9975 值小于1表示现价比原价少,值大于1表示多。

】2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。

(×)【解析:错。

用假设法来验证:假设盐是20克,水是80克,则含盐就是20%。

如果分别同时加入10克盐和水,那么这时含盐率就是:(20+10)÷(20+10+80+10)×100%=25%,含盐率变大了。

】3、如果甲数比乙数多25%,那么乙数就比甲数少25%。

(×)【解析:错。

两个25%相对的单位1不同。

应该是:甲数比乙数多25%,乙数就比甲数少20%。

25%÷(1+25%)=20%】4、半径是2厘米的圆,它的周长和面积相等。

(×)【解析:错。

只能说在数值上相等,但是万物都有单位,周长单位是1维的,面积单位是2维的,怎么可能相等呢?简单地说,周长和面积单位不一样,也不可能互化,所以周长和面积不可能相等。

】5、直径相等的两个圆,面积不一定相等。

(×)【解析:错,是一定相等。

直径相等就表示半径也会相等,而半径决定了圆的大小,只要圆的半径相等,它们的大小就会相等,即面积也一定相等。

】6、比的前项和后项都乘或除以同一个数,比值大小不变。

(×)【解析:错。

0必须除外。

0是不能作为除数的。

】03选择题。

(分)1、数学小组共有20名学生,则男、女人数的比不可能是(A)。

A.5︰1 B.4︰1 C.3︰1 D.1︰1【解析:A。

20的因数有:1、2、4、5、10、20,而5+1=6,6不是20的因数;所以不可能是5:1。

】2、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是(C)。

A、6︰1B、5︰1C、5︰6D、6︰53、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是(A)。

A、1︰4B、1︰2C、1︰8D、无法确定【解析:A。

喝掉一半后,浓度不变,牛奶与水的比还是1:4。

验证:(1-1×1/2):(4-4×1/2)=1:4】4、利息与本金相比(A)A、利息大于本金B、利息小于本金C、利息不一定小于本金【解析:C。

利率表示利息与本金的比率;利息可能小于本金,也可能大于本金;所以利息不一定小于本金。

】04解决问题。

(分)1、A、B两地相距408km,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?解:设客车速度为9x,货车速度为8x,根据题意列方程:(9x+8x)×3=40817x*3=408x=408/51x=8所以客车每小时比货车快:9x-8x=x=8(千米)2、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占总质量的50%,五年级收集的树种比六年级少20千克。

相关文档
最新文档