2019届高考物理一轮复习讲义:第九章 第2讲 磁场对运动电荷的作用 Word版含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 磁场对运动电荷的作用

板块一 主干梳理·夯实基础

【知识点1】 洛伦兹力、洛伦兹力的方向 Ⅰ

洛伦兹力公式 Ⅱ1.定义:运动电荷在磁场中所受的力。 2.方向

(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向。 (2)方向特点:F ⊥B ,F ⊥v 。即F 垂直于B 和v 所决定的平面。(注意B 和v 可以有任意夹角)。

由于F 始终垂直于v 的方向,故洛伦兹力永不做功。 3.洛伦兹力的大小:F =q v B sin θ

其中θ为电荷运动方向与磁场方向之间的夹角。 (1)当电荷运动方向与磁场方向垂直时,F =q v B 。 (2)当电荷运动方向与磁场方向平行时,F =0。 (3)当电荷在磁场中静止时,F =0。

【知识点2】 带电粒子在匀强磁场中的运动 Ⅱ 1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动。

2.若v ⊥B ,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动。

3.基本公式

(1)向心力公式:q v B =m v 2

r 。 (2)轨道半径公式:r =m v

Bq 。

(3)周期公式:T =2πr v =2πm qB ;f =1T =qB 2πm ;ω=2π

T =2πf =qB m 。

(4)T 、f 和ω的特点:

T 、f 和ω的大小与轨道半径r 和运行速率v 无关,只与磁场的磁感应强度B 和粒子的比荷q m 有关。比荷q m 相同的带电粒子,在同样的匀强磁场中T 、f 、ω相同。

板块二 考点细研·悟法培优

考点1 洛伦兹力的特点及应用 [对比分析]

1.洛伦兹力的特点

(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面。 (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。 (3)运动电荷在磁场中不一定受洛伦兹力作用。

(4)用左手定则判断洛伦兹力方向,注意四指指向正电荷运动的方向或负电荷运动的反方向。 (5)洛伦兹力一定不做功。 2.洛伦兹力与电场力的比较

例1(多选)一个带正电的小球沿光滑绝缘的桌面向右运动,速度方向垂直于一个水平向里的匀强磁场,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为x1,着地速度为v1。撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为x2,着地速度为v2,则下列说法正确的是()

A.x1>x2B.t1>t2

C.v1和v2大小相等D.v1和v2方向相同

洛伦兹力对带电小球做功吗?

提示:不做功。

(2)洛伦兹力的方向与速度方向有何关系?

提示:垂直。

尝试解答选ABC。

当桌面右边存在磁场时,由左手定则可知,带正电的小球在飞行过程中受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直分量向上,因此小球水平方向上存在

加速度,竖直方向上的加速度a′

2a′t

2知t

1

>t2;由x1=v0t1+

1

2at

2

1

,x2=v0t2知

x1>x2,A、B正确;又因为洛伦兹力不做功,故C正确;两次小球着地时速度方向不同,D 错误。

总结升华

洛伦兹力与安培力的联系及区别

(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力。

(2)安培力可以做功,而洛伦兹力对运动电荷不做功。

[跟踪训练](多选)如图所示,两个倾角分别为30°和60°的光滑绝缘斜面固定于水平地面上,并处于方向垂直纸面向里、磁感应强度为B的匀强磁场中,两个质量为m、带电荷量为+q 的小滑块甲和乙分别从两个斜面顶端由静止释放,运动一段时间后,两小滑块都将飞离斜面,在此过程中()

A .甲滑块飞离斜面瞬间的速度比乙滑块飞离斜面瞬间的速度大 B.甲滑块在斜面上运动的时间比乙滑块在斜面上运动的时间短 C.两滑块在斜面上运动的位移大小相同

D.两滑块在斜面上运动的过程中,重力的平均功率相等 答案 AD

解析 小滑块飞离斜面时,洛伦兹力与重力垂直斜面的分力平衡,故:mg cos θ=q v m B ,解得v m =

mg cos θ

qB

,所以斜面倾角越小,飞离斜面瞬间的速度越大,故甲滑块飞离时速度较大,故A 正确;滑块在斜面上运动的加速度恒定不变,由受力分析和牛顿第二定律可得加速度a =g sin θ,所以甲的加速度小于乙的加速度,因为甲飞离的最大速度大于乙的最大速度,由v m =at 得,甲在斜面上运动的时间大于乙在斜面上运动的时间,故B 错误;由以上分析和x =v 2m

2a ,甲在斜面上的位移大于乙在斜面上的位移,故C 错误;由平均功率的公式P =F v

=mg ·v m 2sin θ=m 2g 2sin θ·cos θ2qB ,因sin30°=cos60°,sin60°=cos30°,故重力的平均功率一定

相等,故D 正确。

考点2 带电粒子在匀强磁场中的运动问题 [解题技巧]

1.圆心的确定

(1)基本思路:与速度方向垂直的直线和轨迹圆中弦的中垂线一定过圆心。 (2)两种常见情形

①已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图a 所示,图中P 为入射点,M 为出射点)。

②已知入射点和出射点的位置时,可以先通过入射点作入射方向的垂线,再连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图b所示,图中P为入射点,M为出射点)。

2.半径的确定和计算

利用几何知识求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:

(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt。

(2)相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.运动时间的确定

粒子在磁场中运动一周的时间为T,当粒子运动的圆弧轨迹所对应的圆心角为α时,其运动时间由下式表示:

t=α

360°T(或t=α

2πT)。

4.带电粒子在不同边界磁场中的运动

(1)直线边界(进出磁场具有对称性,如图所示)。

相关文档
最新文档