人教版九年级数学下册期中试卷及答案【完整版】
人教版九年级数学下册期中考试题及答案【完整版】
人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
2024年最新人教版初三数学(下册)期中试卷及答案(各版本)
2024年最新人教版初三数学(下册)期中试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,2),则下列结论正确的是()A. a > 0B. b = 2aC. c = aD. 顶点坐标为(1,2)3. 若直线y = kx + b(k ≠ 0)经过点(2,3)和(4,7),则该直线的斜率k等于()A. 1B. 2C. 3D. 44. 在直角坐标系中,点P(m,n)关于原点O的对称点坐标为()A. (m,n)B. (m,n)C. (m,n)D. (m,n)二、填空题(每题5分,共20分)5. 已知等差数列{an}中,a1 = 3,d = 2,则a5 = _______。
6. 在△ABC中,若∠A = 90°,AB = 6cm,AC = 8cm,则BC = _______cm。
7. 若函数y = mx + n(m ≠ 0)的图像经过点(1,3)和(2,5),则该函数的解析式为y = _______。
8. 已知圆的方程为(x 3)^2 + (y + 4)^2 = 25,则圆心坐标为_______,半径为_______。
三、解答题(每题10分,共30分)9. 解方程组:{ 2x y = 4, 3x + 2y = 7 }。
10. 已知等差数列{an}中,a1 = 5,d = 3,求前10项的和S10。
11. 在△ABC中,若∠A = 60°,AB = 5cm,AC = 7cm,求BC的长度。
四、证明题(每题10分,共20分)12. 证明:对于任意实数a和b,都有(a + b)^2 ≥ 4ab。
13. 已知等差数列{an}中,a1 = 2,d = 3,证明:对于任意正整数n,都有an > 0。
人教版九年级数学下册期中考试题及答案【完美版】
人教版九年级数学下册期中考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为()A.2±D.2±B.2C.22.若实数m、n满足402n+=-,且m、n恰好是等腰△ABC的两条边的m-边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等 D.对角线互相垂直4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 5.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.8.如图,已知AB AD=,那么添加下列一个条件后,仍无法判定≌的是()ABC ADC∆∆A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:2218x -=______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、2(3)(3)x x +-3、0或1415、1276、三、解答题(本大题共6小题,共72分)1、4x =2、(1)k ≤58;(2)k=﹣1.3、详略.4、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)200、81°;(2)补图见解析;(3)136、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A种书包有2个,B种书包有2个.。
人教版九年级数学下册期中试卷及答案【完整版】
人教版九年级数学下册期中试卷及答案【完整版】班级: 姓名:一、选择题(本大题共 10 小题,每题 3 分,共 30 分)1. ﹣3 的绝对值是( )1 A. ﹣3 B 3 C --D.132.关于二次函数y = 2x 2 + 4x 一 1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在 y 轴的右侧C .当 x < 0 时, y 的值随 x 值的增大而减小D . y 的最小值为-33.如果a 一 b = 2 3 ,那么代数式 (a 2 + b 2 一 b) . a 的值为( )2a a 一 bA . 3B .2 3C .3 3D .4 34.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百 馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是: 有 100 个和尚分 100 个馒头,如果大和尚 1 人分 3 个,小和尚 3 人分 1 个,正 好分完,试问大、小和尚各多少人?设大和尚有 x 人,依题意列方程得( )A . x + 3(100 一 x )=100B .3x + 100 一 x =1003 3 C . x 一 3 (100 一 x )= 100 D .3x 一 100 一 x = 100 3 35.若点A(x , 一6) ,B(x , 一2) ,C(x , 2) 在反比例函数y = 12的图像上,则x , 1 2 3 x 1x ,x 的大小关系是( )2 3A .x < x < xB .x < x < xC .x < x < xD .x < x < x1 2 3 2 1 3 2 3 1 3 2 16.如图是由 6 个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( ). .3A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30 °B.北偏东80 °C.北偏西30 °D.北偏西50 °48.如图, A,B 是反比例函数y=- 在第一象限内的图象上的两点,且A,B 两点x的横坐标分别是2 和4,则△OAB的面积是( )A .4B .3C .2D .19.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM = DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()1A.OM = AC B.MB = MO C.BD AC D.AMB = CND 210.如图,DE∥FG∥BC,若DB=4FB ,则 EG 与GC 的关系是( )5A.EG=4GC B.EG=3GC C.EG=- GC D.EG=2GC2二、填空题(本大题共6 小题,每小题3 分,共18 分)1.4 的算术平方根是.2.分解因式:2x3﹣6x2+4x = .3.已知抛物线y = x2 x 1 与x 轴的一个交点为(m,0) ,则代数式m²-m+2019 的值为.4.如图,点A 在双曲线y= 3x上,且AB∥x轴,C、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.5.如图所示,在四边形ABCD 中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.6.菱形的两条对角线长分别是方程x214x + 48 = 0 的两实根,则菱形的面积为.三、解答题(本大题共6 小题,共72 分)1.解分式方程:xx 1﹣1=2x3x 32.先化简,再求值(—3+m﹣2)÷m2 2m +1;其中m= 2 +1. m +2m +2上,点B 在双曲线y=x13.如图,在Rt△ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F,求∠F的度数.4.如图,已知P 是⊙O外一点,PO 交圆O 于点C,OC=CP=2,弦AB⊥OC,劣弧AB 的度数为120°,连接PB.(1)求BC 的长;(2)求证: PB 是⊙O的切线.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图 1 中a 的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9 人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.6.山西特产专卖店销售核桃,其进价为每千克40 元,按每千克60 元出售,平均每天可售出100 千克,后来经过市场调查发现,单价每降低2 元,则平均每天的销售可增加20 千克,若该专卖店销售这种核桃要想平均每天获利2240 元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共 10 小题,每题3 分,共30 分)1、B2、D3、A4、B5、B6、D7、A8、B9、A10、B二、填空题(本大题共6 小题,每小题3 分,共18 分)1、2.2、2x(x﹣1)(x﹣2).3、20204、25、40 °6、24三、解答题(本大题共6 小题,共72 分)1、分式方程的解为x=1.5.m +12、m 一1 ,原式=2+1 .3、(1) 65°; (2)25°.4、(1)2(2)略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为 1.65 m 的运动员能进入复赛.6、(1)4 元或6 元;(2)九折.。
新人教版九年级数学下册期中测试卷【及参考答案】
新人教版九年级数学下册期中测试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.式子有意义, 则实数a的取值范围是()A. a≥-1B. a≠2C. a≥-1且a≠2D. a>22. 已知则的大小关系是()A. B. C. D.3. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. B. 1,C. 6,7,8D. 2,3,44.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.如果分式的值为0, 那么的值为()A. -1B. 1C. -1或1D. 1或06.小亮、小莹、大刚三位同学随机地站成一排合影留念, 小亮恰好站在中间的概率是()A. B. C. D.7.下面四个图形分别是节能、节水、低碳和绿色食品标志, 在这四个标志中, 是轴对称图形的是()A. B. C. D.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示, 下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0, 其中正确的个数是()A. 1B. 2C. 3D. 49.图甲和图乙中所有的正方形都全等, 将图甲的正方形放在图乙中的①②③④某一位置, 所组成的图形不能围成正方体的位置是()A. ①B. ②C. ③D. ④10.如图, ⊙O中, 弦BC与半径OA相交于点D, 连接AB, OC, 若∠A=60°, ∠ADC=85°, 则∠C的度数是()A. 25°B. 27.5°C. 30°D. 35°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算的结果是__________.2. 分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_______.3. 等腰三角形一腰上的高与另一腰的夹角为30°, 则顶角的度数为_______. 4.如图所示的网格是正方形网格, 则=___________°(点A, B, P是网格线交点).5. 如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为__________.6.如图, 在矩形ABCD中, 对角线AC、BD相交于点O, 点E、F分别是AO、AD的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1, x2满足x12+x22=11, 求k的值.3. 在□ABCD, 过点D作DE⊥AB于点E, 点F在边CD上, DF=BE, 连接AF, BF.(1)求证: 四边形BFDE是矩形;(2)若CF=3, BF=4, DF=5, 求证:AF平分∠DAB.4. 如图, △ABC中, AB=AC, AD是△ABC的角平分线, 点O为AB的中点, 连接DO并延长到点E, 使OE=OD, 连接AE, BE,(1)求证: 四边形AEBD是矩形;(2)当△ABC满足什么条件时, 矩形AEBD是正方形, 并说明理由.5. 随着社会的发展, 通过微信朋友圈发布自己每天行走的步数已经成为一种时尚. “健身达人”小陈为了了解他的好友的运动情况. 随机抽取了部分好友进行调查, 把他们6月1日那天行走的情况分为四个类别: A(0~5000步)(说明: “0~5000”表示大于等于0, 小于等于5000, 下同), B(5001~10000步), C(10001~15000步), D(15000步以上), 统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中, 一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中, “A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人, 请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6. 去年在我县创建“国家文明县城”行动中, 某社区计划将面积为的一块空地进行绿化, 经投标由甲、乙两个工程队来完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍, 如果两队各自独立完成面积为区域的绿化时, 甲队比乙队少用4天. 甲队每天绿化费用是1.05万元, 乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位: )的绿化;(2)由于场地原因, 两个工程队不能同时进场绿化施工, 现在先由甲工程队绿化若干天, 剩下的绿化工程由乙工程队完成, 要求总工期不超过48天, 问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少, 最少费用是多少万元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.A3.B4.B5.B6.B7、B8、D9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.32.(y﹣1)2(x﹣1)2.3.60°或120°4.45.5.6.9三、解答题(本大题共6小题, 共72分)1.2、(1)k≤;(2)k=﹣1.3.(1)略(2)略4.解: (1)证明: ∵点O为AB的中点, 连接DO并延长到点E, 使OE=OD, ∴四边形AEBD是平行四边形.∵AB=AC, AD是△ABC的角平分线, ∴AD⊥BC.∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时, 矩形AEBD是正方形. 理由如下:∵∠BAC=90°, AB=AC, AD是△ABC的角平分线, ∴AD=BD=CD.∵由(1)得四边形AEBD是矩形, ∴矩形AEBD是正方形.5.(1)30;(2)①补图见解析;②120;③70人.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天, 乙队再做18天, 总绿化费用最少, 最少费用是万元.。
新人教版九年级数学下册期中考试题及答案【完美版】
新人教版九年级数学下册期中考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是()A.8B.13C.18D.92.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣53.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或0 6.用配方法解方程2x2x10--=时,配方后所得的方程为()A.2x10+=()B.2x10-=()C.2x12+=()D.2x12-=()7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A .6B .5C .4D .33 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.因式分解:x 3﹣4x=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、C5、B6、D7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2)3、0或14、10.5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、32x=-.2、(1)k﹥34;(2)k=2.3、(1)略;(2)S平行四边形ABCD=244、(1)略;(2)4.95、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)4元或6元;(2)九折.。
新人教版九年级数学下册期中考试卷及答案【各版本】
新人教版九年级数学下册期中考试卷及答案【各版本】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.下列二次根式中, 最简二次根式的是()A. B. C. D.2. 已知则的大小关系是()A. B. C. D.3.若x是3的相反数, |y|=4, 则x-y的值是()A. -7B. 1C. -1或7D. 1或-74.用配方法解方程, 变形后的结果正确的是()A. B. C. D.5.将抛物线y=﹣5x2+1向左平移1个单位长度, 再向下平移2个单位长度, 所得到的抛物线为()A. y=﹣5(x+1)2﹣1B. y=﹣5(x﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x﹣1)2+36.关于x的方程(为常数)根的情况下, 下列结论中正确的是()A. 两个正根 B. 两个负根C. 一个正根, 一个负根D. 无实数根7.一次函数y=ax+b与反比例函数, 其中ab<0, a、b为常数, 它们在同一坐标系中的图象可以是()A. B.C. D.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示, 下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0, 其中正确的个数是()A. 1B. 2C. 3D. 49.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.如图, 点A, B在双曲线y= (x>0)上, 点C在双曲线y= (x>0)上, 若AC∥y轴, BC∥x轴, 且AC=BC, 则AB等于()A. B. 2 C. 4 D. 3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 分解因式: 4ax2-ay2=____________.3. 设m, n是一元二次方程x2+2x-7=0的两个根, 则m2+3m+n=_______.4. 把长方形纸片ABCD沿对角线AC折叠, 得到如图所示的图形, AD平分∠B′AC, 则∠B′CD=__________.5.如图, 在△ABC中, AB=AC=5, BC=4 ,D为边AB上一动点(B点除外), 以CD 为一边作正方形CDEF, 连接BE, 则△BDE面积的最大值为__________.6. 如图, 在平面直角坐标系中, 点O为坐标原点, 菱形ABCD的顶点B在x轴的正半轴上, 点A坐标为(-4,0), 点D的坐标为(-1,4), 反比例函数的图象恰好经过点C, 则k的值为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a, b, 求的值.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 如图, 在△OBC中, 边BC的垂直平分线交∠BOC的平分线于点D, 连接DB, DC, 过点D作DF⊥OC于点F.(1)若∠BOC=60°, 求∠BDC的度数;(2)若∠BOC=, 则∠BDC=;(直接写出结果)(3)直接写出OB,OC,OF之间的数量关系.5. 为了提高学生阅读能力, 我区某校倡议八年级学生利用双休日加强课外阅读, 为了解同学们阅读的情况, 学校随机抽查了部分同学周末阅读时间, 并且得到数据绘制了不完整的统计图, 根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时, 中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人, 试估计周末阅读时间不低于1.5小时的人数.6. 受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素, 我市某汽车零部件生产企业的利润逐年提高, 据统计, 2014年利润为2亿元, 2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变, 该企业2017年的利润能否超过3.4亿元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、A3、D4、D5、A6、C7、C8、D9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.a(2x+y)(2x-y)3、54.30°5、86、16三、解答题(本大题共6小题, 共72分)x=-1、12.(1)k>-1;(2)13、(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1)120°;(2)180°-α;(3)OB+OC=2OF5、(1)补全的条形统计图如图所示, 见解析, 被调查的学生周末阅读时间的众数是1.5小时, 中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6.(1)20%;(2)能.。
新人教版九年级数学下册期中试卷及答案【完整版】
新人教版九年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .33.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.若()()229111181012k --=⨯⨯,则k =( ) A .12 B .10C .8D .6 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)+-=__________.2.因式分解:_____________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、B6、B7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32-2、3、﹣24、25、x≤1.6、24 5三、解答题(本大题共6小题,共72分)1、x=7.2、(1)k≤58;(2)k=﹣1.3、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)AC的长为55.5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)100,50;(2)10.。
新人教版九年级数学下册期中考试卷及答案【完美版】
新人教版九年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -5的相反数是( )A. B. C. 5 D. -52. 计算+ + + + +……+ 的值为()A. B. C. D.3.施工队要铺设1000米的管道, 因在中考期间需停工2天, 每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米, 所列方程正确的是()A. =2B. =2C. =2D. =24.已知是方程组的解, 则的值是()A. ﹣1B. 1C. ﹣5D. 55.关于x的不等式的解集为x>3, 那么a的取值范围为()A. a>3B. a<3C. a≥3D. a≤36.在某篮球邀请赛中, 参赛的每两个队之间都要比赛一场, 共比赛36场, 设有x个队参赛, 根据题意, 可列方程为()A. B.C. D.7.如图, 快艇从P处向正北航行到A处时, 向左转50°航行到B处, 再向右转80°继续航行, 此时的航行方向为()A. 北偏东30°B. 北偏东80°C. 北偏西30°D. 北偏西50°8.如图, 在中, , , 为边上的一点, 且.若的面积为, 则的面积为()A. B. C. D.9.如图, AB∥CD, 点E在线段BC上, CD=CE,若∠ABC=30°, 则∠D为()A. 85°B. 75°C. 60°D. 30°10.如图, O为坐标原点, 菱形OABC的顶点A的坐标为, 顶点C在轴的负半轴上, 函数的图象经过顶点B, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是____________.2. 分解因式: x2-2x+1=__________.3. 已知AB//y轴, A点的坐标为(3, 2), 并且AB=5, 则B的坐标为__________.4. 已知二次函数的部分图象如图所示, 则关于的一元二次方程的根为________.5.如图, 在平面直角坐标系xOy中, 已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A, B, 过点B作 BD⊥x轴于点D, 交的图象于点C, 连结AC.若△ABC是等腰三角形, 则k的值是_________.6. 如图, 平面直角坐标系中, 矩形OABC的顶点A(﹣6, 0), C(0, 2 ). 将矩形OABC绕点O顺时针方向旋转, 使点A恰好落在OB上的点A1处, 则点B 的对应点B1的坐标为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 计算: .3. 如图, 在锐角三角形ABC中, 点D, E分别在边AC, AB上, AG⊥BC于点G, AF⊥DE于点F, ∠EAF=∠GAC.(1)求证: △ADE∽△ABC;(2)若AD=3, AB=5, 求的值.4. “扬州漆器”名扬天下, 某网店专门销售某种品牌的漆器笔筒, 成本为30元/件, 每天销售量(件)与销售单价(元)之间存在一次函数关系, 如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件, 当销售单价为多少元时, 每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业, 决定从每天的销售利润中捐出150元给希望工程, 为了保证捐款后每天剩余利润不低于3600元, 试确定该漆器笔筒销售单价的范围.5. 在水果销售旺季, 某水果店购进一优质水果, 进价为20元/千克, 售价不低于20元/千克, 且不超过32元/千克, 根据销…34.8 32 29.6 28 …售情况, 发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克, 求当天该水果的销售量.(2)如果某天销售这种水果获利150元, 那么该天水果的售价为多少元?6. 某口罩生产厂生产的口罩1月份平均日产量为20000, 1月底因突然爆发新冠肺炎疫情, 市场对口罩需求量大增, 为满足市场需求, 工厂决定从2月份起扩大产能, 3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率, 预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、B3、A4、A5、D6、A7、A8、C9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.(x-1)2.3.(3,7)或(3,-3)4. 或5.k= 或.6.(-2 , 6)三、解答题(本大题共6小题, 共72分)x1、42、33.(1)略;(2).4.(1);(2)单价为46元时, 利润最大为3840元.(3)单价的范围是45元到55元.5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元, 该天水果的售价为25元.6.(1)10%;(2)26620个。
人教版九年级数学下册期中考试题【及参考答案】
人教版九年级数学下册期中考试题【及参考答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 下列二次根式中能与2 合并的是()A. B. C. D.2. 多项式与多项式的公因式是()A. B. C. D.3.已知x+y=﹣5, xy=3, 则x2+y2=()A. 25B. ﹣25C. 19D. ﹣194.若x取整数, 则使分式的值为整数的x值有()A. 3个B. 4个C. 6个D. 8个5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106.用配方法解方程时, 配方后所得的方程为()A. B. C. D.7.如图, 将▱ABCD沿对角线BD折叠, 使点A落在点E处, 交BC于点F, 若, , 则为()A. B. C. D.8.下列图形中, 是中心对称图形的是()A. B. C. D.9.如图, AB∥CD, 点E在线段BC上, CD=CE,若∠ABC=30°, 则∠D为()A. 85°B. 75°C. 60°D. 30°10.如图, 在平行四边形ABCD中, E是DC上的点, DE:EC=3:2, 连接AE交BD于点F, 则△DEF与△BAF的面积之比为()A. 2: 5B. 3: 5C. 9: 25D. 4: 25二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是____________.2. 因式分解: x2y﹣9y=________.3. 已知AB//y轴, A点的坐标为(3, 2), 并且AB=5, 则B的坐标为__________.4. 如图, 一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n, ﹣4), 则关于x的不等式组的解集为__________.5. 如图, M、N是正方形ABCD的边CD上的两个动点, 满足, 连接AC交BN于点E, 连接DE交AM于点F, 连接CF, 若正方形的边长为6, 则线段CF的最小值是__________.6. 现有下列长度的五根木棒:3, 5, 8, 10, 13, 从中任取三根, 可以组成三角形的概率为________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, (图1, 图2), 四边形ABCD是边长为4的正方形, 点E在线段BC 上, ∠AEF=90°,且EF交正方形外角平分线CP于点F, 交BC的延长线于点N, FN⊥BC.(1)若点E是BC的中点(如图1), AE与EF相等吗?(2)点E在BC间运动时(如图2), 设BE=x, △ECF的面积为y.①求y与x的函数关系式;②当x取何值时, y有最大值, 并求出这个最大值.5. 某学校为了增强学生体质, 决定开设以下体育课外活动项目: A: 篮球 B: 乒乓球C: 羽毛球 D: 足球, 为了解学生最喜欢哪一种活动项目, 随机抽取了部分学生进行调查, 并将调查结果绘制成了两幅不完整的统计图, 请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;甲乙丙丁(3)在平时的乒乓球项目训练中, 甲、乙、丙、丁四人表现优秀, 现决定从这四名同学中任选两名参加乒乓球比赛, 求恰好选中甲、乙两位同学的概率(用树状图或列表法解6. 商场某种商品平均每天可销售30件, 每件盈利50元, 为了尽快减少库存, 商场决定采取适当的降价措施. 经调查发现, 每件商品每降价1元, 商场平均每天可多售出2件.(1)若某天该商品每件降价3元, 当天可获利多少元?(2)设每件商品降价x元, 则商场日销售量增加____件, 每件商品, 盈利______元(用含x的代数式表示);(3)在上述销售正常情况下, 每件商品降价多少元时, 商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.B6.D7、B8、D9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.22.y(x+3)(x﹣3)3.(3,7)或(3,-3)4.﹣2<x<25.6.三、解答题(本大题共6小题, 共72分)1.2.(1);(2)3.(1) 65°;(2) 25°.4.(1)AE=EF;(2)①y=- x2+2x(0<x<4), ②当x=2,y最大值=2.5、解: (1)200.(2)补全图形, 如图所示:(3)列表如下:∵所有等可能的结果为12种, 其中符合要求的只有2种, ∴恰好选中甲、乙两位同学的概率为.6.(1)若某天该商品每件降价3元, 当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时, 商场日盈利可达到2000元.。
新人教版九年级数学下册期中试卷(及参考答案)
新人教版九年级数学下册期中试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2. 计算+ + + + +……+ 的值为()A. B. C. D.3.实数, , 在数轴上的对应点的位置如图所示, 则正确的结论是()A. B. C. D.4.已知一个多边形的内角和等于900º, 则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形5.4月24日是中国航天日, 1970年的这一天, 我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射, 标志着中国从此进入了太空时代, 它的运行轨道, 距地球最近点439 000米.将439 000用科学记数法表示应为()A. 0.439×106B. 4.39×106C. 4.39×105D. 139×1036. 正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°7.如图, 抛物线与轴交于、两点, 是以点(0,3)为圆心, 2为半径的圆上的动点, 是线段的中点, 连结.则线段的最大值是()A. B. C. D.8.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 已知⊙O的直径AE=10cm, ∠B=∠EAC, 则AC的长为()A. 5cmB. 5 cmC. 5 cmD. 6cm10.如图, 在矩形ABCD中, 点E在DC上, 将矩形沿AE折叠, 使点D落在BC边上的点F处.若AB=3, BC=5, 则tan∠DAE的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: __________.2. 分解因式: ab2﹣4ab+4a=________.3. 已知AB//y轴, A点的坐标为(3, 2), 并且AB=5, 则B的坐标为__________. 4.如图, 在正五边形ABCDE中, AC与BE相交于点F, 则∠AFE的度数为__________.5. 图1是我国古代建筑中的一种窗格, 其中冰裂纹图案象征着坚冰出现裂纹并开始消溶, 形状无一定规则, 代表一种自然和谐美. 图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形, 则∠1+∠2+∠3+∠4+∠5=__________度.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中m= +1.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 某市为节约水资源, 制定了新的居民用水收费标准. 按照新标准, 用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3), 缴纳水费79.8元, 则该用户二、三月份的用水量各是多少m3?5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 东营市某学校2015年在商场购买甲、乙两种不同足球, 购买甲种足球共花费2000元, 购买乙种足球共花费1400元, 购买甲种足球数量是购买乙种足球数量的2倍, 且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召, 这所学校决定再次购买甲、乙两种足球共50个, 恰逢该商场对两种足球的售价进行调整, 甲种足球售价比第一次购买时提高了10%, 乙种足球售价比第一次购买时降低了10%, 如果此次购买甲、乙两种足球的总费用不超过2900元, 那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、B4、C5、C6、B7、C8、D9、B10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、32.a(b﹣2)2.3.(3,7)或(3,-3)4.72°5、360°.6、2三、解答题(本大题共6小题, 共72分)x .1、32、33.(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1)(2)该用户二、三月份的用水量各是12m3.28m35、17、20;2次、2次;;人.6、(1)购买一个甲种足球需50元, 购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
2024年人教版九年级数学下册期中考试卷(附答案)
2024年人教版九年级数学下册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 11B. 12C. 13D. 142.下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 梯形D. 圆3.下列哪个比例是正确的?A. 3:5 = 6:10B. 2:3 = 4:6C. 5:7 = 10:14D. 8:9 = 16:184.下列哪个函数是二次函数?A. y = 3x + 2B. y = x^2 + 2xC. y = 2x^3 + 3D. y = 4x^4 + 55.下列哪个数是实数?A. 3iB. 2iC. 5D. 4i二、判断题(每题1分,共5分)1.一个数的平方根是唯一的。
()2.等腰三角形的底角相等。
()3.分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。
()4.二次函数的图像是抛物线。
()5.平行四边形的对角线互相平分。
()三、填空题(每题1分,共5分)1.一个数的立方根是指这个数的______。
2.两个相似三角形的对应边长之比叫做______。
3.一个数的平方根的平方等于这个数,这个数是______。
4.一个二次函数的一般形式是______。
5.一个实数的平方根有两个,一个是______,另一个是______。
四、简答题(每题2分,共10分)1.简述平行线的性质。
2.简述二次函数的顶点坐标。
3.简述等腰三角形的性质。
4.简述分数的化简方法。
5.简述实数的分类。
五、应用题(每题2分,共10分)1.一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
2.一个二次函数的顶点坐标为(2, 3),求这个函数的一般形式。
3.一个分数的分子为6,分母为8,求这个分数的简化形式。
4.一个实数的平方根为3,求这个实数。
5.一个平行四边形的对角线长度分别为10cm和12cm,求这个平行四边形的面积。
六、分析题(每题5分,共10分)1.分析二次函数的图像特征。
人教版九年级数学下册期中测试卷及答案【完整】
人教版九年级数学下册期中测试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.分解因式:2ab a-=_______.3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.4.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m.5.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B 1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为__________.6.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、B6、C7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、a(b+1)(b﹣1).3、0或14、-45、2n﹣1,06、(,6)三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、-53、(1)略;(24、(1)略;(2)AC5、(1)34;(2)1256、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
2024年最新人教版九年级数学(下册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(下册)期中考卷一、选择题(每题5分,共20分)1. 下列哪个数是实数?A. 2iB. 3C. 5D. 42. 下列哪个选项正确描述了勾股定理?A. 在直角三角形中,斜边的平方等于两直角边的平方和。
B. 在直角三角形中,两直角边的平方和等于斜边的平方。
C. 在直角三角形中,斜边的平方等于两直角边的乘积。
D. 在直角三角形中,两直角边的乘积等于斜边的平方。
3. 下列哪个选项正确描述了圆的性质?A. 圆的周长等于直径的π倍。
B. 圆的面积等于半径的π倍。
C. 圆的周长等于半径的π倍。
D. 圆的面积等于直径的π倍。
4. 下列哪个选项正确描述了函数的性质?A. 函数是自变量和因变量之间的关系。
B. 函数是自变量和因变量之间的运算关系。
C. 函数是自变量和因变量之间的相等关系。
D. 函数是自变量和因变量之间的不等关系。
5. 下列哪个选项正确描述了不等式的性质?A. 不等式是表示两个数之间大小关系的式子。
B. 不等式是表示两个数之间相等关系的式子。
C. 不等式是表示两个数之间运算关系的式子。
D. 不等式是表示两个数之间函数关系的式子。
二、填空题(每题5分,共20分)1. 填入适当的符号(>、<、=)使等式成立:3 22. 填入适当的符号(>、<、=)使等式成立:π 33. 填入适当的符号(>、<、=)使等式成立:5 34. 填入适当的符号(>、<、=)使等式成立:4 2三、解答题(每题10分,共40分)1. 解方程:2x 3 = 72. 解不等式:3x + 2 < 113. 求圆的面积,已知半径为5cm。
4. 求直角三角形的斜边长度,已知两直角边长度分别为3cm和4cm。
四、应用题(每题10分,共20分)1. 一个班级有30名学生,其中男生人数是女生人数的2倍。
求男生和女生各有多少人。
2. 一个长方形的长是宽的3倍,已知长方形的周长为18cm。
求长方形的长和宽。
五、证明题(每题10分,共20分)1. 证明:对于任意实数a和b,如果a > b,那么a² > b²。
2024年全新初三数学下册期中试卷及答案(人教版)
2024年全新初三数学下册期中试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 1D. 12. 若a+b=5,ab=1,则a²+b²的值为()A. 12B. 13C. 14D. 153. 若x²5x+6=0,则x的值为()A. 2,3B. 2,3C. 2,3D. 2,34. 若a²+b²=20,a+b=5,则a²b²的值为()A. 5B. 5C. 105. 若a²2a8=0,则a的值为()A. 4,2B. 4,2C. 2,4D. 2,46. 若a²3a+2=0,则a的值为()A. 1,2B. 1,2C. 1,2D. 1,27. 若x²4x+4=0,则x的值为()A. 2,2B. 2,2C. 2,2D. 2,28. 若a²5a+6=0,则a的值为()A. 2,3B. 2,3C. 2,3D. 2,39. 若a²+b²=18,a+b=3,则a²b²的值为()A. 3B. 3D. 610. 若x²3x+2=0,则x的值为()A. 1,2B. 1,2C. 1,2D. 1,2二、填空题11. 若a²4a+4=0,则a的值为______。
12. 若a+b=5,ab=1,则a²+b²的值为______。
13. 若x²5x+6=0,则x的值为______。
14. 若a²+b²=20,a+b=5,则a²b²的值为______。
15. 若a²2a8=0,则a的值为______。
16. 若a²3a+2=0,则a的值为______。
17. 若x²4x+4=0,则x的值为______。
18. 若a²5a+6=0,则a的值为______。
2024年人教版初三数学下册期中考试卷(附答案)
2024年人教版初三数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。
()2. 一个数的平方根只有一个。
()3. 任何两个圆都是相似的。
()4. 两个相似的三角形,它们的对应边长之比相等。
()5. 一个二次函数的图像是一个抛物线。
()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。
2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。
3. 平行四边形的对角线互相_________。
4. 二次函数的一般形式是y = ________。
5. 圆的面积公式是A = ________。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述二次函数的一般形式。
4. 简述圆的面积公式。
5. 简述两个相似的三角形的性质。
五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
2023-2024学年全国初中九年级下数学人教版期中考试试卷(含答案解析)
专业课原理概述部分一、选择题(每题1分,共5分)1. 在平面直角坐标系中,点P(a, b)关于原点对称的点是()。
A. (a, b)B. (a, b)C. (a, b)D. (b, a)2. 下列各数中,是无理数的是()。
A. √9B. √16C. √3D. √13. 下列函数中,是正比例函数的是()。
A. y = 2x + 1B. y = 3x²C. y = x/2D. y = 54. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC是()。
A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定5. 下列几何体中,体积一定的是()。
A. 球B. 正方体C. 长方体D. 圆柱二、判断题(每题1分,共5分)1. 任何两个无理数相加一定是无理数。
()2. 平行线的性质是同位角相等。
()3. 一元二次方程的解一定是实数。
()4. 两条平行线之间的距离是恒定的。
()5. 对角线互相垂直的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 若a=3, b=4,则a²+b²=______。
2. 已知一组数据的方差是9,那么这组数据的标准差是______。
3. 在三角形中,若两边分别是8和15,则第三边的长度可能是______。
4. 一次函数y=2x+3的图象与y轴的交点坐标是______。
5. 体积为64立方厘米的正方体的边长是______厘米。
四、简答题(每题2分,共10分)1. 简述平行线的性质。
2. 解释无理数的概念。
3. 如何判断一个四边形是平行四边形?4. 一元二次方程的解的公式是什么?5. 简述概率的基本性质。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的对角线长度。
2. 若一元二次方程x²5x+6=0的解是x₁=2和x₂=3,求方程的系数。
3. 在直角坐标系中,点A(2, 3)和点B(4, 1),求线段AB的中点坐标。
人教版九年级数学下册期中考试题及答案【完整版】
人教版九年级数学下册期中考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.132.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±13.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是() A.平均数B.中位数C.众数D.方差5.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.36.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2﹣|18|+(﹣12)﹣3=_____. 2.因式分解:3222x x y xy +=﹣__________. 3.若a 、b 为实数,且b =22117a a a --++4,则a+b =__________.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_______.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、A6、B7、D8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、()2x x y -3、5或34、5、12x (x ﹣1)=216、三、解答题(本大题共6小题,共72分)1、95x =2、(1)12,32-;(2)证明见解析. 3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--. 4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD是正方形,理由略5、(1)34;(2)1256、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
2023-2024学年全国初三下数学人教版期中考试试卷(含答案解析)
20232024学年全国初三下数学人教版期中考试试卷一、选择题(每题10分,共100分)1. 若一个三角形的两边长分别是5cm和12cm,且这两边的夹角是90°,那么这个三角形的周长是:A. 17cmB. 30cmC. 26cmD. 34cm2. 下列哪个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = 3/xD. y = x^23. 已知一个等差数列的前三项分别是2, 5, 8,那么这个数列的公差是:A. 1B. 3C. 6D. 84. 若一个圆的半径增加了50%,那么这个圆的面积增加了:A. 50%C. 150%D. 200%5. 在直角坐标系中,点(3, 4)关于y轴的对称点是:A. (3, 4)B. (3, 4)C. (3, 4)D. (4, 3)6. 若一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是:A. 32cmB. 36cmC. 42cmD. 46cm7. 下列哪个数是素数?A. 21B. 29C. 35D. 398. 若一个长方体的长、宽、高分别是2cm、3cm和4cm,那么这个长方体的对角线长度是:A. 5cmB. 6cmC. 7cm9. 若一个二次函数的图像开口向上,且顶点坐标是(2, 3),那么这个函数的标准形式是:A. y = a(x + 2)^2 + 3B. y = a(x 2)^2 + 3C. y = a(x^2 + 4x) + 3D. y = a(x^2 4x) + 310. 下列哪个图形不是轴对称图形?A. 矩形B. 正五边形C. 圆D. 梯形二、判断题(每题10分,共50分)11. 任何一个三角形的内角和都是180°。
()12. 若两个函数的图像关于y轴对称,则这两个函数是相等的。
()13. 任何一个偶数都可以表示为两个奇数的和。
()14. 若一个数的平方是负数,那么这个数一定是负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学下册期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣3的绝对值是( )
A .﹣3
B .3
C .-13
D .13
2.关于二次函数2241y x x =+-,下列说法正确的是( )
A .图像与y 轴的交点坐标为()0,1
B .图像的对称轴在y 轴的右侧
C .当0x <时,y 的值随x 值的增大而减小
D .y 的最小值为-3 3.如果23a b -=,那么代数式22()2a b a b a a b
+-⋅-的值为( ) A .3 B .23 C .33 D .43
4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )
A .()31003
x x +-=100 B .10033x x -+
=100 C .()31001003x x --= D .10031003
x x --= 5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )
A .123x x x <<
B .213x x x <<
C .231x x x <<
D .321x x x <<
6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A.主视图改变,左视图改变B.俯视图不变,左视图不变
C.俯视图改变,左视图改变D.主视图改变,左视图不变
7.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()
A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°
8.如图,A,B是反比例函数y=4
x
在第一象限内的图象上的两点,且A,B两点
的横坐标分别是2和4,则△OAB的面积是()
A.4 B.3 C.2 D.1
9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN
=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()
A.
1
2
OM AC
=B.MB MO
=C.BD AC
⊥D.AMB CND
∠=∠
10.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()
A .EG=4GC
B .EG=3G
C C .EG=52GC
D .EG=2GC
二、填空题(本大题共6小题,每小题3分,共18分)
1.4的算术平方根是__________.
2.分解因式:2x 3﹣6x 2+4x =__________.
3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,
,则代数式m ²-m+2019的值为__________.
4.如图,点A 在双曲线1
y=x 上,点B 在双曲线3y=x
上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________. 5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.
6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.
三、解答题(本大题共6小题,共72分)
1.解分式方程:
1x x -﹣1=233
x x -
2.先化简,再求值(32m ++m ﹣2)÷2212
m m m -++;其中m 2+1.
3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)图1中a的值为;
(2)求统计的这组初赛成绩数据的平均数、众数和中位数;
(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、D
3、A
4、B
5、B
6、D
7、A
8、B
9、A
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、2.
2、2x (x ﹣1)(x ﹣2).
3、2020
4、2
5、40°
6、24
三、解答题(本大题共6小题,共72分)
1、分式方程的解为x=1.5.
2、1
1m m +-,原式=.
3、(1) 65°;(2) 25°.
4、(1)2(2)略
5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.
6、(1)4元或6元;(2)九折.。