刚架及桁架内力求解

合集下载

静定桁架的内力计算

静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。

桁架中各杆件的连接处称为节点。

由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。

房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。

图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。

本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。

在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。

满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。

分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。

一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。

由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。

例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。

静定结构的内力计算 教程

静定结构的内力计算 教程

拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图 (1)无荷载分布段(q=0), FQ图为水平线,M图为斜直线。 (2)均布荷载段(q=常数), FQ图为斜直线,M图为抛物线,且凸向与荷 载指向相同。 (3)集中力作用处,FQ图有突变,且突变量等于力值; M图有尖点,且指 向与荷载相同。 (4)集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化。
工程力学
第十四章
静定结构的内力计算
b、求D点的内力 先求计算参数:
xD 3m
dy 4 f 4 4 tg D 2 ( L 2 x) 2 (12 2 3) 0.667 dx L 12 MD D 3342' Cos D 0.832
4 4 yD 2 (12 3) 3 3m 12
工程力学
第十四章
静定结构的内力计算
3、杆端内力的计算 先求出刚架的支座反力,再利用截面法求出各杆杆端内力 (1)在待求内力的截面截开,取任一部分为隔离体。 (2)画隔离体的受力图。 (3)利用隔离体的平衡条件,求出截面上的剪力、轴力和弯矩。 (4)利用结点的平衡条件校核刚结点杆端内力值。 4、刚架弯矩图的绘制
i i
与右图简支梁的支座反力:
Pb l Pa l
F
0 AY
i i
F
0 BY
i i
FAY F
0 AY
0 FBY FBY
工程力学
第十四章
静定结构的内力计算
分析推力H 式:
FAY l1 P 1 (l1 a1 ) H f
上式中的分子
FAY l1 P 1 (l1 a1 )
MEC=0kN•m CE杆上为均布荷载,弯矩图为抛物线 。 利用叠加法求出中点截面弯矩MCE中=30+60=90kN•m

《结构力学》复习要点

《结构力学》复习要点
解方程得: X 1 ql 2
X2=1
A
1
M2图
(
1 2 1 X 2 ql 4 3k 4
E1 I1 k) E2 I 2
1 2
1 3k 4
1 1 X 1 ql 2 2 3k 4 3. 讨论 1)当k = 0
1 2 ql 8 B
1 2 1 X 2 ql 4 3k 4
练习:作I.L FRC , M1 , FQ2 , FQA
A 2m B 2m
FP=1
D E 2m 2m 1m F 4m G 2m H
1 1
C 2m
1m
FRC
C D E F G H
A
B
FRC
1
1.25
I .L FRC
1
A B D C E F G H
M1
1
I .L M 1
0.5
2
A
2m
B
2m
C
2m
D
1m D 2m
M
FQBA FQBC
B
0
3i/L
取BE截面:
FQBA FQBC
3i k13 L
3i L 0
取E结点:
k23
6i/L
ME 0
6i k23 L
FQED
k33
12i FQED 2 L 15i k33 L
M
取B结点:
F1P
M P图
M
M
B
0
F1P M
取BE截面:
FQBA FQCD 0
6 i 3.75 i 24 0
(2a)
( 2 )
MBA
B 如何求杆端剪力? M M BA 0 求剪力的通用公式: FQAB AB FQAB l MBA M q MAB AB MBA FQBA

材料力学A_(平面刚架内力图)

材料力学A_(平面刚架内力图)

3kN
11
12
2
2013-03-12
例题
例 题 6
F
B
例题
例 题 6
F
C
解: 1.求约束力
FA FD Fa Fa Fa F 3a 3
B
F a 3a F Fa a
F
C
2.作内力图
轴力图:
a 3a F Fa
a
a F Fa
a F Fa
A
D
A
F 3
13
D
F 3
F/3
FA
FD
F/3 ( FN )
刚架内力及内力图画法的规定:
qa2
B C
Mq
A
1 2 qa 2
3qa/2 a
MP Mq M
M
(M)
5
a
2
qa
2
(1)刚架任意截面上的内力分量可用截面法求得。 (2)轴力图、剪力图可画在刚架任一侧,标出正负号 轴力图、剪力图可画在刚架任一侧,标出正负号 (仍规定FN拉为正,FS为正)。 (3)弯矩图的绝对值画在刚架受压一侧,不标正负号。 弯矩图的绝对值画在刚架受压一侧,不标正负号。 (4)刚架的各直线段画内力图与梁的画法类似。 (5)转折点处若无集中弯矩,则弯矩图连续(按圆弧 转折),若有集中弯矩,则弯矩图转折后有跳跃。
17
A
26.6o
Fa
M
FS 2 F sin F cos
M 2 FR(1 cos ) FR sin
A
a
O
18
3
2013-03-12
例题
例 题 7
例题
例 题 7
解: 1.求固支端约束力 2.画内力图

工程力学31 静定平面刚架的内力计算

工程力学31 静定平面刚架的内力计算
35
F
C
XE E
B
YE
YE
A
XE
33
FP
FP a
D
F
2FPa 2FP 0
A
E0
FP 2FP
FP
C
D
F
FP
B
0 XE E
FP
2FP YE
FP
2FP
34
C
B
FRB FP FP
变形曲线
结构的变形曲线:
1. 必须符合支座的约束条件和杆件的联结条件; 2. 必须正确反映结点线位移和角位移的方向; 3. 必须正确反映杆件的弯曲方向。
静定平面刚架的内力
1
31
❖ 由多根直杆组成 ❖ 杆件之间的结点多为刚结点
2
刚结点
❖变形特点:限制相对的转动和移动 ❖受力特点:可传递弯矩、剪力和轴力
3
32
悬臂刚架 简支刚架
三铰刚架
4
3 ❖内力类型:弯矩、剪力、轴力 ❖计算方法:截面法 ❖内力的符号规定:
弯矩:取消正负规定,弯矩图画在受拉一侧。 剪力:符号规定不变。 轴力:符号规定不变。 轴力图和剪力图习惯上同号画在同侧,标明正负
(2) 作M图
10
(3) 作FQ图
由隔离体平衡条件求杆端剪力
FQAD 1.384kN
FQBE 1.384kN
FQDC
1 6.23 6 3 3.83kN
6.23
FQCD
1 6.23
6.23
6 3
1.86kN
FQCE
1 6.23
6.23
0.985kN
11
1.384 4.5
1.384
(4) 作FN图 由结点平衡条件求杆端轴力

第七章静定结构的内力计算

第七章静定结构的内力计算

C
B
q a
qa 2
qa
A
a
qa
2
1.求支反力 2.分段 3.截面法求各段杆端内力值 4.用直线或曲线连接各段 5.标出数据、正负、图名
M CB

qa2 2
(下拉)
M CA

qa2 2
(右拉)
qa 2
C2
B
qa 2
2
qa 2
8
A
M
内力图的作法——剪力图
C
B
qa 2
qa
FQAC qa
FQCA 0
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
5kN
FQDA
M DA
FDA
截面法计算D截面杆端内力
5kN
A
C
D
FNDC
M DC
FDC
4kN
3m 1m
B
5kN 4kN
5m
4kN
截面法计算D截面杆端内力
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
FNDB
M DB
FQDB
5kN
4kN
内力图的作法——弯矩图
超静定结构
对于具有多余约束的几何不变体系,却不 能由静力平衡方程求得其全部反力和内力,这 类结构称为超静定结构
杆件类型
杆件
内力:轴力、剪力、弯矩 梁式杆
类型:梁、刚架、拱
链杆
内力:轴力 类型:桁架

概念:是一种受弯构件,其轴线为直线, 有单跨和 多跨之分
单跨静定梁

工程力学中静定结构的内力计算

工程力学中静定结构的内力计算

a
a
B XB X
YB
∑X=0 XC=XB=25kN ∑Y=0 YC=60-55=5kN ∑X=0 XA=25-40= -15kN
a
5kN

25kN
C

2m
y
25kN Fs 图

C
60kN

55kN
A
20kN· m
15k B N A 5kN
4m
25kN
B 4m
C
25kN 55kN
X
C
P2 P1 k y H A VA a3 b3 B VB H x 三铰拱与相应之简 支梁反力比较: VA =VA ° P3 B VB ° VB =VB ° HA=HB=H= MC°/f k C
P3
a2
a1 b1
b2
H=0
A VA°
P1
k1
P2 C
t
Mk
P1
y
n
k
Nk
∑Mk(F)=0, MK=[VAxk - P1 (xk- a1 )]-Hyk
FVb ×16 – 20 × 4 – 5 ×8 ×12=0
FVa=25KN FVb=35KN FHa=FHb
ΣMc=0
P=20Kn
FHa×4+20 ×4 – 25 ×8=0
FHc
FVc
FHa=30KN
FHa
4m 4m
FVa=25KN
4m
Σ Mo=0 . Mad=0 ΣХ=0. FQad+30=0
桁架的名称
上弦杆
桁高
斜杆 竖杆 下弦杆 跨度
1、按桁架的外形分为:
桁架的分类
a、三角形桁架
b、矩形桁架

《结构力学》静定结构内力计算

《结构力学》静定结构内力计算

只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12

解 (1)求支反力

内力分析的基本方法-截面法

内力分析的基本方法-截面法

得 QE = 0 得 ME = qL2
16
QD
*剪力图和弯矩图 绘制方法1:根据梁的剪力方程和弯矩方程绘制剪力 图和弯矩图。 注意:1、当弯矩图为曲线时,至少要三个控制面 的值一般取两端点和Q=0的截面弯矩值(若无Q = 0 的截面,则取中间截面的弯矩值) 2、弯矩图画在受拉侧,不标正、负
17
绘制方法2:利用荷载与内力间的微分关系运用规律 1、图形:⑴在均布荷载作用区段:Q图为斜直线;M图 为抛物线,抛物线的凸向与q的指向一致。 ⑵在无荷载作用区段:Q图为水平线;M图为斜直线。
10 10
5
(b)
M 图(kN•m)
(c)
10
23
绘制方法3:
MA
A q L
叠加法绘制直杆弯矩图
MB
一、简支梁弯矩图的叠加方法
MA
B
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB

A 1 qL2 8
B
MAB中= ( MA + MB)/2
24
MA A
由 y =0,得: FBy +FA - 206 =0 故: FBy=80kN()
31
q=20kN/m
分别作出 AD 段、DE 段及EB 段受力图
B
2m 2m
10
解: 求支座反力
FC-10-20-30= 0

A

F
y
=0
得:FC= 60 kN(↑)
用截面Ⅰ—Ⅰ将桁架截开,如下图所示:
10kN E Ⅰ 1 20kN 30kN
取右边部分,作受力图如下:

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0

单元十二 静定结构内力分析

单元十二 静定结构内力分析

反映剪力(弯矩)随截面位置变化规律的曲线, 称作剪力(弯矩)图。
返回 下一张 上一张 小结
二、剪力图和弯矩图的作法: 取平行梁轴的轴线表示截面位置,规定 正值的剪力画轴上侧,正值的弯矩画轴下侧; 可先列内力方程再作其函数曲线图。
如悬臂梁:当x=o, Q(x)=-P, M(x)=0; x=l, Q(x)=-P-ql, M(x)=-Pl-ql2/2. 其剪力图和弯矩图如图示。
pL 2L P VB L 0 2 3 7P VB () 6 PL L M 0 P VA L 0 B 2 3 P V A () 6 P 7P Y V P V P 0 A B 校核 6 6
MA 0

遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN – 3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。
q(x) 解:x 坐标向右为正,坐标原点在 自由端。 取左侧x 段为对象,内力N(x)为:
例 用叠加法作图所示外伸梁的 M 图。 解:1)先分解荷载为P1、P2单独作用情况; 2)分别作出各荷载单独作用下梁的弯矩图; [如图 a] 3)叠加各控制截面各弯矩图上的纵坐标得梁的弯矩图。[如图d]
三、区段叠加法作梁弯矩图
梁中取出的任意梁段都可看作是简支梁, 用叠加法作简支梁的弯矩图即梁段的弯矩图。
3)画内力图:(先求控制截面内力值,再按
内力图特征画图。) 剪力图 AB 段: QA Qc VA 6KN BC 段:QC 6KN , QB VA q 4 6 6 4 18KN 弯矩图 AB 段: M A 0, M C VA 2 12KN m BC 段:

建筑力学11静定结构内力分析

建筑力学11静定结构内力分析
c
d
q=20KN/m 10KN
FNae= F = – 35KN
Nea
Fax
a
b
4m
FNec= FNce= – 35KN
FNcd=FNdc=0
FN图 KN
35
Fay
Fay
45
31
2m
e
2m
5.作FN图
c
d
6、验算
20
c
35
35
c c
45
20
20 50
10
45 FQ图
M图
c 20 35
KNm
20 35
q=20KN/m
c
d
10KN
Fby=45KN
2.分析各段杆的 内力图形。
F ax
a
b
4m Fay FBy
28
2m
Fay=35KN
e
2m
Fax= – 10KN
q=20KN/m
10KN
Mae=0
Mea=Mec=10×2=20KNM
Fax
a
b
4m
Mce=10×4 – 10×2=20KNM Mcd=10×4 – 10×2=20KNM Mdb=0 Mbd=0
38
11.3 静定平面桁架的内力分析 11.3.1 概述 三点假定: 1、桁架的节点都是光滑的理想饺。 2、各杆的轴线都是直线,且在同一平面内,并 通过饺的中心。 3、荷载和支座反力都作用于节点上,并位于桁 架的平面内。杆自重忽略不计。 特点——按理想桁架计算的各杆的内力只 有轴力
39
11.3.2 简单平面桁架内力求解 1、内力计算方法 (1)节点法—以节点为隔离体,从只有二个未 知力的节点开始,逐个节点进行。利用节点的 静力平衡方程计算节点上截断杆的内力。 (2)截面法—用以截面(平面或曲面)截取桁 架的某一部分为隔离体,利用该部分的静力 平衡方程计算截断杆的轴力。

结构力学——3静定结构的内力分析

结构力学——3静定结构的内力分析
x=1.6m 3.K截面弯矩的计算
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)

平行梁桁架内力计算

平行梁桁架内力计算

平行梁桁架内力计算
平行梁桁架是一种常见的结构形式,通常用于支撑建筑物或桥梁。

在设计和分析平行梁桁架结构时,了解内力的计算是至关重要的。

内力是指杆件或梁在结构内部受到的力的分布情况,通过计算内力可以帮助工程师评估结构的稳定性和安全性。

在平行梁桁架结构中,通常会出现拉力和压力两种内力。

拉力是指杆件或梁受到的拉伸力,而压力则是指受到的压缩力。

这两种内力的大小和方向对于结构的稳定性具有重要影响。

内力的计算通常通过静力学的方法来进行。

首先需要确定结构的受力情况,包括外部荷载以及支座的约束。

然后可以利用平衡方程和梁的几何性质来计算各个杆件或梁上的内力。

在平行梁桁架中,一般会有水平和竖直方向的内力。

水平方向的内力通常是由于横向风荷载或地震荷载引起的,而竖直方向的内力则是由于结构自重和垂直荷载引起的。

通过计算这些内力,可以评估结构在各种荷载情况下的受力状态。

在平行梁桁架中,还需要考虑节点的内力传递问题。

节点是连接杆件的地方,通常会受到多个杆件的受力作用。

通过分析节点的受力平衡条件,可以计算出节点处的内力分布情况,进而评估节点的稳定性。

除了静力学的方法,有限元分析也可以用于计算平行梁桁架结构的
内力。

有限元分析是一种数值计算方法,可以更精确地模拟结构的受力情况,但需要借助计算机来进行复杂的计算。

总的来说,平行梁桁架内力计算是结构工程中的重要内容之一,通过合理的计算和分析,可以确保结构在各种荷载情况下的安全性和稳定性。

工程师在设计和施工过程中需要充分考虑内力的计算,以确保结构的可靠性和持久性。

静定桁架受力分析.pptx

静定桁架受力分析.pptx
凸向即q指向
出现尖点
尖点指向即P的指向
4.集中力偶作用处
无变化
发生突变
m
两直线平行
注备
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用点
面剪力无定义
弯矩无定义
5、在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩等于零, 有集中力偶作用,截面弯矩等于集中力偶的值。
6、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平衡。两杆相交刚 结点无集中力偶作用时,两杆第端36弯页矩/共等42值页 ,同侧受拉。
结点单杆:利用结点的一个平衡方程可求出内力的杆件
单杆
第9页/共42页
单杆
零杆:在桁架中,轴力为零的杆件。 (1)两根杆的结点
(a)若结点上无荷载,则二杆全为零。 (b)若荷载沿其中一杆的方向,则该杆轴
力为P,另一杆为零杆。
P
N1
N2
(aN)1 0 N2 0
N1
N2
(bN)1 P N2 0
第10页/共42页
B 20
0
N BD
NBA
20
60 20
80
Q图(kN)
N图(kN)
第41页/共42页
感谢您的观看!
第42页/共42页
练习:求图示桁架指定杆件内力(只需指出所选截面即可)
P
b
P
b
P
P
b
c
第37页/共42页
练习:求图示桁架指定杆件内力(只需指出所选截面即可)
a
b
P
P
P
P c
第38页/共42页
练习: 试计算图(a)所示简支刚架的支座反力,并绘制M、Q和N图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
-33 34.8 19 -8
-33
-33 -8
-33 34.8 19
-5.4 -5.4 37.5
小结:
• 以结点作为平衡对象,结点承受汇交力 系作用。 • 按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。 • 由结点平衡方程可求得桁架各杆内力。
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构 (symmetrical structure)。 对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对 称或反对称,这称为对称性(symmetry)。
对称结构受对称荷载作用, 内力和反 力均为对称:
E 点无荷载,红色杆不受力
FAy
FBy
对称结构受反对称荷载作用, 内力和 反力均为反对称:
垂直对称轴的杆不受力
FAy
FBy
对称轴处的杆不受力
2. 结点单杆 以结点为平衡对象能仅用一个方程 求出内力的杆件,称为结点单杆(nodal single bar)。 利用这个概念,根据荷载状况可判断此杆内力是 否为零。 3. 零杆 零内力杆简称零杆(zero bar)。
FN2=0
FN1=0
FN=0
FN=0
判Hale Waihona Puke 结构中的零杆FP FP FP/2
FP/ 2
FP



截取桁架的某一局部作为隔离体,由 平面任意力系的平衡方程即可求得未知的 轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
YNAD CD 0.5 X NAD AC 1.5
X NAD 3YNAD 33 kN

X 0 FNAC 33 kN
0
-33 34.8 19 -8
-33
19
0
-33 34.8 19 -8
-33 -5.4 37.5 19
-8 kN
YDE CD 0.75 X DE CE 0.5
例五、不经计算画图示结构弯矩图
FP
FP
FP
FP
FPa FPa FPa
FPa
2FP FPa
FPa
结点法(nodal analysis method)
以只有一个结点的隔离体为研究对象,用 汇交力系的平衡方程求解各杆内力的方法 例1. 求以下桁架各杆的内力
0
-33 34.8 19 19
Y
0 YNAD 11 kN
12
FN
48 kN
22 kN
例二、试作图示刚架的内力图
FBx
FAy
FBy
只有两杆汇交的刚结点,若结 点上无外力偶作用,则两杆端 弯矩必大小相等,且同侧受拉。
40 D 30
80
FNDE FNED
E
30
FNDC
FNEB
FQ
30 kN
FN
40 kN
80 kN
例三、试作图示三铰刚架的内力图
20
FBx
整体对A、B 取矩,部分 对C取矩。
n m 1 3 A 2.5FP FP 4 n2m FP FP B FP FP 6m
6 5m
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离体, 不管其上有几个轴力,如果某 杆的轴力可以通过列一个平衡 方程求得,则此杆称为截面单 杆。 可能的截面单杆通常有相交型 和平行型两种形式。
20
FBx
80
FAy
80
FBy
FQ
FN
关键是注意: 取斜杆对杆端取矩求剪力 这样可不解联立方程
例四、试作图示刚架的弯矩图 附属 部分
基本 部分
弯矩图如何?
少求或不求反力绘制弯矩图


1.弯矩图的形状特征(微分关系) 2.刚结点力矩平衡 3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分) 5.区段叠加法作弯矩图
相 交 情 况
FP FP FP FP FP FP
a 为 截 面 单 杆
FP
平行情况
FP
b为截面单杆



凡需同时应用结点法和截面法才 能确定杆件内力时,统称为联合法 (combined method)。
试求图示K式桁架指定杆1、2、3、4的轴力
ED杆内力如何求?
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
(单位:kN . m)
48 192
144 126 42 kN
12
48 kN
22 kN
例一、试作图示刚架的内力图
(单位:kN . m)
FQ
48 192
144 126 42 kN
相关文档
最新文档