交换机的工作原理及选型依据
交换机的工作原理
![交换机的工作原理](https://img.taocdn.com/s3/m/d29452713868011ca300a6c30c2259010202f3b9.png)
交换机的工作原理交换机是计算机网络中的核心设备之一,用于实现局域网内计算机之间的数据交换和通信。
它能够根据目的地址将数据包转发到正确的目标设备,提供高效的网络连接和通信服务。
下面将详细介绍交换机的工作原理。
一、交换机的基本原理1. 数据链路层交换机工作在OSI模型的第二层,即数据链路层。
它通过物理接口接收数据帧,解析帧头中的目的MAC地址,根据该地址进行转发决策。
2. MAC地址表交换机内部维护着一个MAC地址表,记录了连接到交换机的设备的MAC地址和对应的物理接口。
当交换机接收到一个数据帧时,它会检查帧头中的目的MAC地址,并在MAC地址表中查找该地址对应的接口。
如果找到匹配项,交换机会将数据帧转发到相应接口;如果找不到匹配项,交换机会将数据帧广播到所有接口(除了源接口)。
3. 学习过程当交换机接收到一个数据帧时,它会将源MAC地址和接收到该帧的接口添加到MAC地址表中。
这个过程称为学习。
通过学习过程,交换机逐渐建立起MAC地址表,提高了数据转发的效率。
4. 数据转发当交换机接收到一个数据帧时,它会根据目的MAC地址在MAC地址表中查找对应的接口。
如果找到匹配项,交换机会将数据帧仅转发到目标接口;如果找不到匹配项,交换机会将数据帧广播到所有接口(除了源接口)。
二、交换机的工作模式1. 存储转发存储转发是交换机最常见的工作模式。
在存储转发模式下,交换机会先接收完整的数据帧,并进行错误检测。
惟独当数据帧完整且无误时,交换机才会进行转发。
这种模式能够保证数据的完整性和可靠性,但延迟较高。
2. 直通转发直通转发是一种基于硬件的快速转发模式。
在直通转发模式下,交换机会在接收到数据帧的同时进行转发,无需等待整个数据帧接收完毕。
这种模式能够提供更低的延迟,适合于对实时性要求较高的应用场景。
三、交换机的性能指标1. 转发速率转发速率是衡量交换机性能的重要指标之一,通常以Mbps或者Gbps表示。
它表示交换机能够处理的最大数据量,越高越好。
华为交换机的基本原理讲解
![华为交换机的基本原理讲解](https://img.taocdn.com/s3/m/a3bc22d6afaad1f34693daef5ef7ba0d4a736df6.png)
华为交换机的基本原理讲解华为交换机是一种用于实现网络通信的设备,它通过接收和转发网络数据包来实现不同设备之间的通信。
交换机的基本原理可以分为以下几个方面:1. 数据链路层:华为交换机工作在OSI模型的第二层,即数据链路层。
它通过物理接口连接到计算机、服务器、路由器等网络设备上,并且通过MAC地址来标识每个设备。
2. MAC地址学习:交换机通过学习网络中各个设备的MAC地址,建立一个MAC地址表。
当交换机接收到一个数据包时,它会查找目标MAC地址,并且将该数据包转发给目标设备。
通过学习和更新MAC 地址表,交换机可以根据MAC地址快速定位目标设备。
3. 数据转发:交换机通过查找MAC地址表,将数据包从一个接口转发到另一个接口。
交换机可以根据目标MAC地址进行直接转发,也可以使用虚拟局域网(VLAN)来划分网络,并实现不同VLAN之间的数据转发。
4. 广播和多播处理:交换机可以处理广播和多播数据包。
当交换机收到一个广播数据包时,它会将该数据包转发到所有其他接口,以便所有设备都能接收到广播消息。
而对于多播数据包,交换机会根据多播组成员的信息,将数据包只转发给加入了该多播组的设备。
5. 网络安全:华为交换机还具有一些网络安全功能,如端口安全、VLAN安全、访问控制列表(ACL)等。
这些功能可以帮助防止未经授权的访问和网络攻击,保护网络的安全性。
总结起来,华为交换机通过学习和转发数据包的方式实现不同设备之间的通信。
它利用MAC地址表来定位目标设备,并且支持广播、多播等特殊数据包的处理。
此外,交换机还提供一些网络安全功能,确保网络的安全性。
这些基本原理帮助交换机实现高效的数据转发和网络通信。
交换机培训资料
![交换机培训资料](https://img.taocdn.com/s3/m/ea4217f888eb172ded630b1c59eef8c75fbf95f9.png)
介绍选择园区网交换机的因素和方法,包括 性能、功能、可靠性、扩展性等。
城域网应用场景
城域网概述
介绍城域网络的组成、 特点和架构,阐述交换 机在城域网中的地位
接入层交换机
介绍核心层交换机的特 点、功能和部署位置, 以及在城域网中的连接 方式。
介绍汇聚层交换机的特 点、功能和部署位置, 以及在城域网中的连接 方式。
交换引擎性能
通常用吞吐量、转发率等指标 来衡量。
交换引擎可扩展性
指交换引擎能够支持的端口数 量、速率等参数的可扩展性。
交换机的其他技术参数
MAC地址表大小
指交换机能够学习到的MAC地址数量。
QoS支持
指交换机支持的QoS功能,如优先级标记 、队列调度等。
VLAN支持
指交换机支持的VLAN数量和类型。
随着网络规模的不断扩大和复杂性的增加,交换机的功能 和性能也越来越强大,成为网络工程师必须掌握的重要技 能之一。
02
交换机分类
按规模分类
小型交换机
适用于小型网络环境,一般具有 10-24个端口,如10/100Mbps 端口。
中型交换机
适用于中型网络环境,一般具有 24-48个端口,同时支持 10/100Mbps和1000Mbps端口 。
02
用户对网络性能的需求不断提高,要求交换机具有更高的吞吐
量、更低的延迟和更好的服务质量。
安全问题日益突出,交换机需要具备更强大的安全防护能力,
03
以应对不断变化的网络安全威胁。
技术创新发展趋势
硬件加速
通过使用专用硬件来加速数据交换和处理,提高交换机的性能。
人工智能和机器学习
利用人工智能和机器学习技术来优化网络性能,提高网络管理和 维护效率。
交换机和路由器工作原理
![交换机和路由器工作原理](https://img.taocdn.com/s3/m/d4ba2629f08583d049649b6648d7c1c708a10b97.png)
交换机和路由器工作原理交换机和路由器是计算机网络中常用的两种设备,它们在网络通信中起着重要作用。
本文将分别介绍交换机和路由器的工作原理。
一、交换机的工作原理交换机是一种用于局域网的设备,它通过MAC地址进行数据包的转发。
当一台计算机发送数据包时,交换机会根据数据包中的目标MAC地址,将数据包转发到目标MAC地址所对应的端口上。
交换机在转发数据包时,会记录下源MAC地址与对应的端口,以便下次转发时能够快速找到目标端口。
交换机的工作原理可以分为两个阶段:学习阶段和转发阶段。
1. 学习阶段:当交换机收到一个数据包时,它会提取出数据包中的源MAC地址,并将该地址与接收到数据包的端口绑定起来。
如果交换机之前没有接收过该源MAC地址,则会将该地址与接收到数据包的端口绑定起来。
通过这种方式,交换机逐渐学习到网络中各个设备的MAC地址与端口的对应关系。
2. 转发阶段:当交换机收到一个数据包时,它会查找数据包中的目标MAC地址所对应的端口,并将数据包转发到该端口上。
如果交换机之前没有接收到过目标MAC地址,则会将数据包广播到所有端口上。
当目标设备回复数据包时,交换机会将源MAC地址与对应端口的绑定关系更新。
这样,交换机在转发数据包时就能够根据学习到的MAC地址与端口的对应关系,快速找到目标端口,实现数据包的高效转发。
二、路由器的工作原理路由器是一种用于连接不同网络的设备,它通过IP地址进行数据包的转发。
当一台计算机发送数据包时,路由器会根据数据包中的目标IP地址,将数据包转发到目标IP地址所在的网络。
路由器的工作原理可以分为三个阶段:接收阶段、转发阶段和发送阶段。
1. 接收阶段:当路由器接收到一个数据包时,它会提取出数据包中的目标IP地址,并查找路由表来确定数据包的下一跳。
路由表是路由器内部存储的一张表格,记录了各个网络的IP地址和对应的下一跳。
通过查找路由表,路由器可以确定数据包的下一跳地址。
2. 转发阶段:在转发阶段,路由器根据路由表确定数据包的下一跳地址,并将数据包转发到相应的接口上。
交换机的工作原理及选型依据
![交换机的工作原理及选型依据](https://img.taocdn.com/s3/m/d9154625793e0912a21614791711cc7931b7782f.png)
交换机的工作原理及选型依据交换机是计算机网络中的一种设备,用于在局域网(LAN)或广域网(WAN)中转发数据,并实现数据包的转发、分配、选择和过滤等功能。
它是网络通信中的关键设备之一,起到了网络通信的桥梁作用。
1.数据链路层的作用:交换机工作在数据链路层(第二层),它使用物理地址(MAC地址)来进行数据的传输,并通过物理端口来识别和连接其他设备。
2.广播域和碰撞域的划分:交换机能够根据MAC地址学习和过滤数据包,从而将数据包只发送给目标设备,而不是广播给整个网络。
这样可以有效地减少网络中的广播域和碰撞域,提高网络的传输效率。
3.MAC地址表的使用:交换机通过学习MAC地址,将MAC地址与对应的物理端口进行绑定,并建立一个MAC地址表。
当交换机收到数据包时,会查找MAC地址表,根据目标MAC地址将数据包转发到对应的物理端口上,从而实现了数据的有针对性转发。
4.交换机的转发方法:交换机有三种转发数据包的方法,分别是存储转发、直通式转发和片段转发。
-存储转发:交换机在接收到数据包之后,会将整个数据包都存储下来,然后再进行转发。
这种方式具有较高的转发准确性和较好的差错检测能力,适用于需要高安全性和可靠性的场景。
-直通式转发:交换机在接收到数据包之后,会直接将数据包转发给目标设备,而不需要存储下来。
这种方式具有较低的延迟和较高的转发速度,适用于需要低延迟和高速传输的场景。
-片段转发:交换机会将数据包分成多个片段,并根据目标MAC地址将不同片段分别转发到不同的物理端口上,从而提高传输效率。
5.交换机的选型依据:-转发速度:交换机的转发速度是衡量其性能的重要指标之一、选择合适的交换机需要根据网络的规模和带宽需求来确定,通常需要考虑交换机的转发速度是否能够满足网络中的数据传输需求。
-端口数量:交换机应当具备足够的端口数量来满足网络中设备的连接需求。
根据网络规模和设备数量,选择端口数量适当的交换机是必要的。
-可管理性:一些高级交换机提供了远程管理、带宽控制、安全设置和故障排除等功能,这些功能在网络管理方面非常有用。
交换机和路由器工作原理
![交换机和路由器工作原理](https://img.taocdn.com/s3/m/290209bcb8d528ea81c758f5f61fb7360b4c2bd3.png)
交换机和路由器工作原理一、交换机的工作原理交换机是计算机网络中的一种设备,主要用于在局域网中传输数据。
它的工作原理是通过学习和转发数据帧来实现数据的传输和交换。
1. 数据帧的传输交换机通过物理接口与计算机连接,接收到计算机发送的数据帧后,会根据数据帧中的目的MAC地址进行转发。
它会在内部的转发表中查找目的MAC地址对应的接口,然后将数据帧发送到相应的接口,从而实现数据的传输。
2. 学习和转发交换机在转发数据帧的同时,会学习到源MAC地址和对应的接口信息,并将其存储在转发表中。
当接收到新的数据帧时,交换机会先查找转发表,如果找到了目的MAC地址对应的接口,就直接转发到相应的接口;如果没有找到,则会广播到所有的接口。
通过这种学习和转发的方式,交换机可以动态地更新转发表,从而提高数据传输的效率。
3. 广播和多播除了点对点的数据传输外,交换机还支持广播和多播。
当交换机接收到广播或多播数据帧时,会广播到所有的接口,从而使所有的计算机都能接收到相应的数据。
二、路由器的工作原理路由器是计算机网络中的一种设备,主要用于在不同网络之间传输数据。
它的工作原理是通过路由选择算法来确定数据的最佳传输路径,从而实现数据的路由和转发。
1. 路由选择路由器通过学习网络拓扑和路由信息来确定数据的传输路径。
它会维护一个路由表,记录了不同网络之间的连接关系和最佳路径。
当接收到数据包时,路由器会根据目的IP地址查询路由表,找到下一跳的地址,并将数据包发送到相应的接口。
2. 路由协议为了实现路由选择,路由器需要使用路由协议来交换路由信息。
常用的路由协议有RIP、OSPF和BGP等。
这些协议可以根据网络的拓扑和链路状态进行动态调整,从而实现最优路径的选择。
3. 网络分割和连接路由器可以将不同网络进行分割和连接。
当接收到数据包时,路由器会根据目的IP地址的网络前缀将数据包转发到相应的网络。
同时,路由器还可以将多个网络连接起来,实现不同网络之间的通信。
工业交换机选型标准
![工业交换机选型标准](https://img.taocdn.com/s3/m/b0c9ee66b5daa58da0116c175f0e7cd185251862.png)
工业交换机选型标准在工业自动化、智能制造等领域,工业交换机作为数据传输的核心设备,其选型至关重要。
一个合适的工业交换机不仅能够保证数据传输的稳定性和可靠性,还能提高生产效率,降低维护成本。
因此,在进行工业交换机选型时,需要遵循一定的标准和原则。
本文将详细阐述工业交换机的选型标准,帮助读者更好地理解和选择适合自己的工业交换机。
一、了解需求与场景在选择工业交换机之前,首先要明确自己的需求和应用场景。
这包括以下几个方面:1. 网络拓扑结构:了解网络中设备的分布和连接方式,确定交换机的端口数量和类型。
2. 传输距离与速率:根据数据传输的距离和速率要求,选择合适的交换机类型和传输介质。
3. 环境条件:考虑工作环境对交换机的要求,如温度、湿度、电磁干扰等。
4. 扩展性与可升级性:预测未来网络扩展的可能性,选择具有良好扩展性和可升级性的交换机。
二、关注性能指标在明确需求后,应关注工业交换机的性能指标,以确保其满足应用要求。
以下是一些关键性能指标:1. 交换容量:交换机的交换容量决定了其处理数据的能力,应选择具有足够交换容量的交换机以应对网络负载。
2. 端口数量与类型:根据连接设备的数量和类型选择合适的端口数量和类型,同时考虑未来扩展需求。
3. 延迟与抖动:对于实时性要求较高的应用,应选择具有低延迟和低抖动的交换机。
4. 可靠性与可用性:工业交换机应具备高可靠性和可用性,以应对恶劣的工作环境和意外故障。
三、考虑安全性与可管理性在工业网络中,安全性和可管理性同样重要。
以下是关于这两个方面的考虑:1. 安全性:选择支持访问控制列表(ACL)、虚拟局域网(VLAN)等安全功能的交换机,以提高网络安全性。
同时,关注交换机是否通过了相关的安全认证,如IEC 62443等。
2. 可管理性:选择支持SNMP、RMON等网络管理协议的交换机,以便实现远程监控和管理。
此外,关注交换机是否提供友好的用户界面(如Web界面、命令行界面等),以降低管理难度。
交换机选型的基本原则
![交换机选型的基本原则](https://img.taocdn.com/s3/m/32c9e25acbaedd3383c4bb4cf7ec4afe04a1b1d9.png)
交换机选型的基本原则
1. 需求分析:在选型之前,首先需要对网络需求进行全面的分析,确定所需交换机
的性能、功能和规模等方面的要求。
需要考虑的因素包括网络规模、带宽要求、安全需求、可扩展性、可靠性等。
2. 扩展性:选择的交换机应具备良好的可扩展性,能够满足未来网络发展的需求。
应该考虑交换机是否支持灵活的端口扩展和堆叠功能,以及是否能够支持更高的带宽。
3. 性能和吞吐量:交换机的性能和吞吐量决定了网络的数据传输速度和效率。
根据
实际情况,需要选择具备足够的处理能力和高速数据转发能力的交换机,以确保网络的稳
定性和正常运行。
4. 安全性:网络安全是重要的考虑因素之一。
选型时,需要确保交换机具备强大的
安全功能,如访问控制列表、虚拟局域网(VLAN)隔离、端口安全等。
还需要关注交换机的
固件更新和漏洞修复的及时性。
5. 管理功能:选择具备全面管理功能的交换机,方便对交换机进行配置、监控和故
障排除。
应优先考虑支持远程管理和集中式管理的交换机,以提高网络运维的效率。
6. 价格和性价比:在选型时应权衡价格和性价比。
根据实际需求,选择适合的交换
机型号,尽量避免过度采购或购买低质量设备。
还可以考虑与供应商进行谈判以获得更好
的价格优惠。
7. 厂商信誉和技术支持:选择有信誉和良好口碑的交换机厂商,确保可以获得及时
的技术支持和售后服务。
对供应商的市场地位、产品质量和售后支持进行充分评估和比
较。
以上是交换机选型的基本原则,需要根据具体情况进行综合考虑,选择最适合自己网
络需求的交换机。
简述交换机的工作原理
![简述交换机的工作原理](https://img.taocdn.com/s3/m/3c4a6eaf4bfe04a1b0717fd5360cba1aa8118c1b.png)
简述交换机的工作原理
交换机是计算机网络中重要的网络设备,它用于实现对网络数据的转发和路由功能。
其工作原理如下:
1. 网络数据的接收:交换机通过端口接收到来自主机或其他交换机的网络数据包。
2. 数据包解析:交换机通过解析数据包的首部信息,获取目的地址等必要信息。
3. 数据包交换:交换机根据目的地址信息,将数据包转发到相应的端口。
如果交换机已经学习到了发送主机或其他交换机的位置,就直接将数据包转发到相应的端口。
如果交换机不知道目的地址的位置,则会广播数据包到所有端口,以此来查找目的地址的位置。
4. 数据包过滤:交换机还可以根据特定的规则对数据包进行过滤,如根据端口号、IP地址等来进行过滤,以控制网络访问。
5. 数据包转发表更新:交换机会根据收到的数据包来更新自己的转发表,以便下次转发时更高效地选择端口。
总结:交换机通过接收、解析、转发、过滤和更新转发表等一系列操作,实现了高效的数据包转发和路由功能,从而提高了网络的传输效率和安全性。
交换机路由器设备选型依据
![交换机路由器设备选型依据](https://img.taocdn.com/s3/m/89a132c208a1284ac8504379.png)
一、交换机选型:1.背板带宽是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。
交换机机箱内部背后设置的大量的铜线,而背板带宽指的是这些铜线提供的带宽,与背板带宽有关的,是背板铜线部署的多少;交换容量是实际业务板卡与交换引擎之间的连接带宽,真正标志了交换机总的数据交换能力,与交换容量有关的,是业务插槽与管理引擎上的交换芯片,交换容量是决定交换机性能转发的主要因素。
所有单端口容量*端口数量之和的2倍<背板带宽,才可以实现全双工无阻塞交换。
比如cisco公司的Catalyst2950G-48,它有48个100Mbit/s端口和2个1000Mbit/s 端口,它的背板带宽应该不小于13.6Gbit/s,才能满足线速交换的要求。
计算如下:(2*1000+48*100)*2(Mbit/s)=13.6(Gbit/s)2.满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps,其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。
例如:1台最多能够提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在任何端口均线速工作时,提供无阻塞的包交换。
假如一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。
1.488的由来:包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。
计算方法如下:一个数据包的实际长度为(64+8+12)byte=(512+64+96)bit=672bit,说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。
故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488095Mpps=1000Mbit/s/672bit。
交换机的性能参数和使用选型概述
![交换机的性能参数和使用选型概述](https://img.taocdn.com/s3/m/028b5f63bc64783e0912a21614791711cc797922.png)
交换机的性能参数和使用选型概述1. 引言交换机是计算机网络中的核心设备,用于将数据包从一个网络连接传递到另一个网络连接。
它具有决定网络数据流向的作用,因此交换机的性能参数和使用选型对网络性能和可靠性起着重要的作用。
本文将介绍交换机的性能参数和使用选型概述,以便读者在购买和使用交换机时做出明智的决策。
2. 交换机的性能参数2.1 交换速率交换速率是交换机的一个重要性能参数,表示交换机在单位时间内能处理的数据量。
通常以比特每秒(bit/s)或兆比特每秒(Mbps)来度量。
交换速率越高,交换机处理数据的能力越强。
在选择交换机时,需根据网络负载和带宽需求来确定所需的交换速率。
2.2 潜时潜时是指交换机处理数据包所需的时间。
它包括输入端口潜时、交换潜时和输出端口潜时。
输入端口潜时是指数据包从输入端口到达交换机内部的时间,交换潜时是指交换机完成核心处理所需的时间,输出端口潜时是指数据包从交换机输出端口到达目标设备的时间。
较低的潜时意味着交换机能够更快地处理数据包,提高网络性能和响应速度。
2.3 缓存大小交换机通常具有缓存,用于暂存数据包。
缓存大小决定了交换机能够同时处理的数据包数量。
较大的缓存大小可以增加交换机的吞吐量,提高网络的拥塞控制能力。
在选择交换机时,需根据网络负载和数据包数量来确定所需的缓存大小。
2.4 端口数量交换机的端口数量表示交换机可以连接的设备数量。
较大的端口数量可以支持更多的设备连接,增加网络的可扩展性。
在选择交换机时,需根据网络规模和设备数量来确定所需的端口数量。
3. 交换机的使用选型概述在选择交换机时,除了考虑交换机的性能参数外,还需考虑其他因素,以满足网络需求和预算限制。
3.1 端口类型交换机通常支持不同类型的端口,如千兆以太网端口(Gigabit Ethernet)和万兆以太网端口(10 Gigabit Ethernet)。
根据设备需求和网络带宽,选择适当的端口类型。
3.2 管理型和非管理型交换机管理型交换机具有更多的功能和配置选项,可以通过网络管理软件进行配置和监控。
简述交换机的工作原理和具体工作工程
![简述交换机的工作原理和具体工作工程](https://img.taocdn.com/s3/m/ebee719a27fff705cc1755270722192e44365846.png)
简述交换机的工作原理和具体工作工程一、交换机的工作原理交换机是一种用来在计算机网络中传送数据的设备,它可以理解为一个多端口的集线器,它可以根据目标地址的不同将数据包发往合适的目标端口。
交换机的工作原理主要包括学习、过滤和转发三个步骤。
1.学习交换机在接收到数据包时,会解析数据包中的目标MAC地址,并将这个MAC地址与接收端口的关联关系存储在交换表中。
这样,当下次有数据包到来时,交换机就不需要广播所有端口,而是只将数据包发往目标端口。
2.过滤当交换机接收到数据包时,会先查看目标MAC地址是否在交换表中,如果在,就将数据包发往对应的端口,如果不在,就将数据包广播到所有端口。
3.转发交换机会根据交换表中的信息,将数据包直接发送到目标端口,这样就大大提高了数据包的传输效率。
二、交换机的具体工作工程1.确定网络拓扑结构在安装交换机之前,首先需要确定网络的拓扑结构,包括各个设备之间的连接方式、设备的数量和位置等。
这对于交换机的布置和配置有着重要的指导作用。
2.选择合适的交换机根据网络的规模和需要,选择合适的交换机。
一般来说,小型局域网可以选择普通交换机,而大型企业或数据中心可能需要选择高性能、可扩展的企业级交换机。
3.连接设备将各个网络设备(如计算机、服务器、打印机等)通过网线连接到交换机的各个端口上。
这样就可以实现设备之间的数据传输。
4.配置交换机在连接设备之后,需要对交换机进行一系列的配置,包括网络地址、VLAN划分、流量控制、安全设置等。
这些配置可以根据实际需要进行调整,以满足网络的要求。
5.测试交换机在完成配置之后,需要对交换机进行测试,包括网络连通性、数据传输速率、安全性等方面。
通过测试可以确保交换机的正常工作。
6.监控和维护一旦交换机正常工作,还需要对其进行监控和维护,包括查看交换机的运行状态、处理异常情况、及时更新软件等。
以上就是关于交换机的工作原理和具体工作工程的详细介绍。
交换机在计算机网络中扮演着非常重要的角色,它能够提高数据传输效率、增强网络安全性,是现代网络中不可或缺的设备。
交换机工作原理及配置全解
![交换机工作原理及配置全解](https://img.taocdn.com/s3/m/495bd9a84bfe04a1b0717fd5360cba1aa8118c0d.png)
交换机工作原理及配置全解交换机是计算机网络中常见的一种网络设备,其作用是在局域网内的设备之间进行数据交换和转发。
而交换机的工作原理即为实现这一功能的具体过程,下面将详细介绍交换机的工作原理及配置。
一、交换机的工作原理1.物理层连接:交换机通过其多个端口与计算机等网络设备进行物理连接,这些端口用于接收和发送数据。
2.数据帧:当一个数据包从交换机的一些端口进入时,交换机会将数据包封装成帧,即添加首部和尾部信息,形成数据帧。
3.MAC地址:数据帧中包含源MAC地址和目标MAC地址,MAC地址是每个设备的唯一识别码。
交换机通过查找数据帧中的目标MAC地址来确定将数据帧转发给哪一个端口。
4.MAC地址表:交换机内部有一个MAC地址表,用于存储设备的MAC地址和相应的端口号。
当交换机接收到一个数据帧时,它会查找该数据帧中的源MAC地址,并将其与相应的端口号添加到MAC地址表中。
5.转发数据帧:当交换机收到一个数据帧后,它会查找数据帧中的目标MAC地址,并在MAC地址表中查找相应的端口号。
如果找到了目标MAC地址,则将数据帧只转发到对应的端口上;如果没有找到,则将数据帧广播到所有端口上(除了源端口)。
6.学习功能:当交换机在数据帧中找不到目标MAC地址时,它会记录下该数据帧的源MAC地址和源端口号,并将其添加到MAC地址表中。
这样,以后如果再有数据包的目标地址是该源地址,交换机就可以直接将数据帧转发到对应的端口上,而不需要广播。
7.碰撞域:交换机工作在数据链路层,它能够隔离碰撞域。
当数据帧进入交换机后,交换机会根据其目标MAC地址直接将数据帧转发到对应的端口上,而不是广播到整个网络。
因此,交换机可以减少网络中的数据碰撞,提高网络性能。
二、交换机的配置1.登录交换机:通过终端软件(如PuTTY)连接计算机和交换机。
输入交换机的IP地址和用户名、密码进行登录。
2. 配置管理IP:在登录后的命令行界面中,通过命令配置交换机的管理IP地址,例如:“interface vlan 1”、“ip address192.168.1.1 255.255.255.0”。
交换机的工作原理
![交换机的工作原理](https://img.taocdn.com/s3/m/79dac422773231126edb6f1aff00bed5b9f3736f.png)
交换机的工作原理1、的交换机拥有许多,每个端口有自己的专用,并且可以连接不同的;交换机各个端口之间的通信是同时的、并行的,这就大大提高了信息吞吐量;为了进一步提高性能,每个端口还可以只连接一个设备;为了实现交换机之间的互连或与高档的连接,一般拥有一个或几个高速端口,如100MB以太网端口、FDDI端口或155MB ATM端口,从而保证整个网络的;2、的通过共享局域网的用户不仅是共享带宽,而且是竞争带宽;可能由于个别用户需要更多的带宽而导致其他用户的可用带宽相对减少,甚至被迫等待,因而也就耽误了通信和;利用交换机的网络微分段技术,可以将一个大型的共享式局域网的用户分成许多独立的网段,减少竞争带宽的用户数量,增加每个用户的可用带宽,从而缓解共享网络的拥挤状况;由于交换机可以将信息迅速而直接地送到目的地能大大提高速度和带宽,能保护用户以前在方面的投资,并提供良好的,因此交换机不但是的理想替代物,而且是集线器的理想替代物;与网桥和集线器相比,交换机从下面几方面改进了性能:1通过支持并行通信,提高了交换机的信息吞吐量;2将传统的一个大局域网上的用户分成若干,每个端口连接一台设备或连接一个工作组,有效地解决拥挤现像;这种方法人们称之为网络微分段Micro一segmentation技术;3虚拟网VirtuaI LAN技术的出现,给交换机的使用和管理带来了更大的灵活性;我们将在后面专门介绍虚拟网;4端口密度可以与集线器相媲美,一般的都是有一个或几个服务器,而绝大部分都是普通的;客户机都需要访问服务器,这样就导致服务器的通信和事务处理能力成为整个网络性能的;交换机就主要从提高连接服务器的端口的以及相应的帧缓冲区的,来提高整个网络的性能,从而满足用户的要求;一些高档的交换机还采用进一步提高端口的带宽;以前的都是采用半双工的工作方式,即当一台发送的时候, 它就不能接收数据包,当接收数据包的时候,就不能发送数据包;由于采用全双工技术,即主机在发送数据包的同时,还可以接收数据包,普通的10M端口就可以变成20M端口,普通的100M 端口就可以变成200M 端口,这样就进一步提高了信息吞吐量;3、交换机的工作原理的交换机上是具有流量控制能力的网桥,即传统的二层交换机;把引入交换机,可以完成,故称为,这是交换机的新进展;交换机二层交换的工作原理交换机和网桥一样,是工作在的联网设备,它的各个端口都具有,每个端口可以连接一个LAN 或一台或服务器,能够通过自学习来了解每个端口的设备连接情况;所有端口由专用处理器进行控制,并经过控制管理总线转发信息;同时可以用专门的进行集中管理; 除此之外,交换机为了提高数据交换的速度和,一般支持多种方式;1存储转发:所有网桥都使用这种方法;它们在将发柱之前,要把收到的帧完全存储在的中,对其检验后再发往其他端口,这样其延时等于接收一个完整的数据帧的时间及处理时间的总和;如果很长时,会导致严重的性能问题,但这种方法可以过滤掉错误的数据帧;2切入法:这种方法只检验数据帧的地址,这使得数据帧几乎马上就可以传出去,从而大大降低延时;其缺点是:错误帧也会被传出去;错误帧的概率较小的情况下,可以采用切入法以提高;而错误帧的概率较大的情况下,可以采用存储转发法/以减少错误帧的重传;4、交换机的配置我们下面以Cisco公司的Catlystl900交换机为例,介绍交换机的一般配置;对一台新的Catlystl900交换机,使用它的缺省配置就可以工作了;这因为它是一种将装在FlashMemory中的硬件设备,当加电时,它首先要进行一系列自检,对所有端口进行测试之后,交换机就处于;这时它的交换表是空的,它可以通过自学习来了解各个端口的设备连接情况,并将设备的 MAC地址记录在交换表中,当有信息交换时,交换机就根据交换表来进行数据转发;但为了便于对它进行网络管理,Catlystl900交换机自己有一个MAC地址,这样就可以为它分配一个和屏蔽码;须通过交换机的串口接一台或仿真终端,才能为它指定一个IP地址,其缺省值是0.0.0.0;指定IP地址以后,网络管理员就可以通过网络进行了;Catlystl900交换机的配置是菜单,缺省配置下,它的所有端口都属于同一个VLAN,很多情况下都不需要作什么修改;1将微机串口通过RS一232与Cata1yst1900的Console口连接,运行仿真终端软件,Catalyst 1900 启动后;2回车后,进入主菜单;3按“S”键,进入系统配置菜单:配置系统名,位置,日期;4在主菜单中按“N”键进入网络管理菜单;5配置IP地置;6配置SNMP参数;5、交换机的交换机是设备,它可将多个LAN网段连接到一个大型网络上,与网络类似交换机传输和溢出也是基于MAC地址的传输;由于交换机是用实现的,因此,传输速度很快;传输数据包时,交换机要么使用存储---转发交换,要么使用断---通交换方式;目前有许多的交换机,其中包括,LAN交换机和不同类型的WAN交换机;ATM交换机ATMAsynchronous Transfer Mode交换机为工作组,中枢以及其它众多领域提供了高速交换信息和可伸缩带宽的能力;ATM交换机支持,视频和数据应用,并可用来交换固定的信息单位有时也称元素;企业网络是通过ATM中枢连接多个LAN组成的;局域网交换机LAN交换机用于多LAN网段的相互连接,它在网络设备之间进行专用的无冲突的通信,同时支持多个的对话;LAN交换机主要是用于高速交换数据帧;通过LAN交换机将一个0Mbps以太网与一个100Mbps 以太网互联;交换机原理Ethernet是的意思,历史上使用的是十兆标准,现代基本上是百兆到桌面,千兆做干线;对数据业务量大的多采用千兆到桌面,万兆做干线;交换机和对广播帧是透明的,所以用交换机和HUB组成的网络是一个广播域;的一个接口下的网络是一个广播域;所以路由器可以隔离广播域;原理应用交换机是根据网桥的原理发展起来的,学习交换机先认识两个概念:冲突域是数据必然发送到的区域;HUB是无智能的信号,有入必出,整个由HUB组成的网络是一个冲突域;交换机的一个接口下的网络是一个冲突域,所以交换机可以隔离冲突域;广播域广播数据时可以发送到的区域是一个;交换机和对广播帧是透明的,所以用交换机和HUB组成的网络是一个广播域;的一个接口下的网络是一个广播域;所以路由器可以隔离广播域;以太网识别标准常见的标准有:10BASE-2 细缆以太网10BASE-5 粗缆以太网10BASE-T星型以太网100BASE-T 快速以太网接线标准星型以太网采用双绞线连接,双绞线是8芯,分四组,两芯一组绞在一起,故称双绞线;8芯双绞线只用其中4芯:1、2、3、6;常见接线方式有两种:568B接线规范: 白橙橙白绿蓝白蓝绿白棕棕1 2 3 4 5 6 7 8568A接线规范: 白绿绿白橙蓝白蓝橙白棕棕3 6 145 2 7 8将568B的1和3对调,2和6对调,就得到568A;接线方法两边采用相同的接线方式叫做平接,两边采用不同的接线方式叫扭接;不同的设备之间连接,使用平接线;相同的设备连接使用扭接线;电脑、与、交换机连接时使用平接线;这是因为网线中的4条线,一对是输入,一对是输出,输入应该与输出对应;如果将1和3连接,2和6连接,相当于自己的输出送给自己的输入;这样可以使网卡,阻止空接口关闭,而影响有些程序的运行;工作原理地址表表记录了端口下包含的MAC地址;端口地址表是交换机上电后自动建立的,保存在RAM中,并且自动维护;交换机隔离的原理是根据其端口地址表和转发决策决定的;转发决策交换机的转发决策有三种操作:丢弃、转发和扩散;丢弃:当本端口下的主机访问已知本端口下的主机时丢弃;转发:当某端口下的主机访问已知某端口下的主机时转发;扩散:当某端口下的访问未知端口下的主机时要扩散;每个操作都要记录下发包端的MAC地址,以备其它主机的访问;生存期生存期是端口地址列表中表项的寿命;每个表项在建立后开始进行倒记时,每次发送数据都要刷新记时;对于长期不发送数据的主机,其MAC地址的表项在生存期结束时删除;所以端口地址表记录的总是最活跃的主机的MAC地址;4应该说交换机有很多值得学习的地方,这里我们主要介绍交换机结构及组网方式,21世纪10年代以来网络应用越来越广泛,交换机作为网络中的纽带发挥了越来越大的作用;简单的说,交换机就是将它与用户计算机相连就行了,完成各个计算机之间的数据交换;复杂来说,交换机针对在整个网络中的位置而言,一些高层交换机如、网管型的产品,在交换机结构方面就没这么简单了;三层交换机通常,普通的交换机只工作在上,则工作在网络层;而功能强大的可同时工作在数据链路层和网络层,并根据 MAC地址或IP地址转发;但是要注意到三层交换机并不能完全取代路由器,因为它主要是为了实现处于两个不同的Vlan进行通讯,而不是用来作数据传输的复杂路径选择;网管功能一台交换机所支持的管理程度反映了该设备的可管理性与可操作性;带网管功能的交换机可对每个端口的流量进行监测,设置每个端口的速率,关闭/打开端口连接;通过对交换机端口进行监测,便于对网络业务流量的区分和迅速进行定义,提高了网络的可管理性;端口聚合这是一种封装技术,它是一条点到点的链路,链路的两端可以都是交换机,也可以是交换机和,还可以是和交换机或路由器;基于Trunk功能,允许交换机与交换机、交换机与路由器、主机与交换机或路由器之间通过两个或多个端口并行连接同时传输以提供更高带宽、更大吞吐量, 大幅度提供整个网络能力;结构级联方式这是最常用的一种组网方式,它通过交换机上的UpLink进行连接;需要注意的是交换机不能无限制级联,超过一定数量的交换机进行级联,最终会引起,导致网络性能严重下降;聚合方式前面我们已接触到的特点,此种方式相当于用多个端口同时进行级联,它提供了更高的互联带宽和线路冗余,使网络具有一定的可靠性;堆叠方式交换机的堆叠是扩展端口最快捷、最便利的方式,同时堆叠后的带宽是单一交换机的几十倍;但是,并不是所有的交换机都支持堆叠的,这取决于交换机的品牌、型号是否支持堆叠;并且还需要使用专门的堆叠电缆和堆叠模块;最后还要注意同一叠堆中的交换机必须是同一品牌;分层方式这种方式一般应用于比较复杂的交换机结构中,按照功能可划分为:、、核心层;后记作为网络的重要连接设备,交换机在实际使用中相当频繁;对于一般家庭用户而言,比较复杂的应用就是交换机的级联结构了;而三层路由、堆叠等高级应用一般在企业中应用较多;协议术语1网桥协议:BPDUBridge Protocol Data UnitBPDU是交换机间通讯的数据单元,用于确定角色;2网桥号:Bridge ID交换机的标识号,它由优先级和MAC地址组成,优先级16位,MAC地址48位;3根网桥:Root bridge根网桥定义为网桥号最小的交换机,根网桥所有的端口都不会阻塞;4根端口:Root port非根网桥到根网桥累计路径花费最小的端口,负责本网桥与根网桥通讯的接口;5指定网桥:Designated bridge网络中到根网桥累计路径花费最小交换机,负责收发本数据;6指定端口:Designated port网络中到根网桥累计路径花费最小的交换机端口,根网桥每个端口都是指定端口;7非指定端口:NonDesignated port余下的端口是非指定端口,它们不参与数据的转发,也就是被阻塞的端口;根端口是从非根网桥选出,指定端口是网段中选出;的状态:生成树协议工作时,所有端口都要经过一个端口状态的建立过程;生成树协议通过BPDU广播,确定各交换机及其端口的工作状态和角色,交换机上的端口状态分别为:关闭、阻塞、侦听、学习和转发状态;1关闭状态:Disabled 不收发任何报文,当接口或人为关闭时处于关闭状态;2阻塞状态:Blocking 在机器刚启动时,端口是阻塞状态20秒,但接收BPDU信息;3侦听状态:listening 不接收用户数据15秒,收发BPDU,确定网桥及接口角色;4学习状态:learning 不接收用户数据15秒,收发BPDU,进行地址学习;5转发状态:Forwarding 开始收发用户数据,继续收发BPDU和地址学习,维护STP;网络环路是总线或星型结构,不能构成环路,否则会产两个严重后果:1产生,造成网络堵塞;2克隆帧会在各个口出现,造成地址学习记录帧源地址混乱;解决环路问题方案:1网络在设计时,人为的避免产生环路;2使用生成树STPSpanning Tree Protocol功能,将有环的网络剪成无环网络;STP被IEEE802规范为802.1d标准;VLANVirtual Lan是虚拟,交换机通过VLAN设置,可以划分为多个逻辑网络,从而隔离;具有三层模块的交换机可以实现VLAN间的路由;1端口模式交换机端口有两种模式,access和;access口用于与计算机相连,而交换机之间的连接,应该是trunk;交换机端口默认VLAN是VLAN1,工作在access模式;Access口收发数据时,不含VLAN标识;具有相同VLAN号的端口在同一个广播域中;Trunk口收发数据时,包含VLAN标识;Trunk又称为干线,可以设置允许多个VLAN 通过;2VLAN中继协议:VLAN中继协议有两种:ISLInter-Switch Link: ISL是Cisco专用的VLAN中继协议;dot1q:802.1q是标准化的,应用较为普遍;3VTPVTPVlan Trunking Protocol是VLAN,在含有多个交换机的网络中,可以将中心交换机的VLAN信息发送到下级的交换机中;中心交换机设置为VTP Server,下级交换机设置为VTP Client;VTP Client要能学习到VTP Server的VLAN信息,要求在同一个VTP域,并要口令相同;4VLAN共享如果要求某个VLAN与其他VLAN访问,可以设置VLAN共享或主附VLAN;共享模式的VLAN端口,可以成为多个VLAN的成员或同时属于多个VLAN;在主附VLAN结构中,子VLAN与主VLAN可以相互访问,子VLAN间的端口不能互相访问;一般的VLAN间使用不同;主附VLAN中主VLAN和子VLAN使用同一个网络地址;口令恢复交换机的口令恢复的操作是先启动,在交换机上电时按住的mode键.几秒后松手,进入ROM状态,将nvram中的配置文件config.txt改名或删除,再重启;参考命令为:switch:rename flash:config.text flash:config.bakswitch:erase flash:config.text的口令恢复操作先启动超级终端,在路由器上电时按计算机的Ctrl+Break键,进入ROM监控状态rommon>,用配置寄存器命令confreg设置参数值0x2142,跳过配置文件设置口令后再还原为0x2102;参考命令为:rommon>confreg 0x2142routerconfigconfig-register 0x2102没有特权口令无法进入特权状态,只能进入ROM监控状态,使用confreg 0x2142命令;当口令修改完后,可以在特权模式下恢复为使用配置文件状态;三层概念链路层使用MAC地址,完成对帧的操作;交换机的IP地址做管理用,交换机的IP地址实际是VLAN的IP;一个VLAN一个,不同VLAN的主机间访问,相当于网络间的访问,要通过路由实现;不同VLAN间主机的访问有以下几种情况:1两个VLAN分别的两个物理接口;这是的基本应用;2两个VLAN通过接入路由器的一个物理接口,这是应用于的;3使用具有三层交换模块的交换机;Cisco的3550和华为的3526都是基本的;1通过VLAN的IP地址做,实现,要求设置VLAN的IP地址;2将端口设置在三层工作,要求端口设置no switchport,再设置端口的IP地址;通道技术交换机通道技术是将交换机的几个端口捆绑使用,即端口的聚合;使用通道技术一个方面提高了带宽,同时提高了线路的可靠性;但是如果设置不当,有可能产生环路,造成堵塞网络;要聚合的端口要划分到指定的VLAN或;配置三层通道时,先要进入通道,再用no switchport命令关闭二层,设置通道IP 地址;一个通道一般小于8个接口,接口参数应该一致,如工作模式、封装的协议、端口类型;协商方式端口的聚合有两种方式,一种是手动的方式,一个是自动协商的方式;手动的方式很简单,设置端口成员链路两端的模式为"on";命令格式为:channel-group <number> mode on自动方式有两种类型:PAgPPort Aggregation Protocol和LACPLink aggregation Control Protocol;PAgP:Cisco设备的协议,有auto和desirable两种模式;auto模式在协商中只收不发,desirable模式的端口收发协商的;LACP:标准的端口聚合协议802.3ad,有active和passive两种模式;active相当于PAgP的auto,而passive相当于PAgP的desirable;负载平衡通道端口间的负载平衡有两种方式,基于源MAC的转发和基于目的MAC的转发;scr-mac:源MAC地址相同的使用同一个;dst-mac:目的MAC地址相同的数据帧使用同一个端口转发;四层技术随着宽带的普及,各种网络应用的深入,我们的局域网络正在承担着繁重的业务流量;网络系统中的音频、视频、数据等信息的传输量充斥着占用带宽,我们不得不为这些数据流量提供差别化的服务,让时延敏感性的和重要的数据优先通过,这就不得不考虑,以满足基于策略调度、QoSQuality of Service:服务质量以及安全服务的需求;区别第二层交换实现局域网内主机间的快速信息交流,第可以说是交换技术与的完美结合,而第四层交换技术则可以为网络应用资源提供最优分配,实现应用服务服务质量、及安全控制;四层交换并不是要取代谁,其实2013年径渭分明的二层交换和三层交换已融入四层交换技术;,是根据第二层的MAC地址和来完成端到端的数据交换的;第二层交换机只须识别中的MAC地址,而直接根据MAC地址转发,非常便于采用ASIC专用芯片实现;第二层交换的解决方案,是一个"处处交换"的方案,虽然该方案也能划分、限制广播、建立VLAN,但它的控制能力较小、灵活性不够,也无法控制流量,缺乏路由功能;,是根据第三层的网络层IP地址来完成端到端的数据交换的,主要应用于不同VLAN子网间的路由;当某一信息源的第一个进行第路由后,交换机会产生一个MAC地址与IP地址的映射表,并将该表存储起来,如同一信息源的后续数据流再次进入交换机,交换机将根据第一次产生并保存的表,直接从第二层由源地址传输到目的地址,不再经过第三路由系统处理,提高了的转发效率,解决了VLAN间传输信息时传统产生的速率瓶颈;不仅可以完成端到端交换,还能根据端口的应用特点,确定或限制它的交换流量;简单地说,第四层交换机是基于传输层数据包的交换过程的,是一类基于应用层的用户应用交换需求的新型;第四层交换机支持TCP/UDP第四层以下的所有协议,可根据TCP/UDP来区分数据包的应用类型,从而实现应用层的和服务质量保证;可以查看第三层数据包头源地址和目的地址的内容,可以通过基于观察到的信息采取相应的动作,实现带宽分配、故障诊断和对TCP/IP应用程序进行访问控制的关键功能;通过任务分配和优化网络,并提供详细的流量统计信息和记帐信息,从而在应用的层级上解决、网络安全和网络管理等问题,使网络具有智能和可管理;技术简介OSI网络参考模型的第四层是传输层;传输层负责,即在网络源和目标系统之间协调通信;在IP协议栈中这是TCP传输控制协议和UDP所在的协议层;TCP和UDP包含,它可以唯一区分每个包含哪些应用协议例如HTTP、FTP、telnet等等;TCP/UDP 端口号提供的附加信息可以为所利用,四层交换机利用这种信息来区分包中的数据,这是第四层交换的基础功能介绍1.数据包过滤:在传统上,采用第四层信息端口号去定义过滤规则;四层交换也借用了控制列表的概念,但和基于软件的路由器不一样,第四层交换是在ASIC专用高速芯片中实现的,从而使过滤控制可以线速进行;2.服务质量:TCP/UDP第四层信息还可以用于建立应用通信的优先级;允许用基于应用来区分优先级,设置,确保重要的流量如:VOIP、视频在得到最快的处理,使紧急应用获得网络的高级别服务;3.:第四层交换负载均衡的原理,就是按照IP地址和TCP端口进行虚拟连接的交换,直接将发送到目的计算机的相应端口中;具备第四层交换能力的交换机,能作为一个硬件,完成服务器的负载均衡;由于第四层交换基于硬件芯片,因此性能非常优秀,尤其是对于网络传输的速度,交换的速度远远超过普通的数据包转发;采用设备,所有的集群通过第四层交换机与外部Internet相连,外部客户防问服务器时通过第四层交换机动态分配服务器,实现动态,当其中一台服务器出现故障时,由交换机动态将所有流量分配到集群中的其他主机上,这类只适合在大型流量大的服务器;4.主机备用连接:主机备用连接为端口设备提供了冗余连接,从而在交换机发生故障时有效保护系统,这种服务允许定义主备交换机,同定义一样,它们有相同的配置参数;由于共享相同的MAC地址,备份交换机接收和主单元全部一样的数据;这使得备份交换机能够监视主交换机服务的通信内容;主交换机持续地通知备份交换机第四层的有关数据、MAC数据以及它的电源状况;主交换机失败时,备份交换机就会自动接管,不会中断对话或连接;5.统计与报告:通过查询第四层,第四层交换机能够提供更详细的统计记录;因为管理员可以收集到更详细的哪一个IP地址在进行通信的信息,甚至可根据通信中涉及到哪一个应用层服务来收集通信信息;当服务器支持多个服务时,这些统计对于考察服务器上每个应用的负载尤其有效;增加的统计服务对于使用交换机的服务器服务连接同样十分有用;包含详尽的实时报告和历史纪录报告,全面的报告功能为管理员提供了对带宽资源的充分掌握,从而使企业可以作出更合适的业务决策;在业界有一通用的名字叫做"应用交换机",比较有名的有如下几款:美国的F5公司的BIG-IP 2400系列链路应用交换机可实定制,流量优先级安排,基于政策的流量引导,来源、目的地和应用交换;Radware公司的Web Server Director应用交换机可保障服务器群的完全可用性、优化运行以及完备的安全性,从而保证网络和数据中心范围内的应用能获得高度可靠性和性能;美国Foundry公司 ServerIronGT-C2404F应用交换机可实现全局服务器,高性能VPN/防火墙负载均衡,透明缓存交换,,防DoS攻击保护服务器;总结随着网络信息系统由小型到中型到大型的发展趋势,交换技术也由原来最初的基于MAC地址的交换,发展到基于IP地址的交换,进一步发展到基于IP+端口的交换,本文对第四层交换技术作了一个比较全面的介绍,如今也有产品更提出了第七层交换基于内容的交换;可见,网络交换技术的不断发展使得原来由基于数据的交换变成了基于应用的交换,不仅提高了网络的访问速度,而且不断地优化了网络的整体性能;。
交换机和路由器的工作原理
![交换机和路由器的工作原理](https://img.taocdn.com/s3/m/0352049cf424ccbff121dd36a32d7375a417c6d5.png)
交换机和路由器的工作原理一、交换机的工作原理交换机是计算机网络中常用的网络设备,用于在局域网内转发数据包。
它的主要功能是根据数据包中的目标MAC地址,将数据包从一个接口转发到另一个接口,实现局域网内的数据通信。
交换机的工作原理可以简单描述为以下几个步骤:1. MAC地址学习:交换机通过监听网络中的数据包,学习到各个接口上连接的设备的MAC地址,并将其存储在一个地址表中。
这样,当交换机收到一个数据包时,就能根据目标MAC地址查找到对应的接口。
2. 数据转发:当交换机收到一个数据包时,会查找目标MAC地址在地址表中对应的接口。
如果找到了,就将数据包转发到该接口,否则就广播到所有接口。
这样,只有目标设备能够接收到数据包,避免了数据在局域网内的冲突和冗余。
3. 冲突检测与解决:交换机会监测到网络中的冲突情况,并根据冲突检测算法来解决冲突。
常见的冲突检测算法有CSMA/CD(载波监听多路访问/碰撞检测)。
4. VLAN划分:交换机还可以根据需要将局域网划分成多个虚拟局域网(VLAN),实现不同VLAN之间的隔离和通信。
这样可以提高网络的安全性和管理灵活性。
总的来说,交换机通过学习MAC地址、转发数据包和解决冲突等机制,实现了局域网内的高效数据通信。
二、路由器的工作原理路由器是计算机网络中的一种网络设备,用于在不同网络之间转发数据包。
它的主要功能是根据数据包中的目标IP地址,将数据包从一个接口转发到另一个接口,实现不同网络之间的数据通信。
路由器的工作原理可以简单描述为以下几个步骤:1. IP地址转发:路由器通过学习网络拓扑和配置路由表,将不同网络的IP地址与对应的接口关联起来。
当路由器收到一个数据包时,会根据目标IP地址在路由表中查找到对应的接口。
2. 路由选择:当路由器收到一个数据包时,可能存在多个路径可以到达目标网络。
路由器会根据路由选择算法,选择最优的路径来转发数据包。
常见的路由选择算法有距离矢量路由选择协议(Distance Vector Routing Protocol)和链路状态路由选择协议(Link State Routing Protocol)。
交换机选型的基本原则
![交换机选型的基本原则](https://img.taocdn.com/s3/m/5468fb0d30126edb6f1aff00bed5b9f3f90f72ce.png)
交换机选型的基本原则交换机是网络中重要的设备之一,用于处理数据包的转发和交换。
在选择交换机的类型和型号时,需要考虑多个因素,并且根据网络规模、需求和预算等方面进行权衡。
以下是交换机选型的基本原则。
1.网络规模:首先需要考虑的是网络的规模,包括设备数量、用户数量以及数据流量。
大型企业或数据中心可能需要更高容量和更多端口的交换机,而小型企业或家庭网络则可以选择较小的交换机。
2.带宽需求:根据网络的带宽需求选择合适的交换机。
越高带宽的交换机可以提供更快的数据传输速度和更低的延迟。
如果网络需要支持大量的多媒体内容、大文件传输或视频会议等高带宽应用,就需要选择支持更高带宽的交换机。
3.速度和性能:交换机的速度和性能对于网络的稳定性和效率至关重要。
交换机的性能通常由其交换容量(switching capacity)和转发速度(forwarding rate)来衡量。
交换容量指的是交换机能够处理的数据流量大小,转发速度指的是交换机每秒能够处理的数据包数量。
因此,在选型时需要根据预计的数据流量和设备数量来确定所需的交换容量和转发速度。
4.可扩展性:随着网络的增长和扩展,需要选择具有一定扩展性的交换机。
可扩展性包括两个方面:物理扩展性和逻辑扩展性。
物理扩展性指的是交换机提供的端口数量和插槽数,可以根据需要增加或减少;逻辑扩展性指的是交换机支持的VLAN数量、链路聚合(link aggregation)和多播(multicast)等功能。
因此,在选型时需要根据未来的网络发展需求来决定所需的可扩展性。
5.可靠性和冗余:选择具有高可靠性和冗余功能的交换机可以提高网络的稳定性和容错性。
高可靠性的交换机通常具有热插拔模块、冗余电源和冗余风扇等功能,并且支持链路聚合和端口冗余等技术。
这些功能可以在出现单点故障时实现自动切换和备份,确保网络的连通性和可用性。
6.安全性:网络安全是一个重要考虑因素,在选型时需要选择具有安全功能的交换机。
网络交换机培训资料
![网络交换机培训资料](https://img.taocdn.com/s3/m/48889d4a4531b90d6c85ec3a87c24028915f85bf.png)
网络交换机培训资料一、网络交换机的定义和作用网络交换机是一种用于在计算机网络中连接多个设备并实现数据交换的设备。
它就像是一个交通枢纽,负责在不同的设备之间快速、准确地传输数据。
网络交换机的主要作用包括:1、提供网络连接:将多个计算机、服务器、打印机等设备连接在一起,形成一个局域网(LAN)。
2、提高网络性能:通过智能地转发数据,减少网络拥塞,提高数据传输速度和效率。
3、分割网络冲突域:有效地减少网络中的冲突,使每个连接到交换机端口的设备都能独立地进行数据传输。
4、增强网络安全性:可以对网络流量进行控制和管理,限制某些设备的访问权限,提高网络的安全性。
二、网络交换机的分类1、按网络覆盖范围分类局域网交换机:主要用于构建小型的局域网,如办公室、家庭网络等。
广域网交换机:用于连接不同地理区域的网络,如城域网、广域网等。
2、按传输速率分类10Mbps 交换机:适用于低速网络环境。
100Mbps 交换机:较为常见的中速交换机。
1000Mbps(1Gbps)交换机:能满足高速数据传输需求。
10Gbps 及以上交换机:用于对带宽要求极高的网络环境,如数据中心。
3、按工作层次分类二层交换机:基于 MAC 地址进行数据转发,是最常见的交换机类型。
三层交换机:除了具备二层交换机的功能外,还具有路由功能,可以基于 IP 地址进行数据包转发。
四层及以上交换机:能够基于更高层的协议信息(如端口号)进行数据处理和转发,通常用于大型企业网络和数据中心。
三、网络交换机的工作原理网络交换机通过学习连接到其端口的设备的 MAC 地址来工作。
当一个数据包到达交换机时,交换机会查看数据包的目的 MAC 地址,并根据其学习到的 MAC 地址表将数据包转发到相应的端口。
如果目的MAC 地址不在地址表中,交换机将把数据包广播到所有端口(除了接收端口),以查找目标设备。
交换机还采用了存储转发和直通转发两种数据转发方式。
存储转发方式会先接收整个数据包,进行错误检查后再转发;直通转发方式则在收到数据包的头部信息后就立即转发,提高了数据传输的速度,但可能会转发错误的数据包。
交换机的工作原理
![交换机的工作原理](https://img.taocdn.com/s3/m/28b3b4863086bceb19e8b8f67c1cfad6195fe997.png)
交换机的工作原理
交换机属于存储转发设备,是网络的核心设备,交换机根据所接收帧的目的MAC地址对帧进行存储转发或者过滤,其工作的基本原理如下。
(1)交换机可以在同一时刻实现多个端口之间的数据传输。
为了保证交换机能够根据MAC地址确定将MAC帧发送到某个端口,这就需要在交换机内部创建目的MAC地址到端口的映射关系,即转发表。
(2)交换机刚通电时,转发表为空。
交换机每收到一个数据帧时,它首先会记录数据帧的源端口和源MAC地址的映射关系,并将其添加到转发表中,交换机采用逆向学习法逐步建立起转发表。
只要有一个主机向网络中发送数据,交换机就可以自主学习到该主机的MAC地址,从而更新转发表中的项目。
(3)交换机会读取数据帧的目的MAC地址,在转发表中查找该目的MAC地址对应的端口。
(4)若转发表中有该目的MAC地址的表项,交换机就把帧从表项指明的端口发送出去。
(5)若转发表中没有该目的MAC地址的表项,则交换机将该帧发送到除源端口以外的其他所有端口。
(6)考虑到网络的拓扑结构会时常更新,为转发表的每个表项设置一个生存期。
当一个表项的生存期到期后,则删除该表项;同
样,转发表通过自主学习创建一个新表项时,也会为其设定一个生存期。
交换机路由器设备选型依据
![交换机路由器设备选型依据](https://img.taocdn.com/s3/m/1ea1b92b7ed5360cba1aa8114431b90d6c85890b.png)
交换机路由器设备选型依据在当今数字化的时代,网络已经成为了企业和个人生活中不可或缺的一部分。
而交换机和路由器作为构建网络基础设施的关键设备,其选型的合理性直接影响到网络的性能、稳定性和安全性。
本文将详细探讨交换机路由器设备选型的依据,帮助您做出明智的选择。
一、网络规模和用户数量网络规模和用户数量是选型的首要考虑因素。
如果您的网络覆盖范围较小,用户数量较少,例如一个小型办公室或家庭网络,那么一台低端的交换机和路由器可能就能够满足需求。
然而,如果是一个大型企业网络,拥有众多的分支机构和大量的用户,就需要选择具备更高性能和更多端口的交换机和路由器。
对于小型网络,例如 10 个以下用户的环境,选择一台具有 8-16 个端口的 10/100Mbps 交换机和一台普通的家用路由器通常就足够了。
而对于中型网络,如 50-100 个用户的企业,可能需要一台具有 24 个或更多端口的 10/100/1000Mbps 交换机,并搭配一台企业级的路由器,以支持更多的并发连接和更高的数据传输速率。
对于大型网络,如拥有数百个甚至数千个用户的企业,可能需要采用模块化的交换机,通过添加不同的模块来满足端口数量和功能的需求,同时需要高性能的核心路由器来处理大量的网络流量。
二、网络带宽需求网络带宽是指在一定时间内能够传输的数据量,通常以每秒比特数(bps)为单位。
了解您的网络带宽需求对于交换机和路由器的选型至关重要。
如果您的网络主要用于日常办公,如文件共享、电子邮件和网页浏览,那么对带宽的要求相对较低。
但如果您的网络需要支持高清视频流、大型文件传输或实时数据处理等应用,就需要更高的带宽。
在选型时,要确保交换机和路由器的端口速率能够满足您的网络带宽需求。
例如,如果您的网络接入带宽为 100Mbps,那么选择10/100Mbps 的交换机和路由器可能就足够了。
但如果您的接入带宽为1000Mbps 或者更高,就需要选择支持 1000Mbps 甚至 10Gbps 的交换机和路由器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈交换机的工作原理及选型依据
摘要:随着人们对网络数据传输速度及传输性能的要求日益提高,传统的第一类网络集线设备——集线器(hub),由于其共享介质传输、单工数据操作和广播数据发送方式等原因决定了它很难满足用户对高速度及性能的要求,在这种需求下,一种新型的集线设备——交换机出现了,交换机克服了集线器的种种不足,在短时间内得到了业界的广泛认可,交换机技术也得到了飞速发展,传输速度更是得到了很大的提升,目前最快的以太网交换机端口带宽可达到10Gbps,千兆(G)级的交换机在各企业的骨干网络中早已得到了广泛使用。
关键词:集线器、交换机、MAC地址、背板带宽
1.1交换机的工作原理
交换机是一种基于MAC(网卡的硬件地址)识别,能完成封装转发数据包功能的网络设备,交换机正如它的名字一样采用的是交换的工作模式,它可以“学习”网络中各个终端的Mac 地址,并把其存放在内部的MAC地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
在计算机网络系统中,交换工作模式的提出是相对于对共享工作模式的改进,我们知道集线器(hub)是一种共享介质的网络设备,而且集线器(hub)本身不能识别目的地址,是采用广播的方式向所有节点发送,然后由每一个节点上的终端通过验证数据包头的地址信息来确定是否接收,在这种方式下很容易造成网络堵塞,因为接收数据的只有一个节点终端,而向所有的节点都发送数据,那么绝大多数的数据流是无效的,这样就造成网络数据的传输效率很低,而且由于发送的数据每个节点都会接收到,就可能导致不安全的因素产生。
交换机拥有一条很高很快的背部总线和内部交换矩阵。
交换机的所有端口均挂接在这条背部总线上,当控制电路接收到数据包后,处理端口会查找内存中的MAC地址对照表以确定目的MAC地址的网卡接在哪个端口上,通过内部交换矩阵直接将数据包传送到目的端口,而不是所有端口,如果目的MAC地址不存在,则广播到所有的端口,交换机的这种工作方式较于集线器来说不但效率高,不浪费网络资源,因为它只是对目的地址传输数据,不容易造成网络堵塞,而且安全系数高,发送数据是其他节点很难侦听到所发送的信息。
这也是交换机能很快取代集线器的重要原因之一。
交换机的另一个重要特点是它不像集线器一样每个端口共享带宽,它的每一个端口都
是共享一部分交换机的总带宽,这样在速率上就对每个端口有个根本的保障。
这样交换机就可以在同一时刻进行多个端口之间数据传输,每个端口都视为独立的网段,享有独立固定的带宽。
无需同其他设备竞争使用。
比方说现在使用的8端口10Mbps以太网交换机,当数据流量较大时,它的总流量可达到8*10Mbps=80Mbps,而使用10Mbps的共享式hub 是,因为共享机制,使得每一时刻只能有一个端口通信,那即使数据流再多,总流量也不会超过10Mbps,如果使用16端口,24端口时情况会更加明显。
总之,交换机的目的是使得传输效率更高,它根据MAC地址来进行判断,决定数据帧该送到目的地址的连接端口,而不打扰其他不相干的连接端口,如果内存中的地址表中不包含目的MAC地址,交换机则会向所有端口广播这个数据包,找到后再将这个MAC 地址加入到自己的MAC地址表中,这样下次发送到这个地址时便不会发错,交换机的这个功能就称为“MAC地址学习”功能。
1.2交换机的选型方法
交换机的选型依据:
1、Vlan类型和数量
一个交换机支持越多的VLAN类型和数量将更加方便的进行网络拓扑的设计与实现。
2、端口数量及类型
不同的需求情况有不同的应用,需要按情况而定。
3、是否有支持网络管理的协议和方法
网吧交换机的网管功能可以使用管理软件来管理、配置交换机,比如可通过Web浏览器、Telnet、SNMP、RMON等管理。
4、是否支持堆叠
当用户量提高后,堆叠就显得非常重要了。
一般公司扩展交换机端口的方法为一台主交换机各端口下连接分交换机的级联方式,这种方式里分交换机与主交换机之间的最大传输速率只有100M,极大的影响了交换性能,,而采用专用堆叠模块和堆叠总线进行堆叠方式,不占用网络端口;多台交换机堆叠后,具有足够的系统带宽,从而保证堆叠后每个端口仍能达到线速交换,Vlan不受影响。
5、背板带宽、交换吞吐量。
背板带宽及吞吐量真正决定着网络的实际性能,不管交换机再多,管理再方便,吞吐量不够,网络只会拥堵不堪。
5.1背板带宽是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。
交换机机箱内部背后设置的大量的铜线,而背板带宽指的是这些铜线提供的带宽,与背板带宽有关的,是背板铜线部署的多少;交换容量是实际业务板卡与交换引擎之
间的连接带宽,真正标志了交换机总的数据交换能力,与交换容量有关的,是业务插槽与管理引擎上的交换芯片,交换容量是决定交换机性能转发的主要因素。
所有单端口容量*端口数量之和的2倍<背板带宽,才可以实现全双工无阻塞交换。
比如cisco公司的Catalyst2950G-48,它有48个100Mbit/s端口和2个1000Mbit/s 端口,它的背板带宽应该不小于13.6Gbit/s,才能满足线速交换的要求。
计算如下:(2*1000+48*100)*2(Mbit/s)=13.6(Gbit/s)
5.2 满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps,其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。
例如:1台最多能够提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在任何端口均线速工作时,提供无阻塞的包交换。
假如一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。
1.488的由来:包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。
计算方法如下:一个数据包的实际长度为(64+8+12)byte=(512+64+96)bit=672bit,说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。
故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488095Mpps=1000Mbit/s/672bit。
快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为0.1488095Mpps=100Mbit/s/672bit。
对于万兆以太网,一个线速端口的包转发率为14.88Mpps;
对于千兆以太网,一个线速端口的包转发率为1.488Mpps;
对于百兆以太网,一个线速端口的包转发率为0.1488Mpps;
5.3典型的网络设计会采用过载的设计模式
过载设计的规则:
接入层到汇聚层--过载率:10:1到20:1
汇聚层到核心层--过载率:2:1到4:1
服务器群--过载率:1:1到4:1
例子:假设三级网络结构
接入层:10000台PC,每台PC使用1000M接入,采用10G上联汇聚层,20:1的过载率;
汇聚到核心层:10GE上联,4:1的过载率;双核心架构,核心交换机之间使用双10G捆绑链路相连提供冗余。
最终核心层的网络流量最高为:10000*1000M*2*1/(4*20)+10G*2*2=290Gbps,也就是说最大需要的背板带宽为290Gbps,包转发能力为:290G*1.488Mpps=431.52Mpps;
汇聚层的网络流量为:10G*(4+2)*2=120Gbps,即最大需要背板带宽为120Gbps,包转发率为:120G*1.488Mpps=178.56Gpps;
接入层选择48口的交换机,交换容量为:(48*1000M+1*10000M)*2=116Gbps,即最大需求背板带宽为116Gbps,包转发率为:116*1.488Mpps=172.6Mpps。
按照20:1的过载率,可以知道汇聚层交换机的每个10G端口下联5台堆叠的交换机(200/48=5),10000台PC/200台PC=50个汇聚层交换机端口,则需要5*50=250台接入层交换机;按照汇聚到核心4:1的过载率,需要汇聚层交换机数为:50/4=13台。
1.3小结
本章主要介绍了交换机的工作原理及交换机的选型,并举例说明了依据吞吐量如何选择交换机的方法。
参考文献:
1、王廷尧《以太网技术及应用》北京:人民邮电出版社
2、Rich seifert 《千兆以太网技术与应用》郎波译北京:机械工业出版社
3、罗庆超《二层交换机转发帧的原理和实现》2004
4、李勇敢《浅谈集线器与交换机的区别》【J】.内江科技.2005。