决策树 实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验(实习)名称决策树分析

一.实验要求:

(1)学习决策树分类学习方法,学习其中C4.5学习算法,了解其他ADtree、Id3等其它分类学习方法。

(2)应用Weka软件,学会导入数据文件,并对数据文件进行预处理。

(3)学会如何选择学习函数并调节学习训练参数以达到最佳学习效果。

(4)学习并应用其他决策树学习算法,可以进行各种算法对照比较。

二.实验操作

(1)在开始程序(或者桌面图标)中找到WEKA3.6.2,单击即可启动WEKA,启动WEKA 时会发现首先出现的一个命令提示符。接着将出现如下Weka GUI Chooser界面。

(2)选择GUI Chooser中的探索者(Explorer)用户界面。点击预处理(Preprocess)功能按钮的,Open file,选择其中的“weather”数据作关联规则的分析。打开“weather.arff”,可以看到“Current relation”、“Attributes”“Selected attribute”三个区域。

(3)点击“Classify”选项卡。单击左上方的Choose按钮,在随后打开的层级式菜单中的tree部分找到J48。

(4)选中J48分类器后,J48以及它的相关默认参数值出现在Choose按钮旁边的条形框中。单击这个条形框会打开J48分类器的对象编辑器,编辑器会显示J48的各个参数的含义。根据实际情况选择适当的参数,探索者通常会合理地设定这些参数的默认值。

三.实验结果:

计算正确率可得:

(74+132)/(74+30+64+132)=0.69

四.实验小结:

通过本次试验,我学习了决策树分类方法,以及其中C4.5算法,并了解了其他ADtree、Id3等其它分类方法,应用Weka软件,学会导入数据文件,并对数据文件进行预处理,今后还需努力。

相关文档
最新文档