(完整版)高中数学归纳法练习

合集下载

(完整版)数学归纳法经典例题详解

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

(完整版)高二数学归纳法经典例题

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。

(完整版)数学归纳法练习题.doc

(完整版)数学归纳法练习题.doc

2.3 数学归纳法第 1 课时 数学归纳法1.用数学 法 明“ 2n>n 2+1 于 n ≥n 0 的自然数 n 都成立” ,第一步明中的起始 n 0 取().A .2B . 3C . 5D .6解析 当 n 取 1、2、3、4 2n2+1 不成立,当 = ,5=2+ =>nn 5 232>5 126,第一个能使 2n>n 2+1 的 n5,故 C.答案 Cn + 3 n +42.用数学 法 明等式1+ 2+ 3+⋯+ (n + 3)=(n ∈ N + ), n2= 1 ,左 取的 是().A .1B . 1+ 2C .1+2+3D . 1+ 2+ 3+ 4解析 等式左 的数是从 1 加到 n +3.当 n =1 , n +3=4,故此 左 的数 从 1 加到 4. 答案 D1 11 (n ∈N + ),那么 f(n +1)- f(n)等于3. f(n)=1+2+3+⋯+-3n1().111A.3n +2B.3n + 3n +1C. 1 + 11 1 + 1 + + 2D.3n + + +2 3n 1 3n3n1 3n11 1 解析∵f(n)=1+2+3+⋯+,3n -11 11 111∵f(n + 1)=1+2+3+⋯++3n ++,3n -13n + 1 3n +2∴f(n + 1)-f(n)= 1 1 1+ +.3n 3n + 1 3n +2答案D4.用数学 法 明关于 n 的恒等式,当n =k ,表达式1×4+2×7+⋯+ k(3k +1)= k(k + 1)2, 当 n =k +1 ,表达式 ________.答案 1×4+2×7+⋯+ k(3k +1)+ (k +1)(3k +4)= (k +1)(k +2)2 5. 凸 k 形的内角和f(k), 凸 k + 1 形的内角和 f(k + 1)=f(k)+________.解析由凸 k 形 凸 k +1 形 ,增加了一个三角形 形,故f(k + 1)= f(k)+ π.答案 π 6.用数学 法 明:1 + 1+⋯+1=1+1+⋯+11×2 3×42n -1 ·2n n +1n +2n +n.明(1)当 n =1 ,左 =1=1,右 =1,等式成立.1×222 (2)假 当 n =k(k ∈N * ) ,等式成立,即111 111× + ×+⋯+-=+ k + +⋯+ 2k .1 2 3 4 2k 1·2k k + 1 2当 n =k +1 ,1 + 1+⋯+1 +1 1×2 3×42k - 1 ·2k 2k +1 2k +2=1+1+⋯+ 1 + 1k +1 k +2 2k2k + 1 2k + 2 = 1 + 1 1 + 1 1 1+⋯+ 2k + 1- 2k +2 +k +2 k +3 1 k=1+1+⋯+ 1 + 1 + 1k +2 k +32k2k +1+ 22k 1 111.即当 n =k +1=k +1 +1+k + 1 +2+⋯+k +1 +k+k + 1 + k +1 ,等式成立.根据 (1)(2)可知, 一切 n ∈N * ,等式成立.7.若命 A(n)(n ∈N * )在 n =k(k ∈N * ) 命 成立, 有 n =k + 1 命 成立.知命 n= n0(n0∈ N* )命成立,有().A.命所有正整数都成立B.命小于 n0的正整数不成立,大于或等于n0的正整数都成立C.命小于 n0的正整数成立与否不能确定,大于或等于n0的正整数都成立D.以上法都不正确解析由已知得 n=n0 0∈*) 命成立,有n=0+1命成立;在n(n N n= n0+1 命成立的前提下,又可推得n= (n0+1)+1 命也成立,依此推,可知 C.答案 C8.用数学法明 (n+1)(n+ 2)(n+3)⋯(n+n)=2n·1·3·⋯·(2n-1)(n∈N* ),从n=k 到 n = k+ 1,左增加的代数式( ).A.2k+1 B.2(2k+ 1)2k+1 2k+ 3C. k+ 1D. k+1解析n= k ,左= (k+ 1)(k+ 2)⋯(2k); n=k+1 ,左= (k+2)(k+3)⋯ (2k+ 2)=2(k+1)(k+2)⋯(2k)(2k+1),故 B.答案 B9.分析下述明 2+4+⋯+ 2n= n2+n+1(n∈N+ )的程中的:明假当 n=k(k∈N+ )等式成立,即2+ 4+⋯+ 2k=k2+k+1,那么 2 +4+⋯+ 2k+ 2(k+ 1)=k2+ k+1+2(k+1)=(k+1)2+(k+1)+1,即当 n=k +1 等式也成立.因此于任何 n∈N+等式都成立. __________________.答案缺少步奠基,上当n= 1 等式不成立10.用数学法明 (1+ 1)(2+2)(3+ 3)⋯(n+n)=2n-1·(n2+n),从 n=k 到 n = k+1 左需要添加的因式是________.解析当 n= k ,左端: (1+1)(2+2)⋯(k+k),当 n=k+ 1 ,左端: (1+1)(2+2) ⋯(k+k)(k+ 1+k+1),由 k 到 k+1 需添加的因式: (2k+2).答案2k+ 211.用数学法明2+22+⋯+n2=n n+12n+1 ∈*).16 (n N 明(1)当 n=1 ,左= 12=1,右=1× 1+ 1 × 2×1+16 = 1,等式成立.(2)假当 n=k(k∈N* )等式成立,即12+22+⋯+k2=k k+12k+16那么,12+ 22+⋯+ k2+(k+1)2=k k+1 2k+1+(k+1)26k k+ 1 2k+ 1 +6 k+1 2=6k+1 2k2+7k+6=6=k+1 k+2 2k+36=k+1 [ k+ 1 +1][2 k+ 1 +1],6即当 n=k+1 等式也成立.根据 (1)和 (2),可知等式任何n∈N*都成立.12.(新拓展 )已知正数数列n * n nn1n,用{a }( n∈ N )中,前 n 和 S ,且 2S = a +a数学法明: a n=--n n 1. 明 (1)当 n=1 .1 1a1= S1=2 a1+a1,2∴ a1=1(a n>0),∴ a1=1,又1-0=1,∴ n= 1 时,结论成立.(2)假设 n= k(k∈ N* )时,结论成立,即a k= k- k-1.当 n=k+ 1 时,a k+1= S k+1-S k=1a k+1+ 1 -1a k+1a a2 2k+ 1 k=1 k+1 1 1 k- k-1+ 12a +a k+1-2 k- k-1 1 1=2 a k+1+a k+1- k2∴ a k+1+2 ka k+1- 1= 0,解得 a k+1= k+1-k(a n>0),∴ n= k+1 时,结论成立.由 (1)(2)可知,对 n∈N*都有 a n=n-n-1.。

(完整版)数学归纳法经典例题及答案(2)

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1. 用数学归纳法证明1+2+3+ +n 2=,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C .D .(k 2+1)+(k 2+2)+ +(k +1)2【答案】D 【解析】当时,,当时,,所以时左端应在的基础上加上. 【考点】数学归纳法.2. 某地区为了绿化环境进行大面积植树造林,如图,在区域 内植树,第一棵 树在点A l (0,1),第二棵树在点.B 1(l , l ),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么(1)第n 棵树所在点坐标是(44,0),则n= .(2)第2014棵树所在点的坐标是 .【答案】(1);(2)【解析】(1)从图上可以看出:第3棵树在点,第4颗树在点,第15棵数在点,第16棵数在点,设第棵树在点,显然可以归纳出,∴;由图可知,以,为左右端点的正方形区域内共有棵树,而, ∴第2014的数应是,为左右端点的正方形区域内的依次种植的倒数第11棵树,∴第2014棵树的所在点的坐标为. 【考点】归纳推理.3. 用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++ 【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.4. 是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由. 【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)时,该命题成立,那么可6.某个命题与正整数有关,如果当n=k(k∈N+推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立【答案】C【解析】依题意,若n=4时该命题成立,则n=5时该命题成立;而n=5时该命题不成立,却无法判断n=6时该命题成立还是不成立,故选C.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推n=2k+1正确C.假使n=k时正确,再推n=k+1正确D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+)【答案】B【解析】因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.8.用数学归纳法证明等式时,第一步验证时,左边应取的项是A.1B.C.D.【答案】D【解析】根据题意,数学归纳法证明等式时,第一步验证时,坐标表示的为前4项的和,因为最后一项为4,且从1开始,因此可知左边为,选D.【考点】数学归纳法点评:主要是考查了数学归纳法的基本原理的运用,属于基础题。

专题4.4数学归纳法(含答案)高二数学同步培优专练(人教A版2019选择性必修第二册)

专题4.4数学归纳法(含答案)高二数学同步培优专练(人教A版2019选择性必修第二册)

专题4.4 数学归纳法*知识储备知识点 数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n =n0(n0∈N*)时命题成立;(2)(归纳递推)以“当n =k(k ∈N*,k ≥n0)时命题成立”为条件,推出“当n =k +1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n 都成立,这种证明方法称为数学归纳法.【名师点津】1.数学归纳法的两个步骤缺一不可,前者是基础,后者是递推的依据.2.运用数学归纳法时易犯的错误:(1)对项数估算错误,特别是寻找n =k 与n =k +1的关系时,项数发生什么变化易弄错;(2)不利用归纳假设:归纳假设是起桥梁作用的,桥梁断了就通不过去了;(3)步骤不严谨、不规范,在利用假设后,不作任何推导或计算而直接写出所要结论.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+(1)2n n -d 时,假设当n =k 时,公式成立,则S k =( )A .a 1+(k -1)d B .1()2k k a a +C .ka 1+(1)2k k -d D .(k +1)a 1+(1)2k k +d 【答案】C【解析】假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+(1)2k k -d .2.已知f (n )=2111112n n n n+++++L ,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14【解析】选D 由f(n)可知,f(n)中共有n2-n+1项,且n=2时,f(2)=12+13+143.用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于( )A.3k-1 B.3k+1C.8k D.9k【答案】C【解析】因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+3k+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.4.证明等式12+22+32+…+n2=(1)(21)6n n n++(n∈N*)时,某学生的证明过程如下:①当n=1时,12=1236´´,等式成立;②假设n=k(k∈N*)时,等式成立,即12+22+32+…+k2=(1)(21)6k k k++,则当n=k+1时,12+22+32+…+k2+(k+1)2=(1)(21)6k k k+++(k+1)2=[] (1)(21)6(1)6k k k k++++=2(1)2766k k kéù+++ëû=()[] (1)112(1)16k k k+++++éùëû,所以当n=k+1时,等式也成立,故原式成立.那么上述证明( )A.过程全都正确B .当n =1时验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确【答案】A【解析】通过对上述证明的分析验证知全都正确,故选A.5.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c 【答案】A【解析】令n =1,2,3,得22313(),1233(2),123333(3),a b c a b c a b c =-+ìï+´=-+íï+´+´=-+î 即331,1897,812734,a b c a b c a b c -+=ìï-+=íï-+=î解得a =12,b =14,c =14.6.用数学归纳法证明3n ≥n3(n ≥3,n ∈N*),第一步验证( )A.n=1B.n=2C.n=3D.n=4【答案】C【解析】由题知,n 的最小值为3,所以第一步验证n=3时不等式是否成立.7.利用数学归纳法证明不等式1+12+13+…+12n 1<n(n ≥2,n ∈N*)的过程中,由n=k 变到n=k+1时,左边增加了( )A.1项B.k 项C.2k-1项D.2k 项【答案】D【解析】当n=k 时,不等式左边的最后一项为12k1,而当n=k+1时,最后一项为12k +11=12k 12k,并且不等式左边和式每一项分母的变化规律是每一项比前一项加1,故增加了2k 项.8.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++×××++小于( )A .1n n +B .211n n -+C .211n n ++D .21n n +【答案】C【解析】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n +,()2221112112311n n n ++++×××+<++\.故选:C.二、多选题9.一个与正整数n 有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则下列说法正确的是( )A.该命题对于n=6时命题成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k 取值无关D.以上答案都不对【答案】AB【解析】由n=k 时命题成立可以推出n=k+2时命题也成立,且n=2时,命题成立,故对所有的正偶数都成立.故选AB.10.在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知1匹4=丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为n a ,2n an b =,对于数列{}n a 、{}n b ,下列选项中正确的为()A .1058b b =B .{}n b 是等比数列C .1352121n n a a a a a -++++=-LD .()1214n n n n c c a a p --+-=×【答案】ABD【解析】对于A 选项,因为斐波那契数列总满足()*123,n n n a a a n n N --=+³Î,所以2121a a a =,()22222312321a a a a a a a a a a ==-=-,()23333423432a a a a a a a a a a ==-=-,类似的有,()21111n n n n n n n n n n a a a a a a a a a a +-+-==-=-,累加得22221231n n n a a a a a a +++++=×L ,由题知222222112311211n n n n n n n n S a a a a a a a a a a ++++++=+++++=×=+×L ,故选项A 正确,对于B 选项,因为11a a =,231a a a =-,342a a a =-,类似的有11n n n a a a +-=-,累加得123122++1n n n n a a a a a a a a ++++=+-=-L ,故选项B 正确,对于C 选项,因为11a a =,342a a a =-,564a a a =-,类似的有21222n n n a a a --=-,累加得13211222++n n n a a a a a a a -+=+-=L ,故选项C 错误,对于D 选项,可知扇形面积24nn a c p ×=,故()()2222111124444n n n n n n n n c c a a a a a a p p p p +----æö-=-=-=×ç÷èø××,故选项D 正确,故选:ABD.12.用数学归纳法证明21121n n nn ->++对任意(),n k n k N ³Î的自然数都成立,则以下满足条件的k成立.命题为真时,进而需证n =________时,命题亦真.【答案】2k +1【解析】∵n 为正奇数,且与2k -1相邻的下一个奇数是2k +1,∴需证n =2k +1时,命题成立.14.用数学归纳法证明“当n ∈N *时,求证:1+2+22+23+…+25n -1是31的倍数”时,当n =1时,原式为__________,从n =k 到n =k +1时需增添的项是________________.【答案】1+2+22+23+24 25k +25k +1+25k +2+25k +3+25k +4【解析】当n =1时,原式应加到25×1-1=24,所以原式为1+2+22+23+24,从n =k 到n =k +1时需添25k +25k +1+…+25(k +1)-1.16.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f (n )部分,则f (n )=1+(1)2n n +.”证明第二步归纳递推时,用到f (k +1)=f (k )+________.【答案】k +1【解析】f (k )=1+(1)2k k +,f (k +1)=1+(1)(2)2k k ++,∴f (k +1)-f (k )=(1)(2)(1)1122k k k k +++éùéù+-+êúêúëûëû=k +1,∴f (k +1)=f (k )+(k +1).16.用数学归纳法证明1-12+13―14+…+12n 1―12n =1n 1+1n 2+…+12n 时,第一步应验证的等式是 ;从“n=k ”到“n=k+1”左边需增加的等式是 . 【答案】1-12=12 12k 1―12(k 1)【解析】当n=1时,应当验证的第一个式子是1-12=12,从“n=k ”到“n=k+1”左边需增加的式子是12k 1―12(k 1).四、解答题17.设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).【解析】当n =2时,左边=f (1)=1,右边=2×1112æö+-ç÷èø=1,左边=右边,等式成立.假设n =k (k ≥2,k ∈N *)时,等式成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)1(1)1f k k éù+-êú+ëû-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],∴当n =k +1时等式仍然成立.∴f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).18.已知数列{a n }中,a 1=1,a n +1=1nna a +(n ∈N *).(1)计算a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明.【解析】 (1)a 1=1,a 2=111a a +=12,a 3=221a a +=13,a 4=331a a +=14.(2)由(1)的计算猜想a n =1n.下面用数学归纳法进行证明.①当n =1时,a 1=1,猜想成立.②假设当n =k 时,猜想成立,即a k =1k,那么a k +1=111111k k a k a k k==+++,即当n =k +1时,猜想也成立.根据①②可知,对任意n ∈N *都有a n =1n.19.已知数列{a n }的各项均为正数,且满足a 1=1,a n +1=12a n (4-a n ),n ∈N *.证明a n <a n +1<2(n ∈N *).【解析】①当n =1时,a 1=1,a 2=12a 1(4-a 1)=32,∴a 1<a 2<2,命题正确.②假设n =k 时,有a k <a k +1<2,则n =k +1时,a k +1-a k +2=12a k (4-a k )-12a k +1(4-a k +1)=2(a k -a k +1)-12(a k -a k +1)·(a k +a k +1)=12(a k -a k +1)(4-a k -a k +1).而a k -a k +1<0,4-a k -a k +1>0,∴a k +1-a k +2<0.又a k +2=12a k +1(4-a k +1)=12[4-(a k +1-2)2]<2,∴n =k +1时命题正确.由①②知,对一切n ∈N *都有a k <a k +1<2.20.平面内有n (n ≥2)个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,记这n 个圆的交点个数为f (n ),猜想f (n )的表达式,并用数学归纳法证明.【解析】n =2时,f (2)=2=1×2,n =3时,f (3)=2+4=6=2×3,n =4时,f (4)=6+6=12=3×4,n =5时,f (5)=12+8=20=4×5,猜想f (n )=n (n -1)(n ≥2).下面用数学归纳法给出证明:①当n =2时,f (2)=2=2×(2-1),猜想成立.②假设当n =k (k ≥2,k ∈N *),时猜想成立,即f (k )=k (k -1),则n =k +1时,其中圆O 与其余k 个圆各有两个交点,而由假设知这k 个圆有f (k )个交点,所以这k +1个圆的交点个数f (k +1)=f (k )+2k =k (k -1)+2k =k 2+k =(k +1)[(k +1)-1],即n =k +1时猜想也成立.由①②知:f (n )=n (n -1)(n ≥2).20.已知f (n )=1+312+313+314+L +31n,()g n =32-212n ,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g(n )的大小关系;(2)猜想f (n )与g(n )的大小关系,并给出证明.【解析】(1)当n =1时,f (1)=1,g(1)=1,所以f (1)=g(1);当n =2时,f (2)=98,g(2)=118,所以f (2)<g(2);当n =3时,f (3)=251216,g(3)=312216,所以f (3)<g(3).(2)由(1)猜想: f (n )≤g(n ),用数学归纳法证明.①当n =1,不等式显然成立.②假设当n =k (k ∈N *)时不等式成立,即1+312+313+314+L +31k £32-212k ,则当n =k +1时,f (k +1)=f (k )+31(1)k +£32-212k +31(1)k +22233111122(1)2(1)2(1)k k k k =-+-++++,因为212(1)k +-23112(1)k k ++=332(1)k k ++-212k =32312(1)k k k --+<0,所以f (k +1)<32-212(1)k +=g(k +1).由①②可知,对一切n ∈N *,都有f (n )≤g(n )成立.21.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数.(1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【解析】(1)由题意知:222n nS a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =.当2n =时,21222S a a a a =+=-,解得26a a =.当3n =时,312333S a a a a a =++=-,解得312a a =.(2)猜想:()()*1n a a n N n n =Î+证明:①当1n =时,由(1)知等式成立.②假设当()*1,n k k k N =³Î时等式成立,即()1k a a k k =+,则当1n k =+时,又n nS a na =-则k k S a ka =-,11k k S a ka ++=-,∴()()1111k k k k k a S S a k a a ka +++=-=-+--,即()()1211k k a a k a ka k k k k ++==´=++所以()()()()112111k aa a k k k k +==+++++éùëû,即当1n k =+时,等式成立.结合①②得()1n a a n n =+对任意*n N Î均成立.22.观察下列等式:11=2349++=3456725++++=4567891049++++++=......按照以上式子的规律:(1)写出第5个等式,并猜想第()*n n N Î个等式;(2)用数学归纳法证明上述所猜想的第()*n n N Î个等式成立.【解析】(1)第5个等式为256789101112139++++++++=.第n 个等式为2(1)(2)(32)(21)n n n n n ++++++-=-L ,*n N Î.(2)证明:①当1n =时,等式左边1=,等式右边2(21)1=-=,所以等式成立.②假设n k =时,命题成立,即2(1)(2)(32)(21)k k k k k ++++++-=-L ,则当1n k =+时,(1)[(1)1][(1)2][3(1)2](1)(2)(3)(31)k k k k k k k k ++++++++++-=++++++++L L (1)(2)(32)(31)3(31)k k k k k k k k=++++++-+-+++-L 2222(21)84418(21)[2(1)1]k k k k k k k =-+=-++=+=+-,即1n k =+时等式成立.根据①和②,可知对任意*n N Î等式都成立.。

(完整版)高中数学高考总复习数学归纳法习题及详解

(完整版)高中数学高考总复习数学归纳法习题及详解

高考总复习高中数学高考总复习数学归纳法习题及详解一、选择题1. a n=1,数列 { a n} 的前 n项和为S n,已计算得 S1= 2-1,S2= 3- 1,n+1+ nS3=1,由此可猜想 S n=( )A. n-1B. n+1-1C. n+1-2D. n+2-2[答案 ] B1 2. S k=+k+ 11+k+21+⋯+k+312k( k=1,2,3,⋯ ),那么Sk+1等于 ( )A.S k+1 2( k+1)B.S k+1-2k+11k+1C.S k+1-2k+112k+2D.S k+1+2k+112k+2[答案 ] C[解析 ] S k+1=1+(k+1)+11(k+1)+2+⋯+1=2(k+1)1+k+21 1+⋯+=k+3 2k+ 21+k+11+⋯+k+2 1+2k1 1+-2k+1 2k+21 1=S k+-k+1 2k+11.2k+22+n≤ n+1(n∈N* ),某人的证明过程以下:3.对于不等式 n2+1≤ 1+1,不等式成立 .1°当 n=1时, 12°假设n=k( k∈N * )时不等式成立,即 k2+k< k+1,那么n=k+1时, (k+1)2+ (k+ 1)=2+3k+2< (k2+3k+2)+k+2= (k+2)2=(k+1)+1. k ∴当 n=k+ 1时,不等式成立 .上述证法 ( )A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从 n=k到 n=k+1 的推理不正确[答案 ] D含详解答案高考总复习[解析 ] 没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16⋯⋯那么在表中数字 2021 出现在 ( )A.第 44 行第 75 列B.第 45 行第 75 列C.第 44 行第 74 列D.第 45 行第 74 列[答案 ] D[解析 ] 第 n 行有 2n-1 个数字,前 n 行的数字个数为1+3+5+⋯+(2 n- 1)=n2.∵442=1936,452=2025,且 1936<2021,2025>2021,∴ 2021 在第 45 行.又 2025-2021=15,且第 45 行有 2× 45-1= 89 个数字,∴2021 在第 89-15=74 列,选D.2 建马上,总可推出 f(k5.设f(x)是定义在正整数集上的函数,且 f(x)满足:“当 f (k)≥ k+1)≥ (k+ 1)2 成立〞.那么,以下命题总成立的是 ( )A.假设 f(3) ≥ 9 成立,那么当 k≥ 1时,均有 f(k)≥ k2 成立2 成立B.假设 f(5) ≥ 25 成立,那么当 k≤ 5时,均有 f(k)≥kC.假设 f(7)<49 成立,那么当 k≥ 8时,均有 f(k)> k2 成立2 成立D.假设 f(4) =25 成立,那么当 k≥ 4时,均有 f(k)≥k[答案 ] D[解析 ]对于 A ,f (3)≥ 9,加上题设可推出当 k≥ 3时,均有 f(k)≥ k2 成立,故 A错误.对于 B,要求逆推到比 5 小的正整数,与题设不符,故 B错误.对于 C,没有确立局部,即没有 f(8)≥ 82,故 C错误.对于 D,f(4)=25≥ 42,由题设的递推关系,可知结论成立,应选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将节余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);这样连续下去⋯⋯那么第 n 个图共挖去小正方形 ( )含详解答案高考总复习n-1)个A.(8n+1)个B.(81n-1)个C.7(81n+1)个D. (87[答案 ] C2个⋯⋯第[解析 ] 第 1 个图挖去 1 个,第 2 个图挖去 1+8 个,第 3 个图挖去 1+8+8n-182+⋯+8n-1=个.n 个图挖去 1+8+ 877.观察下式:1+ 3=2221+3+5=31+3+5+7=4221+3+5+7+9=5⋯⋯据此你可归纳猜想出的一般结论为( )A.1+3+5+⋯+ (2n-1)=n2(n∈N*)B.1+3+5+⋯+ (2n+1)=n2(n∈N*)C.1+3+5+⋯+ (2n-1)=(n+1)2( n∈N*)D.1+3+5+⋯+ (2n+1)=(n+1)2( n∈N* )[答案 ] D[解析 ]观察可见第 n 行左边有 n+1 个奇数,右边是 ( n+1)2,应选D.x,f n(x)=f n-1[ f(x)]( n≥ 2,n∈N*),那么f(1) 8.(2021 ·天津滨海新区五校 )假设 f(x)=f1(x)=1+x+f (2)+⋯+ f(n)+f1(1)+ f2(1) +⋯+ f n(1)=( )A.n9B.n+1nC.n+1 D.1[答案 ] A12,f(2)=[解析 ] 易知 f (1)=2 3,f(3)=,⋯,f( n)=3 4n x;由 f n(x)=f n-1(f (x))得,f2(x)=,n+ 1 1+2xx x 1,⋯,f n(x)=,从而 f1(1)=,f2(1)=1+3x 1+ nx 2f3(x)=1 1 1,f3(1)=,⋯,f n(1)=,,3 4 n+1含详解答案高考总复习因此 f(n)+f n (1)=1,故 f(1)+f(2)+⋯ +f(n)+f 1(1)+f 2(1)+⋯ +f n (1)=n.9.(2021 曲· 阜一中 )设f( x)是定义在 R 上恒不为零的函数,且对任意的实数 x ,y ∈R ,1都有 f( x) ·f( y)=f(x +y),假设 a 1= ,a n =f(n)( n ∈N *),那么数列 { a n } 的前 n 项和 S n 的取值范围是2 ( )1 ,2) A .[2B .[1 ,2] 2C .[1 ,1] 21 ,1) D .[2 [答案] D[解析] 由可得a 1=f(1)=1 2 ,a 2=f(2)=f 2(1)=1 2 2,a 3=f(3)=f(2) f ·(1)=f 3(1)=123,⋯ ,a n =f(n)=fn(1)=1 2 n,∴S n =1 + + 2 1 2 2+ 1 2 3+⋯+ 1 2 n = 1 12] 2[1-(2) =1-(1 n, n ,) 1 21-2∵n ∈N *,∴1 2≤ S n <1.10.如图,一条螺旋线是用以下方法画成的: △ABC 是边长为1 的正三角形, 曲线CA 1、 A 1A 2,A 2A 3 是分别以 A 、B 、C 为圆心, AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3 称为 螺旋线旋转一圈.尔后又以 A 为圆心, AA 3为半径画圆弧⋯ ⋯这样画到第 n 圈,那么所得螺旋 线的长度 l n 为( )2+n) π A .(3n2-n +1) π B .(3 n (3 n 2+n)πC.22-n+1)π (3nD.2[答案] A[解析] 由条件知 CA1 , A1A2 , A2A3 ,⋯,A n-1A n对应的中心角都是2π,且半径依32π次为1,2,3,4,⋯,故弧长依次为,3 2π×2,32π 2π×3⋯,据题意,第一圈长度为(1+2+3),3 32π 2π 2π第二圈长度为3 (4+5+6),第 n 圈长度为3 [(3 n-2)+(3n-1)+3n],故 L 3 (1+2+3+⋯n=+3n)=2π3n(1+3n)=(3n2+n) π.·3 2含详解答案高考总复习二、填空题2 3 11. (2021 ·浙江金华十校模考 ) 2+ = 2 2 3, 3+3 8 = 33 8, 4+4 15= 44 a ,⋯ ,假设 6+ =6 15 t a t ,( a ,t 均为正实数 ),类比以上等式,可推测a , t 的值,那么a +t =________.[答案 ] 41[解析 ] 注意分数的分子、分母与整数的变化规律, 2→分子 2,分母 3=22-1,3→分子2-1,4→分子 4,分母 15=42-1,故猜想 a =6,t =62-1= 35,再考据 6+3,分母 8=3 6 35=66成立, ∴a +t = 41. 35n[议论] 一般地, n += n 2-13n=nn 2-1 n,( n ∈N *)成立. n 2- 1a比方,假设 15+ =15ta t成立,那么t +a =239.23+53>22·5+2·5212.观察以下一组不等式:4 4 3 3 +5>2 5 2 5 · + · 25 5 1 1+5 2·5+222 2>2·52 2 2将上述不等式在左右两端仍为两项和的情况下加以实行,使以上的不等式成为实行不等式的特例,那么实行的不等式为 ________________________ .m+ n+b m +n>a m b n +a n b m(a ,b>0,a ≠b , m , n>0) [答案 ] a13.(2021 浙· 江杭州质检)观察以低等式: (x 2+x + 1)0=1; 2+x + 1)1=x 2+x +1; (x(x 2+x + 1)2=x 4+2x 3+3x 2+2x +1;2+x + 1)3=x 6+3x 5+6x 4+7x 3+6x 2+ 3x +1; (x可以推测(x 2+ x +1)4的张开式中,系数最大的项是 ________. [答案 ] 19x 4[解析 ]观察其系数变化规律:2+x+ 1)1为1,1,1(x(x2+x+ 1)2为1,2,3,2,12+x+ 1)3为1,3,6,7,6,3,1 (x故由此可推测(x2+x+ 1)4 系数中最大的为6+7+6= 19,故系数最大项是 19x4. 14.(2021 南·京调研 )五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数含详解答案高考总复习为2,第二位同学首次报出的数为3,此后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,那么第 2021 个被报出的数为________.[答案 ] 4[解析 ] 依照规那么,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3 外,从第三位同学开始报出的数依次按 6,8,8,4,2,8 循环,那么第 2021 个被报出的数为4.[议论] 数字 2021 比较大,不可以能一个一个列出数到第 2021 个数,故隐含了探望其规律性 (周期 )的要求,因此可经过列出局部数,观察可否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.点列 A n(x n,0), n∈N*,其中 x1=0,x2=a(a>0),A3 是线段 A1A2 的中点, A4 是线段 A2A3的中点,⋯ A n 是线段 A n-2A n-1的中点,⋯,(1)写出 x n 与 x n-1、x n-2之间的关系式 (n≥ 3);(2)设a n=x n+1- x n,计算 a1,a2,a3,由此推测数列 { a n} 的通项公式,并加以证明.x n-1+x n-2[解析 ] (1)当 n≥ 3时, x n=2 .(2)a1=x2-x1=a,a2=x3-x2=x2+x1-x2=-212(x2-x1)=-12a,a3=x4-x3=x3+x2-x3=-212(x3-x2)=14a,由此推测a n= (-1n-1a(n∈N*).2)证法 1:由于a1= a>0,且x n+x n x n-1-x n-1-x n=a n=x n+1-x n==-2 2 12(x n-x n-1)=-12a n-1( n≥2),1n-1a.因此 a n=(-)2证法 2:用数学归纳法证明:1(1)当 n=1时, a1=x2-x1=a=(-2)0a,公式成立.1k-1a 成立.那么当 n=k+1时,(2)假设当 n=k时,公式成立,即 a k=(- )2a k+1= x k+2- x k+1=x k+1+ x k- x k+1=-212( x k+1- x k)=-12a k=-12(-1k-1a=(-2)1(k+1)-1a,公2)式仍成立,依照 (1)和(2)可知,对任意 n∈N*,公式 a n=(-1n-1a 成立.)2含详解答案高考总复习16.设数列 { a n }的前 n 项和为S n ,对所有 n ∈N S n *,点 n , n 都在函数 f(x)=x + a n的图象 2x上.(1)求 a 1,a 2, a 3 的值,猜想 a n 的表达式,并用数学归纳法证明;(2)将数列 { a n } 依次按 1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7, a 8,a 9, a 10);( a 11),(a 12, a 13),(a 14,a 15,a 16),(a 17, a 18,a 19, a 20);( a 21),⋯ ,分别计算 各个括号内各数之和,设由这些和按原来括号的前后序次组成的数列为{ b n } ,求 b 5+b 100 的 值.S n [解析 ] (1)将点 n , n a n的坐标代入函数 f(x)=x +中,经过整理获取 S n 与 a n 的关系,2x那么a 1,a 2,a 3 可求;(2)经过观察发现b 100 是第 25组中第 4 个括号内各数之和,各组第 4 个括号中各数之和 组成首项为68、公差为80 的等差数列,利用等差数列求和公式可求 b 100.S n n [解析 ] (1)∵点 n , 在函数 f( x)= x +a n 的图象上, 2x∴ S n =n + n a n 1 ,∴S n =n 2+ 2n2a n .1令 n =1 得, a 1=1+ a 1,∴ a 1=2;21令 n =2 得, a 1+a 2=4+2a2, ∴a 2=4;令 n =3 得, a 1+a 2+a 3=9+1 2a 3, ∴a 3=6.由此猜想: a n =2n. 用数学归纳法证明以下:①当 n =1时,由上面的求解知,猜想成立. ②假设n =k(k ≥ 1)时猜想成立,即 a k =2k 成立,那么当 n =k + 1时,注意到 S n = n 2+1n( n ∈N *), 2a故 S k +1=(k +1)2+1 1 a k a k .+1,S k =k2++1,S k =k2+2 21 1两式相减得, a k+1= 2k+1+k,因此 a k+1=4k+2-a k.2a k+1-2a由归纳假设得, a k=2k,故 a k+1=4k+2-a k=4k+2-2k=2(k+1).这说明 n=k+1时,猜想也成立.由①②知,对所有 n∈N*,a n=2n 成立.(2)由于a n= 2n(n∈N*),因此数列 { a n} 依次按 1项、2项、3项、4项循环地分为(2),(4,6),含详解答案高考总复习(8,10,12) ,(14,16,18,20); (22),(24,26), (28,30,32),(34,36,38,40) ;(42),⋯ .每一次循环记 为一组.由于每一个循环含有 4 个括号,故 b 100 是第 25组中第 4 个括号内各数之和.由分 组规律知,各组第 4 个括号中所有第 1 个数组成的数列是等差数列,且公差为20.同理,由 各组第 4 个括号中所有第 2 个数、所有第 3 个数、 所有第 4 个数分别组成的数列也都是等差 数列,且公差均为20.故各组第 4 个括号中各数之和组成等差数列, 且公差为80.注意到第一 组中第 4 个括号内各数之和是 68,因此 b 100=68+24× 80=1988, 又 b 5=22,因此 b 5+b 100=2021.[议论] 由求出数列的前几项,做出猜想,尔后利用数学归纳法证明,是不完满归 纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的要点是依照已 知条件和假设搜寻 a k 与 a k+1或 S k 与 S k +1间的关系,使命题得证.n= a 0+ a 1(x -1)+a 2(x -1)2+ a 3(x -1)3+⋯ + a n (x - 17. (2021 南· 京调研 ): (x + 1) 1) n (n ≥ 2,n ∈N *).(1)当 n =5时,求 a 0+a 1+a 2+a 3+a 4+a 5 的值.(2)设b n =a 2n -3, T n = b 2+ b 3+ b 4+⋯ + b n .试用数学归纳法证明:当 n ≥ 2时, T n = 2n(n +1)( n -1).3[解析 ] (1)当 n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+ a 3(x - 1)3+a 4(x -1)4+ a 5(x -1)5令 x =2 得 a 0+a 1+a 2+a 3+a 4+ a 5=35=243.-2n=[2+(x -1)]n ,因此 a 2=C n 2·2n(2)由于(x +1)b n = a 2n -3=2C n2=n(n -1)(n ≥ 2)2①当 n =2时.左边= T 2=b 2=2, 2(2+1)(2-1)右边= =2,左边=右边,等式成立.3 ②假设当 n =k(k ≥ 2,k ∈N *)时,等式成立,即 T k =k (k +1)(k -1)成立3 那么,当 n =k +1时,k(k +1)( k -1) 左边= T k +b k +1=3k(k +1)(k -1) +(k +1)[( k +1)-1]= +k(k +1)3=k( k +1)k -1 +1 = 3k (k +1)(k +2)3=(k +1)[( k +1)+1][( k +1)-1] =右边.3含详解答案高考总复习故当 n=k+1 时,等式成立.n( n+1)( n-1)综上①②,当 n≥2 时,T n=3 .含详解答案。

(完整版)数学归纳法测试题及答案

(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。

(完整版)数学归纳法练习题

(完整版)数学归纳法练习题

2.3数学归纳法第1课时数学归纳法1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取().A.2 B.3 C.5 D.6解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.答案 C2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+),验证n=1时,左边应取的项是().A.1 B.1+2C.1+2+3 D.1+2+3+4解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.答案 D3.设f(n)=1+12+13+…+13n-1(n∈N+),那么f(n+1)-f(n)等于().A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析∵f(n)=1+12+13+…+13n-1,∵f(n+1)=1+12+13+…+13n-1+13n+13n+1+13n+2,∴f(n+1)-f(n)=13n+13n+1+13n+2.答案 D4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)25.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.答案π6.用数学归纳法证明:1 1×2+13×4+…+1(2n-1)·2n=1n+1+1n+2+…+1n+n.证明(1)当n=1时,左边=11×2=12,右边=12,等式成立.(2)假设当n=k(k∈N*)时,等式成立,即1 1×2+13×4+…+1(2k-1)·2k=1k+1+1k+2+…+12k.则当n=k+1时,1 1×2+13×4+…+1(2k-1)·2k+1(2k+1)(2k+2)=1k+1+1k+2+…+12k+1(2k+1)(2k+2)=1k+2+1k+3+…+12k+⎝⎛⎭⎪⎫12k+1-12k+2+1k+1=1k+2+1k+3+…+12k+12k+1+12k+2=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+1(k+1)+(k+1).即当n=k+1时,等式成立.根据(1)(2)可知,对一切n∈N*,等式成立.7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有().A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.答案 C8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为().A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.答案 B9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N+)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时等式也成立.因此对于任何n∈N+等式都成立.__________________.答案缺少步骤归纳奠基,实际上当n=1时等式不成立10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.解析当n=k时,左端为:(1+1)(2+2)…(k+k),当n =k +1时,左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。

【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。

高中数学选择性必修二 精讲精炼 4 4 归纳法(精练)(含答案)

高中数学选择性必修二 精讲精炼 4 4 归纳法(精练)(含答案)

4.4 数学归纳法(精练)【题组一 增项问题】1.(2021·全国高二课时练习)用数学归纳法证明等式(1)(2)()213(21)n n n n n n ++⋅⋅+=⋅⋅⋅⋅-()N n *∈,从k 到1k +左端需要增乘的代数式为( ) A .21k + B .()221k + C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,左端为()()()1232k k k k +++⋅⋅⋅当1n k =+时,左端为()()()()2322122k k k k k ++⋅⋅⋅+⋅+因为()()()()()()()()23221221232221k k k k k k k k k k ⎡⎤++⋅⋅⋅+⋅+=+++⋅⋅⋅⋅+⎣⎦所以从k 到1k +左端需要增乘的代数式为()221k +,故选:B. 2.(2021·全国高二专题练习)用数学归纳法证明“1+a +a 2+…+a 2n +1=221(1)1n a a a+-≠-”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2 C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4【答案】C【解析】由21n a +知,当1n =时,等式的左边是231a a a +++.故选:C.3.(2021·全国)用数学归纳法证明“当n 为正奇数时,n n x y +能被x y +整除”时,第二步归纳假设应写成( )A .假设当()*21n k k N=+∈时成立,再推出当23n k =+时成立B .假设当()*21n k k N =-∈时成立,再推出当21n k =+时成立C .假设当()*n k k N =∈时成立,再推出当1n k =+时成立D .假设当()1n k k =≥时成立,再推出当2n k =+时成立 【答案】B【解析】第二步假设当()*21n k k =-∈N 时成立,再推出当()21121n k k =+-=+时成立.故选:B.4.(2021·全国高二课时练习)用数学归纳法证明()1111N ,22321nn n n *++++<∈≥-时,第一步需要验证的不等式是( ) A .1122+< B .111223++<C .111323++<D .11113234+++<【答案】B【解析】因为2n ≥,由数学归纳法可知:第一步需要证明2n =时该不等式成立, 所以第一步需要验证的不等式是111223++<,故选:B.5.(2021·全国高二课时练习)用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+(1)2n n -d 时,假设当n =k 时,公式成立,则S k =( ) A .a 1+(k -1)d B .1()2k k a a + C .ka 1+(1)2k k -d D .(k +1)a 1+(1)2k k + d 【答案】C【解析】假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+(1)2k k -d . 故选: C6(2021·杭州市实验外国语学校高中部高二期中)用数学归纳法证明:11112321n n ++++<-,(*,1)n n ∈>N 时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是( ) A .2k B .21k - C .12k - D .21k +【答案】A【解析】从n k =到1n k =+成立时,左边增加的项为1111,,,22121k k k ++-,因此增加的项数是121212k k k +--+=,故选A .7.(2021·全国)用数学归纳法证明:()()()()1121321126n n n n n n n ⨯+⨯-+⨯-++⨯=++,当n k =时,左式为()f k ,当1n k =+时,左式为()1f k +,则()()1f k f k +-应该是( )A .()11k ⨯+B .()1231k +++++C .123k ++++D .()2k k ⨯-【答案】B【解析】由题意,()12(1)3(2)4(3)...1=⋅+-+-+-++⋅f k k k k k k ,()11(1)23(1)4(2)...2(1)1+=⋅+++-+-++⋅++⋅f k k k k k k k ,所以()()11[(1)]2[(1)]3[(1)(2)]4[(2)(3)]...(21)(1)1+-=⋅+-+⋅--+⋅---+⋅---++⋅-++⋅f k f k k k k k k k k k k k 123...(1)=++++++k k .故选:B.8.(2021·陕西省黄陵县中学高二月考(理))用数学归纳法证明“1111(2)2321n n n ++++<≥-”时,由n k =的假设证明1n k =+时,不等式左边需增加的项数为( ) A .12k - B .21k -C .2kD .21k +【答案】C【解析】当n k =时,左边11112321k =++++-, 当1n k =+时,左边11111111123212222121k k k k k ++=+++++++++-+-,所以左边增加111112212221k k k k +++++++-分母是连续的正整数所以共增加了1(21)212222k k k k k +--+=⨯-=项所以n k =的假设证明1n k =+时,不等式左边需增加的项数为2k 故选:C9.(2021·全国)用数学归纳法证明1+a +a 2+…+a n =1n(a ≠1,n ∈N *),在验证n =1时,左边计算所得的式子是( ) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 3 【答案】B【解析】当n =1时,左边计算得出1a +故选:B10.(2021·河南信阳高中高二月考(理))用数学归纳法证明242123,2n n n n N *++++⋅⋅⋅+=∈,则当1n k =+时,左端应在n k =的基础上加上( ) A .21k +B .()21k +C .()()()222121k k k +++⋅⋅⋅++D .()()24112k k +++【答案】C【解析】当n k =时,等式左端为2123k +++⋅⋅⋅+,当1n k =+时,等式左端为()()()2222123121k k k k +++⋅⋅⋅++++++⋅⋅⋅++,∴左端应在n k =的基础上加上()()()222121k k k ++++⋅⋅⋅++.故选:C.11(2021·全国高二课时练习)用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从“n=k ”到“n=k+1”,左边需增添的代数式是( ) A .(2k+1)+(2k+2) B .(2k-1)+(2k+1) C .(2k+2)+(2k+3) D .(2k+2)+(2k+4)【答案】C【解析】当n=k 时,左边是共有2k+1个连续自然数相加,即1+2+3+…+(2k+1), 所以当n=k+1时,左边共有2k+3个连续自然数相加, 即1+2+3+…+(2k+1)+(2k+2)+(2k+3). 所以左边需增添的代数式是(2k+2)+(2k+3). 故选:C12.(2021·全国高二课时练习)用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k + B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++【答案】D【解析】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D .13.(2021·全国)用数学归纳法证明下列等式:()()()()()()()()122135712112112312nn n n n n n n +++-+-++⋯+--+-++-+=-+.要验证当1n =时等式成立,其左边的式子应为( ) A .1- B .13-+ C .135-+- D .1357-+-+【答案】C 【解析】由题意,当1n =时, 左边1213(1)(213)+=-+++-⨯+135=-+-故选:C14.(2021·全国高二课时练习)用数学归纳法证明不等式11111123422n n-++++>-(*,2n N n ∈≥)时,以下说法正确的是( )A .第一步应该验证当1n =时不等式成立B .从“n k =到1n k =+”左边需要增加的代数式是12kC .从“n k =到1n k =+”左边需要增加2k 项D .从“n k =到1n k =+”左边需要增加的代数式是1111121222k k k--+++++ 【答案】D【解析】第一步应该验证当2n =时不等式成立,所以A 不正确; 因为11111111111111()2342234221222k k k k k---++++-++++=++++, 所以从“n k =到1n k =+”左边需要增加的代数式是1111121222k k k--+++++,所以B 不正确; 所以从“n k =到1n k =+”左边需要增加12k -项,所以C 不正确. 故选:D.【题组二 等式的证明】1.(2021·全国高二课时练习)用数学归纳法证明:22212(1)1335(21)(21)2(21)n n n n n n ++++=⨯⨯-++. 【答案】见解析【解析】(1)当1n =时,左边=211133=⨯,右边=213213⨯⨯=,等式成立, (2)假设当n k =时,等式成立,即22121335+⨯⨯+…+()()22121k k k -+=()()1221k k k ++, 当1n k =+时,22121335+⨯⨯+…+()()22121k k k -++()()()221123k k k +++ ()()()()()2121212123k k k k k k ++++=++1121223k k k k k ++⎛⎫=+ ⎪++⎝⎭()()()221121223k k k k k +++=⋅++ ()()()1112211k k k +++⎡⎤⎣⎦=++⎡⎤⎣⎦,即当1n k =+时等式也成立.,由(1)(2)可知:等式对任何*n N ∈都成立, 故22212(1)1335(21)(21)2(21)n n n n n n ++++=⨯⨯-++. 2.(2021·全国)用数学归纳法证明: (1)()213521n n +++⋯+-=;(2)21122221n n -++++=-;(3)233331123(1)2n n n ⎡⎤++++=+⎢⎥⎣⎦.【答案】(1)证明见解析;(2) 证明见解析;(3) 证明见解析. 【解析】(1)当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即()213521k k +++⋯+-=,则当1n k =+时,()()()()221352121211k k k k k +++⋯+-+++==++, 故1n k =+时等式成立,综上可知,等式()213521n n +++⋯+-=成立.(2) 当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即21122221k k -++++=-,则当1n k =+时,()1121222221222211k k k k k k +-++++=-=⨯-=++-,故1n k =+时等式成立, 综上可知,等式21122221n n -++++=-成立.(3) 当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即233331123(1)2k k k ⎡⎤++++=+⎢⎥⎣⎦,则当1n k =+时,()()()2333333221123111(1)1124k k k k k k k k ⎡⎤+++++=+++⎢⎛⎫++=++⎣⎪⎦ ⎝⎥⎭()()()()()22222111111212222k k k k k k ⎛⎫++++++ ⎪⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ ,故1n k =+时等式成立, 综上可知,等式233331123(1)2n n n ⎡⎤++++=+⎢⎥⎣⎦成立.【题组三 不等式的证明】1.(2021·全国高二课时练习)证明:不等式()*11111123422n n n N -+++++>∈,恒成立. 【答案】证明见解析. 【解析】当1n =时,112>成立 假设n k =时,不等式11111123422k k-++++⋯+>成立那么1n k =+时111111111111112342212222212k k k k k kk ----++++⋯+++++>++++++ 111212k k ->+,111222k k ->+,,1122k k=11111111111211234221222222k k k k k k k k ----+∴++++⋯+++++>+=++ 即1n k =+时,该不等式也成立综上:不等式()*11111123422n n n N -++++⋯+>∈,恒成立.2(2021·全国高三专题练习)证明:对于一切自然数1n ≥都有222n n +>.【答案】证明见解析【解析】(1)当1n =时,1222411+=>=,成立; 当2n =时,2222624+=>=,成立; 当3n =时,32221039+=>=,成立.(2)假设当(3,)n k k k =≥∈N 时不等式成立,即222k k +>,222k k >-, 当1n k =+时,()12222(1)22221k k k k k ++-+=⋅+-++()()2222222123(3)(1)k k k k k k k >-+-++=--=-+.因为3k ≥,即(3)(1)0k k -+≥, 所以1222(1)0k k ++-+>,即当1n k =+时,1222(1)k k ++>+时仍成立. 由(1)(2)所述,原不等式得证.3.(2021·全国高三专题练习)证明不等式1(n ∈N *).【答案】证明见解析【解析】当n =1时,左边=1,右边=2,左边<右边,不等式成立.假设当n =k (k ∈N *)时,不等式成立,即1< 当n =k +1时,1+<==所以当n =k +1时,不等式成立. 综上,原不等式对任意n ∈N *都成立.4.(2021·全国高二课时练习)用数学归纳法证明:1111123421++++⋯+≤-nn . 【答案】证明见解析;【解析】(1)当1n =时,左边1=,右边1=,不等式成立.(2)假设当n k =,*k N ∈时,不等式成立,即有1111123421kk ++++⋯+≤-,则当1n k =+时,左边=1111123421k ++++⋯+-112111221k k k ++⋯+++-+ k ≤+111122121k k k +++⋯++-, 又111122121k k k +++⋯++-1212k k <⋅= 即1111123421k ++++⋯+-112111221k k k ++⋯+++-+1k ≤+, 即当1n k =+时,不等式也成立.综上可得,对于任意*n N ∈,1111123421++++⋯+≤-nn 成立. 5.(2021·全国高二课时练习)试用数学归纳法证明2221111123(1)22n n ++⋯+>-++. 【答案】证明见解析【解析】(1)当1n =时,左边=14,右边=16,不等式成立;(2)假设当()*n k k N =∈时,原不等式成立,即2221111123(1)22k k ++⋯+>-++,当1n k =+时,22222111111123(1)(2)22(2)k k k k ++⋯++>-+++++ ∵()222111111111022(2)2332(2)3(2)k k k k k k k k ⎛⎫-+--=-+=> ⎪++++++++⎝⎭ ∴21111122(2)23k k k -+>-+++.即222211111123(1)(2)23k k k ++⋯++>-+++, 所以,当1n k =+时,不等式也成立.根据(1)和(2)可知,不等式对任意正整数都成立,故原不等式成立. 6.(2021·全国高二课时练习)用数学归纳法证明1+2n ≤1+111232n +++≤12+n (n ∈N *). 【答案】见解析【解析】(1)当n =1时,≤1+≤,命题成立.(2)假设当n =k (k ∈N *)时命题成立,即1+≤1+++…+≤+k , 则当n =k +1时, 1+++…++++…+>1++2k ·=1+.又1+++…++++…+<+k +2k ·=+(k +1),即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.【题组四 数列的证明】1.(2021·全国高二课时练习)已知数列{a n }满足:11a =,点*1(,)()n n a a n N +∈在直线21y x =+上.(1)求234,,a a a 的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)23a =,37a =,415a =;21nn a =-;(2)证明见解析.【解析】(1)点*1(,)()n n a a n N +∈在直线21y x =+上可知,数列{}n a 满足: 121n n a a +=+,11a =,2343,7,15a a a ∴===.可猜得21n n a =-.(2)当1n =时,1211a =-=成立,假设当(1,)n k k k N =≥∈时,21kk a =-成立,则当1n k =+时,11212(21)121k k k k a a ++=+=-+=-成立,就是说*n N ∈,猜想正确;综上,21nn a =-.2(2021·河北曹妃甸一中高二期中)已知数列{}n a 的前n 项和为n S ,其中(21)n n S a n n =-且113a =.(1)求23,a a ;(2)猜想数列{}n a 的通项公式,并证明.【答案】(1)2115a =,3135a =,;(2)猜想1(21)(21)n a n n =-+,证明见解析.【解析】(1)由题意,数列{}n a 满足(21)n n S a n n =-,且113a =,可得21222(221)6S a a a +==⋅⨯-, 即2111515a a ==,又由312333(231)15S a a a a ++==⨯⨯-,可得31261415a a a =+=,可得3135a =. (2)由113a =,2115a =,31,35a =,猜想:1(21)(21)n a n n =-+,证明:当1n =时,由(1)可知等式成立; 假设n k =时,猜想成立,即1(21)(21)k a k k =-+,当1n k =+时,由题设可得11,(21)(1)(21)k k k k S S a a k k k k ++==-++, 所以1(21)(21)(21)(21)21k k k S k k a k k k k k -=-⋅=-++=, ()()11121k k S k k a ++=++, 又由111(1)(21)21k k k k k a S S k k a k +++=-=++-+,所以1(23)21k k k k a k ++=+, 所以()()()()1112123211211k a k k k k +==++⎡⎤⎡⎤+-++⎣⎦⎣⎦, 即当1n k =+时,命题也成立, 综上可得,命题1(21)(21)n a n n =-+对任意n *∈N 都成立. 3.(2021·安徽金安·六安一中高二月考(理))已知数列{}n a 的前n 项和n S ,满足1122n n n a S a =+-,且0n a >. (1)求1a 、2a 、3a ;(2)猜思{}n a 的通项公式,并用数学归纳法证明.【答案】(1)11a =,2a =32a =(2)猜想n a n *∈N ,证明见解析.【解析】(1)对任意的n *∈N ,1122n n n a S a =+-,且0n a >. 当1n =时,11111122a a S a ==+-,整理得211210a a +-=,且0n a >,所以11a ; 当2n =时,221221122a S a a a =+=+-,整理得22210a +-=,且0n a >,所以2a = 当3n =时,3312331122a S a a a a =++=+-,整理得23310a +-=,且0n a >,所以32a = (2)由(1)猜想n a n *∈N ,下面用数学归纳法加以证明:①当1n =时,由(1)知11a 成立;②假设当()n k k *=∈N时,k a = 当1n k =+时,11111111111222222k k k k k k k k k a a a a S S a a a ++++++⎛⎫⎛⎫=-=+--+-=+ ⎪ ⎪⎝⎭⎝⎭,所以21110k k a +++-=,且10k a +>,所以1k a +=1n k =+时猜想也成立.综上可知,猜想对一切n *∈N 都成立.4.(2021·全国高二课时练习)已知数列{}n a 的前n 项和为n S ,214a =,且()1*1122n n n a S n N n -⎛⎫=+-∈ ⎪⎝⎭. (1)求12S 、24S 、38S ; (2)由(1)猜想数列2n n S ⎧⎫⎨⎬⎩⎭的通项公式,并用数学归纳法证明. 【答案】(1)112S =,244S =,398S =;(2)()2*2n n S n n N =∈,证明见解析. 【解析】(1)()1*1122n n n a S n n -⎛⎫=+-∈ ⎪⎝⎭N , 当1n =时,1111112a S S ⎛⎫==+- ⎪⎝⎭,解得12S =,即有112S =; 当2n =时,22121121422a S S S ⎛⎫=-=+-= ⎪⎝⎭,解得216S =,则244S =; 当3n =时,2332311223a S S S ⎛⎫=-=+- ⎪⎝⎭,解得372S =,则398S =; (2)由(1)猜想可得数列2n n S ⎧⎫⎨⎬⎩⎭的通项公式为()2*2n n S n n =∈N . 下面运用数学归纳法证明.①当1n =时,由(1)可得112S =成立; ②假设()*n k k N =∈,22k k S k =成立, 当1n k =+时,1111111221k k k k k a S S S k +-+++⎛⎫=-=+- ⎪+⎝⎭, 即有()221112221221k k k k k k S S k k k +⎛⎫-=-=-=-⋅ ⎪+⎝⎭⋅, 则()()()1111221k k k S k k k +-=+-⋅+, 当1k =时,上式显然成立;当1k >时,()()221121212k k k S k k ++=+⋅=+⋅,即()21112k k S k ++=+, 则当1n k =+时,结论也成立.由①②可得对一切*n ∈N ,22n n S n =成立. 5.(2021·全国)猜想满足1a a =,1121n n n a a a ++-=的数列{}n a 的通项公式,并用数学归纳法证明你的结论.【答案】1(2)(1)n n n aa n n a ---=--,证明见解析【解析】由1121n n n a a a ++-=可得112n na a +=-, 得211122a a a ==--, 32112123222a a a a a-===----,4311322243232a a a a a a -===-----. 推测1(2)(1)n n n aa n n a ---=--.下面用数学归纳法证明:①当1n =时,左边1a a ==, 右边11(12)1(11)a a a ---==--,结论成立.②假设(*)n k n N =∈时等式成立, 有1(2)(1)k k k a a k k a ---=--,则当1n k =+时,111(1)1(2)212(1)k k k k a a k k a a k ka k k a +--===----+----故当1n k =+时,结论也成立.由①②可知,对任何*n N ∈都有1(2)(1)n n n a a n n a ---=--.【题组五 整除问题】1.(2021·陕西渭滨·(理))用数学归纳法证明:对任意正整数,4151n n n +-能被9整除.【答案】见解析【解析】证明:(1)当1n =时,4151n n +-18=,能被9整除,故当1n =时, 4151n n +-能被9整除.(2)假设当n k =时,命题成立,即4151k k +-能被9整除,则当1n k =+时,()1415(1)1441519(52)k k k k k +++-=+---也能被9整除.综合(1)(2)可得, 对任意正整数,4151n n n +-能被9整除.2.(2021·陕西碑林·西北工业大学附属中学高二月考(理))用数学归纳法证明:()21243n n n N ++++∈能被13整除.【答案】证明见解析.【解析】当1n =时,3343642791+=+=,又13791⨯=,∴()21243n n n N ++++∈能被13整除; 假设当n k =时,21243k k +++能被13整除,即()2124133k k m m N +++=∈+,那么当1n k =+时,21123321111643314364163133k k k k k k k +++++++=⨯+⨯=⨯+⨯-⨯+()()2111111643133161313313163k k k k k m m +++++=⨯+-⨯=⨯-⨯=-能被13整除;综上所述:()21243n n n N ++++∈能被13整除.3(2021·河南高二月考(理))用两种方法证明:()33*278n n n +--∈N 能被49整除.【答案】证明见解析. 【解析】证明:方法一:331278878n n n n ++--=--01112111111C 7C 7C 7C 7C 78n n nn n n n n n n n +-++++++=+++++--01112111C 7C 7C 77(1)178n n nn n n n n +-+++=++++++--()0111201121111111C 7C 7C 7C 7C 7C 49n n n n n n n n n n n n +----+++--+=+++=+++⨯因为01121111C 7C 7C n n nn n n ---++++++为整数,所以33278n n +--能被49整除.方法二:(1)当1n =时,33278641549n n +--=-=,能被49整除.(2)假设当(1)n k k =≥,33278k k +--能被49整除,那么,当(1)1n k k =+≥,()3(1)33333327(1)822715827849(1)k k k k k k k ++++-+-=⨯--=--++. 因为33278k k +--能被49整除,()491k +也能被49整除,所以()313)2718k k <++-+-能被49整除,即当(1)1n k k =+≥时命题成立,由(1)(2)知,()33*278n n n +--∈N 能被49整除.4.(2020·上海高二课时练习)求证:对于自然数*212,43n n n N ++∈+能被13整除.【答案】证明见解析;【解析】当1n =时,3343642791+=+=,91能被13整除.假设当*,n k n N =∈时结论成立,即21243k k +++能被13整除.则当1n k =+时,()21222122121114433444333k k k k k k ++++++++=⋅+⋅-⋅+⋅+()21221443331k k k +++=+⋅+⋅,由于21243k k +++能被13整除,所以()2111243k k +++++能被13整除. 所以当1n k =+时,结论成立.综上所述,对于自然数*212,43n n n N ++∈+能被13整除.5.(2022·上海高三专题练习)求证:当*n ∈N ,且2n 时,1(1)--+-n n n a nab n b 能被2()a b -整除.【答案】证明见解析;【解析】证明:当2n =时,原式为2222()a ab b a b -+=-,显然能被2()a b -整除,假设当(2)n k k =时1(1)k k k a kab k b --+-能被2()a b -整除,设上式除以2()a b -所得的商为r ,则12(1)()k k k a kab k b r a b --+-=-12(1)()k k k a kab k b r a b -∴=--+-1212(1)()k k k a ka b k ab r a b a +-∴=--+-因而11(1)k k k a k ab kb ++-++2121(1)()(1)k k k k ka b k ab r a b a k ab kb ++=--+--++122()()k kb a b r a b a -=-+-12()()k ra kb a b -=+-,∴当1n k =+时命题成立,∴当*n N ∈,且2n 时,1(1)--+-n n n a nab n b 能被2()a b -整除.6.(2022·上海高三专题练习)证明(31)71+-n n 能被9整除()*n ∈N .【答案】证明见解析;【解析】证明(1)当1n =时,(31)71(31)7127+-=+⨯-=n n 是9的倍数.命题成立.(2)假设当n k =时,命题成立,即(31)71+-k k 能被9整除.那么当1n k =+时,1[3(1)1]71(2128)71+++-=+⋅-k k k k(31)71(1827)7=+⋅-++⋅k k k k由假设(31)71k k +⋅-能被9整除,(1827)7(23)79k k k k =+⋅+⋅⋅能被9整除.所以(31)71(1827)7k k k k +⋅-++⋅能被9整除.即1n k =+是命题也成立.(3)根据(1),(2)可知()3171n n +-能被9整除.7.(2021·全国高二课时练习)用数学归纳法证明:1211112n n +-+能被133整除 ()*n N∈.【答案】见解析 【解析】证明: ①当1n =时,121211*********n n +-+=+=能被133整除,所以 1n =时结论成立,. ②假设当()*n k k N =∈时,1211112k k +-+能被133整除,那么当1n k =+时, 2211212111211111212k k k k +++-+=⨯+⨯121212121111121112111212k k k k +---=⨯+⨯-⨯+⨯()1212111111213312k k k +--=⨯++⨯.由归纳假设可知()1212111111213312k k k +--⨯++⨯能被133整除,即 2211112k k +++能被133整除.所以1n k =+时结论也成立综上,由①②得,1211112n n +-+能被133整除.。

数学归纳法一(讲解,练习及答案)

数学归纳法一(讲解,练习及答案)

数学归纳法⼀(讲解,练习及答案)数学归纳法(Ⅰ)数学归纳法的定义:⼀般地,证明⼀个与正整数n有关的命题,可按下列步骤进⾏:(1)(归纳奠基)证明当n取第⼀个值n0时,命题成⽴;(2)(归纳递推)假设时,命题成⽴,证明当时,命题也成⽴.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成⽴.其证明的⽅法叫做数学归纳法.说明:1、适⽤范围:常⽤来证明与⾃然数有关的命题.2、归纳奠基与归纳递推这两步缺⼀不可.(1)缺少第⼆步归纳递推致错举例:例如:⼀个数列的通项公式是,容易验证,如果由此作出结论对于任何,都成⽴,那就是错误的,事实上.可见,只有归纳奠基,⽽没有归纳递推得到的结论是靠不住的.(2)缺少第⼀步归纳奠基致错举例:例如:证明等式时,假设n=k时等式成⽴,即.那么.这就是说当时等式也成⽴.但是当n=1时,左边=2,右边=3,显然等式不成⽴.3、起始值n0不⼀定等于1.4、注意从k到k+1的跨度,即k到k+1增加了多少项.例1、⽤数学归纳法证明:n∈N*时,证明:(1)当n=1时,左边==,右边===左边,所以等式成⽴.(2)假设当n=k(k∈N*)时等式成⽴,即有++…+=,则当n=k+1时,++…++=+====所以当n=k+1时,等式也成⽴.∴由(1)(2)得等式成⽴.例2、试证:当n为正整数时,能被64整除.证明:(1)当n=1时,f(1)=34-8-9=64,能被64整除.(2)假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.当n=k+1时,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9×8k+9×9-8(k+1)-9=9(32k+2-8k-9)+64(k+1).即f(k+1)能被64整除.∴由(1)(2)得所求证成⽴.例3、平⾯内有n个圆,其中每两个圆都交于两点,且⽆三个圆交于⼀点,求证:这n个圆将平⾯分成n2-n+2个部分.证明:(1)当n=1时,1个圆将平⾯分成2个部分,显然结论成⽴.(2)假设当n=k(k∈N*)时,k个圆将平⾯分成k2-k+2个部分.当n=k+1时,第k+1个圆交前⾯k个圆于2k个点,这2k个点将圆分成2k段,每段将各⾃所在区域⼀分为⼆,于是增加了2k个区域,所以这k+1个圆将平⾯分成k2-k+2+2k个部分,即(k+1)2-(k+1)+2个部分.故n=k+1时,结论成⽴.∴由(1),(2)可知所求证成⽴.例4、数列{b n}的通项为,证明:对任意的,不等式成⽴.证明:(1)当n=1时,左边=,右边==左边(备注:视频中书写有误),∴结论成⽴.(2)假设当n=k时,不等式成⽴,即成⽴.当n=k+1时,左边所以当n=k+1时,不等式也成⽴.∴由①、②可得不等式恒成⽴.练习:⼀、选择题1、设f(n)=+++…+(n∈N*),那么f(n+1)-f(n)等于()A.B.C.+D.-2、凸n边形有f(n)条对⾓线,则凸n+1边形有对⾓线条数f(n+1)为()A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-23、⽤数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为()A.2k+1 B.2(2k+1)C.D.4、⽤数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成⽴,推证n=k+1时,左边应增加的项数是()A.2k-1B.2k-1C.2k D.2k+1⼆、填空题5、⽤数学归纳法证明:“++…+≥1(n∈N*)”时,在验证初始值不等式成⽴时,左边的式⼦应是“__________”.三、解答题6、⽤数学归纳法证明:对任意的n∈N*,1-+-+…+-=++…+.、7、⽤数学归纳法证明(3n+1)·7n-1(n∈N*)能被9整除.8、⽤数学归纳法证明:1+++…+≥(n∈N*).9、平⾯内有n条直线,其中⽆任何两条平⾏,也⽆任何三条共点,求证:这n条直线把平⾯分割成(n2+n+2)块.10、求证:.参考答案:1、D解析:f(n+1)-f(n)=++…+++-(++…+)=+-=-.2、C解析:由n边形到n+1边形,增加的对⾓线是增加的⼀个顶点与原n-2个顶点连成的n-2条对⾓线,以及原先的⼀条边成了对⾓线.3、B解析:当n=1时,显然成⽴.当n=k时,左边=(k+1)(k+2)·…·(k+k),当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k)(k+1+k+1)=(k+2)(k+3)·…·(k+k)(k+1+k)(k+1+k+1)=(k+1)(k+2)·…·(k+k)=(k+1)(k+2)·…·(k+k)2(2k+1).4、C解析:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.5、++6、(1)当n=1时,左边=1-===右边,∴等式成⽴.(2)假设当n=k(k≥1,k∈N*)时,等式成⽴,即1-+-+…+-=++…+.则当n=k+1时,1-+-+…+-+-=++…++-=++…+++(-)=++…+++,即当n=k+1时,等式也成⽴,所以由(1)(2)知对任意的n∈N*等式成⽴.7、证明:(1)当n=1时,4×7-1=27能被9整除,命题成⽴.(2)假设n=k (k≥1,k∈N*)时命题成⽴,即(3k+1)·7k-1能被9整除.当n=k+1时,[(3k+3)+1]·7k+1-1=(3k+1+3)·7·7k-1=7·(3k+1)·7k-1+21·7k=[(3k+1)·7k-1]+18k·7k+6·7k+21·7k=[(3k+1)·7k-1]+18k·7k+27·7k,由归纳假设(3k+1)·7k-1能被9整除,⼜因为18k·7k+27·7k能被9整除,所以[3(k+1)+1] ·7k+1-1能被9整除,即n=k+1时命题成⽴.由(1)(2)知,对所有的正整数n,命题成⽴.9、证明:(1)当n=1时,1条直线把平⾯分成2块,⼜(12+1+2)=2,命题成⽴.(2)假设n=k,k≥1时命题成⽴,即k条满⾜题设的直线把平⾯分成(k2+k+2)块,那么当n=k +1时,第k+1条直线被k 条直线分成k+1段,每段把它们所在的平⾯块⼜分成了2块,因此,增加了k +1个平⾯块.所以k+1条直线把平⾯分成了(k2+k+2)+k+1=[(k+1) 2+(k+1)+2]块,这说明当n=k+1时,命题也成⽴.由(1)(2)知,对⼀切n∈N*,命题都成⽴.10、证明:(1)当n=1时,左边=,不等式成⽴.(2)假设n=k时命题成⽴,即,则当n=k+1时,=()++>1+=1+.这就是说,当时,不等式成⽴.由(1)(2)知原不等式成⽴.。

高中数学选修2-2 同步练习 专题2.3 数学归纳法(原卷版)

高中数学选修2-2 同步练习 专题2.3 数学归纳法(原卷版)

第二章 推理与证明2.3 数学归纳法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用数学归纳法证明“凸n 边形的内角和S =(n -2)π对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 A .2 B .3 C .4D .52.已知为正偶数,用数学归纳法证明时,若已假设,且为偶数时命题为真,则还需要用归纳假设再证 A .时等式成立 B .时等式成立C .时等式成立D .时等式成立 3.用数学归纳法证明“”,则当时,应当在时对应的等式的两边加上 A .B .C .D .4.设()()*111122f n n n n n=++⋅⋅⋅+∈++N ,那么()()1f n f n +-= A .121n + B .122n +C .112122n n +++ D .112122n n -++ 5.当是正整数时,用数学归纳法证明从到等号左边需要增加的代数式为 A . B . C .D .二、填空题:请将答案填在题中横线上. 6.用数学归纳法证明:()22311111n n c c c c cc c++-+++++=≠-,当1n =时,左边为__________.7.对于不等式<n+1(n ∈N *),某同学用数学归纳法证明的主要过程如下:(1)当n =1时,<1+1 ,不等式成立;(2)假设当n =k (k ∈N *)时,不等式成立,有<k+1,即k 2+k <(k+1)2, 则当n =k+1时,=<==(k+1)+1,所以当n =k+1时,不等式也成立.则下列说法中正确的有__________.(填出所有正确说法的序号) ①证明过程全部正确;②n =1的验证不正确;③n =k 的归纳假设不正确;④从n =k 到n =k+1的推理不正确. 8.用数学归纳法证明不等式()*1111223212nnn n ++++>≥∈-N ,的过程中,由“”到“”时,左边增加了__________项三、解答题:解答应写出文字说明、证明过程或演算步骤. 9.求证:++…+=1-(其中n ∈N *).10.证明:.11.求证:n3+(n+1)3+(n+2)3(n∈N*)能被9整除.12.试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.13.在数列中,,其中.(1)计算的值;(2)猜想数列的通项公式,并用数学归纳法加以证明.。

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。

通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。

在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。

下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。

练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。

假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。

然后,我们需要证明当n=k+1时,等式也成立。

即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。

根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。

我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。

将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。

由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。

化简该式子: k(k + 1) + 2(k+1)。

再进一步化简: (k+1)(k + 2) / 2。

可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。

因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。

练习题二:证明:对于任意正整数n,2^n > n^2。

答案二:同样使用数学归纳法进行证明。

首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。

假设当n=k时,2^k > k^2 成立。

高三数学练习 数列 导数 数学归纳法

高三数学练习 数列 导数 数学归纳法

单元练习8 数列极限数学归纳法2002.11 班级:____________;姓名:______________; 成绩:___________.一. 选择题:(每小题4分,共4×14 = 56分)1. 设2 a = 3 ,2 b = 6 ,2 c = 12 ,则数列a ,b ,c(A)是等差数列不是等比数列; (B)是等比数列不是等差数列;(C)既是等差数列又是等比数列; (D)既不是等差数列也不是等比数列;2. 已知数列{an }的前n项和为Sn= 3n + k (k为常数) ,那么下述结论正确的是(A)k为任意实数时{an }为等比数列; (B)k=-1时{an}是等比数列;(C)k=0时{an }是等比数列; (D){an}不可能成为等比数列;3. 已知a,b,c成等比数列,a,x,b和b,y,c都成等差数列,且xy ≠ 0 ,则axcy+的值为(A) 1 ; (B) 2 ; (C) 3 ; (D) 4 ;4. 在等差数列{an }中,an=22n npn q-+(其中p、q是非零常数),则p ,q应满足的关系式是(A) p-q = 0 ; (B) p + q = 0 ; (C) p-2q = 0 ; (D) p + 2q = 0 ;5. 若两个等差数列{an },{bn}的前n项和An和Bn满足ABnnnn=++71427(n∈N) ,则ab1111=(A) 74 ; (B) 32; (C) 43; (D) 7871;6. 等差数列{an }中,a1+ a4+ a7= 15 ,a3+ a6+ a9= 3 ,则该数列前9项的和等于(A) 18 ; (B) 45 ; (C) 36 ; (D) 27 ;7. 等差数列{an }中,a10< 0 ,a11> 0 ,且| a10| < a11,Sn为其前n项之和,则(A)S1,S2,…,S10都小于零 ,S11,S12 ,…都大于零;(B) S1,S2,…,S5都小于零 ,S6 ,S7 ,…都大于零;(C) S1,S2,…,S19都小于零 ,S20,S21 ,…都大于零;(D) S1,S2,…,S20都小于零 ,S21 ,S22 ,…都大于零;8. 已知数列a1 ,a2,…,a10的各项均为正数,条件甲:该数列不是等比数列;条件乙:a1 +a10< a5+a6.则乙是甲的(A)充要条件;(B)必要不充分条件;(C)充分不必要条件;(D)既不充分也不必要条件;9. 在0和16间插入两个数, 使前三个数成等差数列, 后三个数成等比数列, 则这两个数的和等于(A) 8 ; (B) 10 ; (C) 12 ; (D) 16 ;10. 数列{an }中, a1,a2,a3成等差数列, a2,a3,a4成等比数列, a3,a4,a5的倒数成等差数列, 则a1 ,a3,a5(A)成等差数列;(B)成等比数列;(C)倒数成等差数列;(D)对数成等比数列;11. 已知首项a1为正数,公比| q | < 1的无穷等比数列从第二项起各项之和不大于第一项的一半,则公比q的范围是(A) q <13 ; (B) q ≤13; (C) q ≤13且q ≠ 0 ; (D) -1< q ≤13且q ≠ 0 ;12. 等差数列{an }的首项a1=-5 ,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4,则抽去的是(A) a8 ; (B) a6; (C) a10; (D) a11;13. 已知1 + 2·3 + 3·32 + 4·33 + … + n·3n-1 = 3n (na-b) + c对一切n∈N 都成立,那么a ,b ,c的值为(A) a =12,b = c =14; (B)a = b = c =14; (C)a = 0,b = c =14; (D)不存在 ;14. 下列极限值: limn→∞1121+-=⎧⎨⎪⎩⎪()())n nn为奇数(为偶数; a>b>0 ,lim n→∞a a b a b ban n n nn++++--+1221=1a b-;limn→∞(123n+223n+…+nn23)= 0 ; limn→∞n nn n2222112121+--+--= 2.其中正确的有(A) 0个 ; (B) 1个 ; (C) 2个 ; (D) 3个 ; 二. 填空题:(每小题5分,共5×7 = 35分)15. 在数列{a n }中,已知a 1 = 1 ,a 2 = 5 ,a n+2 = a n+1-a n (n ∈N) ,则a 2002等于____________ .16. 若{a n }是等比数列,a 4a 7 =-512 ,a 3+a 8 = 124,且公比为整数,则a 10 = ________________ .17. 数列{a n } ,{b n }满足a n b n = 1, a n = n 2 + 3n + 2,则{b n }的前十项的和为__________________ .18. 若lim n →∞[ 1+(r + 1)n ] = 1 ,则r 的取值范围是___________________________ .19. 已知数列{a n }满足S n = 4-a n -22-n(n ∈N), 则通项公式a n =________________________ .20. 若lim n →∞(3a n + b n ) = 8 , lim n →∞(6a n -b n ) = 1 ,则lim n →∞(4a n -b n )=_______________________ .21. 无穷等比数列中,所有奇数项之和等于36,所有偶数项之和为12,则此数列从第________项开始每一项都小于0.1 . 三. 解答题:(4小题共59分)22. 设{a n }是等差数列,a 1 = 1 ,S n 是它的前n 项和,{b n }是等比数列,其公比的绝对值小于1,T n是它的前n 项和,如果a 3 = b 2 ,S 5 =2T 2-6 ,lim n →∞T n = 9 ,求{a n } ,{b n }的通项公式 .23. 已知递增等比数列{a n }的前三项之积为512,且这三项分别减去1,3,9后又成等差数列. 求证:11a +22a +…+n a n< 1 .24. 已知等差数列{a n }的第三项a 3 = 8,其前20项的和为610. 今从该等差数列中依次取出第2项,第4项,第8项,…,第2n项,并按原来的顺序组成一个新的数列{b n },记数列{a n }和{b n }的前n 项和分别为S n 和T n . (1). 求数列{a n }和{b n }的通项公式;(2).对一切自然数n ,试比较2S n 与T n 的大小,并证明你的结论.25. 在XOY 平面上有一点列P 1 (a 1, b 1), P 2 (a 2, b 2), …, P n (a n , b n ), …,对每个自然数n ,点P n 位于函数y = 2000(a 10)x (0 < a < 10)的图象上,且点P n 、点(n, 0)与点(n + 1, 0)构成一个以P n 为顶点的等腰三角形. (1) 求点P n 的纵坐标b n 的表达式;(2) 若对每个自然数n ,以b n , b n+1, b n+2为边长能构成一个三角形,求a 的取值范围;(3) 设B n = b 1b 2…b n (n ∈N). 若a 取(2)中规定的范围内的最小整数,求数列{B n }的最大项的项数. 答案:示:a n =(n+1)/2; b n = 6(1 /3)n-1; 23. 提示:由条件推出a 2 = 8 ,q= 2 ,∴a n = 2n+1,令S n =1/a 1+2/a 2+…+n/a n ,由1/2s n =S n -1/2S n = 1/22 + 1/23 +…+1/2n+1-n/2n+2 , ∴S n = 1-1/2n-n/2n+2< 1 ; 24. 提示:(1).a n = 3n - 1, b n = 3×2n-1; (2). S n = (3n 2+n)/2, ∴2S n = 3n 2+n, T n = 3×2n+1-n -6, 分别计算n = 1, 2, 3时2S n 与T n , 猜想T n > 2S n ,用数学归纳法证明; 25. 提示:(1) a n = n+12, ∴b n =2000(a/10)n+1/2 ; (2) ∵函数y =2000(a 10)x (0 < a < 10)递减∴对每个自然数n 有b n >b n+1 > b n+2 以b n , b n+1, b n+2为边长能构成一个三角形的充要条件是b n+2 + b n+1 > b n .即(a/10)2 + (a/10)-1 > 0 解得5(√5- 1)<a<10; (3) ∵5(√5- 1)<a<10 ∴a =7 b n = 2000(7/10)n+1/2 数列{b n }是一个递减的正数数列. 对每个自然数n > 2, B n = b n B n-1. 于是当b n > 1时, B n > B n-1,当b n < 1时, B n < B n-1,因此,数列{B n }的最大项的项数n 满足b n > 1且b n+1 < 1, 由b n = 2000(7/10)n+1/2 > 1得n < 20.8 ∴n = 20*. 在等差数列{a n }中,若a 3+a 9+a 15+a 17 = 4 ,则a 11 的值等于______________ . (1) *. 若一个凸多边形的内角度数成等差数列,最小的角是100︒,最大的角是140︒,这个多边形的边数为________________ . (6) *. 首项是125,第10项起开始比1大的等差数列的公差的范围是__________.(8/75<d ≤3/25)*. 数列1, (1+2), (1+2+22), …,(1+2+22+…+2n-1)的前n项和的表达式为___________.(2n+1-n-2)*. 设f (n) = 1 +12+13+…+1n,是否存在g (n)使等式f (1) + f (2) +…+ f (n-1) = g (n)·f (n)-g (n)对n ≥2的一切自然数都成立?并证明你的结论 .提示:若n=2时满足条件的g (n)存在,则1=g(2)(1+1/2)-g(2) , g(2) = 2 ;若n = 3时g(n)存在,则g(3) = 3 ,猜想g (n)存在且g (n) = n (n≥2) .用数学归纳法证明g(n)=n时等式成立 .。

高二数学选修2-2(B版)_同步练习:数学归纳法2

高二数学选修2-2(B版)_同步练习:数学归纳法2

数学归纳法一、选择题1.用数学归纳法证明1+q +q 2+…+q n +1=q n +2-qq -1(n ∈N *,q ≠1),在验证n=1等式成立时,等式左边的式子是( )A .1B .1+qC .1+q +q 2D .1+q +q 2+q 3[答案] C[解析] 左边=1+q +q 1+1=1+q +q 2.故选C.2.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从n =k 到n =k +1,左边的式子之比是( )A.12k +1B .122k +1C.2k +1k +1D .2k +3k +1[答案] B [解析] k +1k +2k +3…k +k k +1+1k +1+2…k +1+k +1=k +1k +2k +3…2k k +2k +3…2k 2k +12k +2=122k +1.故选B.3.用数学归纳法证明1n +1+1n +2+…+12n >1314(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12k +1B .增加了两项12k +1+12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 [答案] C[解析] n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2∴增加了12k +1+12k +2,减少了一项1k +1. 故选C.4.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(n ∈N *,a ≠1),在验证n=1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.5.某个与正整数n 有关的命题,如果当n =k (k ∈N *)时该命题成立,则可推得n =k +1时该命题也成立,现已知n =5时命题不成立,那么可推得( )A .当n =4时该命题不成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =6时该命题成立 [答案] A[解析] 由命题及其逆否命题的等价性知选A. 6.等式12+22+32+…+n 2=12(5n 2-7n +4)( ) A .n 为任何正整数都成立 B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立 [答案] B[解析] 经验证,n =1,2,3时成立,n =4,5,…不成立.故选B.7.用数学归纳法证明某命题时,左式为12+cosα+cos3α+…+cos(2n-1)α(α≠kπ,k∈Z,n∈N*),在验证n=1时,左边所得的代数式为()A.1 2B.12+cosαC.12+cosα+cos3αD.12+cosα+cos3α+cos5α[答案] B[解析]令n=1,左式=12+cosα.故选B.8.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3[答案] A[解析]因为从n=k到n=k+1的过渡,增加了(k+1)3,减少了k3,故利用归纳假设,只需将(k+3)3展开,证明余下的项9k2+27k+27能被9整除.二、填空题9.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到________.[答案]1+2+22+…+2k-1+2k=2k+1-110.用数学归纳法证明当n∈N+时,1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为__________,从k→k+1时需增添的项是________.[答案]1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+411.使不等式2n>n2+1对任意n≥k的自然数都成立的最小k值为________.[答案] 5[解析]25=32,52+1=26,对n≥5的所有自然数n,2n>n2+1都成立,自己用数学归纳法证明之.三、解答题12.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).[证明](1)当n=1时,等式左边=2,右边=2×1=2,∴等式成立.(2)假设n=k (k∈N*)时等式成立.即(k+1)(k+2)…(k+k)=2k·1·3·5·…·(2k-1)成立.那么当n=k+1时,(k+2)(k+3)…(k+k)(2k+1)(2k+2)=2(k+1)·(k+2)·(k+3)·…·(k+k)·(2k+1)=2k+1·1·3·5·…·(2k-1)[2·(k+1)-1]即n=k+1时等式成立.由(1)、(2)可知,对任何n∈N*等式均成立.一、选择题1.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3…(2n-1)(n∈N+)”,则“从k到k+1”左端需乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时左式=(k+1)(k+2)(k+3)n=k+1时左式=(k+2)(k+3)…(2k+1)(2k+2)故“从k到k+1”左端需乘2k+12k+2k+1=2(2k+1).故选B.2.已知数列{a n},a1=1,a2=2,a n+1=2a n+a n-1(k∈N*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除[答案] D[解析]在数列{a4n}中,相邻两项下标差为4,所以a4k后一项为a4k+4.故选D.3.凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为() A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2[答案] C[解析]由凸n边形变为凸n+1边形后,应加一项,这个顶点与不相邻的(n -2)个顶点连成(n-2)条对角线,同时,原来的凸n边形的那条边也变为对角线,故有f(n+1)=f(n)+(n-2)+1.故选C.4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n =k到n=k+1”左边需增乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时,等式为(k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),n=k+1时,等式左边为(k+1+1)(k+1+2)…(k+1+k+1)=(k+2)(k+3)…(2k)·(2k+1)·(2k+2),右边为2k+1·1·3·…·(2k-1)(2k+1).左边需增乘2(2k+1),故选B.二、填空题5.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为________.[答案]1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)26.用数学归纳法证明:1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n=1时,左边=20=1,右边=21-1=1,不等式成立;②假设n=k时,等式成立,即1+2+22+…+2k-1=2k-1.则当n=k+1时,1+2+22+…+2k-1+2k=1-2k+11-2=2k+1-1,所以n=k+1时等式成立.由此可知对任意正整数n,等式都成立.以上证明错在何处?____________. [答案] 没有用上归纳假设[解析] 由数学归纳法证明步骤易知其错误所在.7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+n 2+…+22+12.用数学归纳法证明S n =n 2n +12时,第二步从k 到k +1应添加的项为________.[答案]k +2·2k +12[解析] S k +1-S k =k +12k +1+12-k 2k +12=k +2·2k +12.三、解答题8.在数列{a n }中,a 1=a 2=1,当n ∈N *时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }的各项均为3的倍数.[证明] (1)∵a 1=a 2=1, 故a 3=a 1+a 2=2,a 4=a 3+a 2=3.∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数. 则n =k +1时,b k +1=a 4(k +1)=a (4k +4)=a 4k +3+a 4k +2 =a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设,a 4k 是3的倍数,故可知b k +1是3的倍数. ∴n =k +1时命题正确.综合(1)、(2)可知,对于任意正整数n ,数列{b n }的各项都是3的倍数. 9.数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74. 由此猜想a n =2n -12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-12k =2k +1-12k +1-1,∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -12n -1成立.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.观察下列各不等式:…(1)由上述不等式,归纳出一个与正整数有关的一般性结论;(2)用数学归纳法证明你得到的结论.【答案】(1)且;(2)以下用数学归纳法证明这个不等式.①当n=2时,由题设可知,不等式显然成立.②假设当n=k时,不等式成立,即那么,当n=k+1时,有.所以当n=k+1时,不等式也成立.根据①和②,可知不等式对任何且都成立.【解析】(1)由上述不等式,归纳出表达式的左侧的关系与右侧分子与分母的特征写出一个正整数,有关的一般性结论;(2)利用数学归纳法证明步骤,直接证明即可.试题解析:(1)观察上述各不等式,得到与正整数n有关的一般不等式为且.(2)以下用数学归纳法证明这个不等式.①当n=2时,由题设可知,不等式显然成立.②假设当n=k时,不等式成立,即那么,当n=k+1时,有.所以当n=k+1时,不等式也成立.根据①和②,可知不等式对任何且都成立.【考点】归纳推理;数学归纳法.2.设,其中为正整数.(1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.【答案】(1);(2)【解析】(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题;(2)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须严格按照数学归纳法的步骤书写.试题解析:解:(1) 3分(2)猜想: 4分证明:①当时,成立 5分②假设当时猜想正确,即∴由于8分∴,即成立由①②可知,对成立 10分【考点】数学归纳法及其应用.3.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第4个“金鱼”图需要火柴棒的根数为A.24B.26C.28D.30【答案】B【解析】由图形间的关系可以看出,第一个图形中有8根火柴,第二个图形中有8+6根火柴,第三个图形中有8+26根火柴,第三个图形中有8+36根火柴,即26根火柴,故选B.【考点】归纳推理.4.是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由.【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.6.用数学归纳法证明(),在验证当n=1时,等式左边应为A.1B.1+a C.1+a+a2D.1+a+a2+a3【答案】D【解析】注意到的左端,表示直到共n+3项的和,所以,当n=1时,等式左边应为1+a+a2+a3,选D。

数学高三必修同步训练题数学归纳法

数学高三必修同步训练题数学归纳法

2019年数学高三必修同步训练题数学归纳法高中是重要的一年,大家一定要好好把握高中,查字典数学网小编为大家整理了2019年数学高三必修同步训练题,希望大家喜欢。

1.用数学归纳法证明2nn2+1对于nn0的正整数n都成立时,第一步证明中的起始值n0应取A.2B.3C.5D.6解析:令n0分别取2,3,5,6,依次验证即得.答案:C2.(2019三亚二模)用数学归纳法证明1+2+22++2n-1=2n-1(nN*)的过程中,第二步n=k时等式成立,则当n=k+1时,应得到A.1+2+22++2k-2+2k-1=2k+1-1B.1+2+22++2k+2k+1=2k-1+2k+1C.1+2+22++2k-1+2k+1=2k+1-1D.1+2+22++2k-1+2k=2k+1-1解析:由等式的规律可以得到当n=k时有1+2+22++2k-1=2k-1,当n=k+1时,应得等式为1+2+22++2k-1+2k=2k+1-1.答案:D3.凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n+1)为A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2解析:由凸n多边形到凸(n+1)边形增加了一个顶点,这个顶点与其余n个顶点连结形成对角线n-2条,原来的一条边成为对角线,故共增加n-1条对角线,f(n+1)=f(n)+n-1.答案:C4.在数列{an}中,a1=13,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为A.1n-1n+1B.12n2n+1C.12n-12n+1D.12n+12n+2解析:由a1=13,Sn=n(2n-1)an求得a2=115=135,a3=135=157,a4=163=179. 猜想an=12n-12n+1.答案:C5.用数学归纳法证明2n+1n2+n+2(nN+)时,第一步验证为________. 解析:当nN+可知初始值为1.答案:当n=1时,左边=4右边,不等式成立6.若f(n)=12+22+32++(2n)2,则f(k+1)与f(k)的递推关系式是______________________.解析:∵f(k)=12+22++(2k)2,f(k+1)=12+22++(2k)2+(2k+1)2+(2k+2)2;f(k+1)=f(k)+(2k+1)2+(2k+2)2.答案:f(k+1)=f(k)+(2k+1)2+(2k+2)27.(2019陕西)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10照此规律,第n个等式可为________.解析:左边为平方项的(-1)n-1倍的和,右边为(1+2+3++n)的(-1)n-1倍.再用数学归纳法证明成立.答案:12-22+32-42++(-1)n-1n2=(-1)n-1nn+128.已知点Pn(an,bn)满足an+1=anbn+1,bn+1=bn1-4a2n(nN*)且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于nN*,点Pn都在(1)中的直线l上. 解:(1)由P1的坐标为(1,-1)知a1=1,b1=-1.b2=b11-4a21=13.a2=a1b2=13.点P2的坐标为13,13,直线l的方程为2x+y=1.(2)证明:①当n=1时,2a1+b1=21+(-1)=1成立.②假设当n=k(kN*)时,2ak+bk=1成立,则当n=k+1时,2ak+1+bk+1=2akbk+1+bk+1=bk1-4a2k(2ak+1)=bk1-2ak=1-2ak1-2ak=1,当n=k+1时,命题也成立.由①②知,对于nN*,都有2an+bn=1,即点Pn在直线l上.9.若n大于1的自然数,求证:1n+1+1n+2++12n1324.证明:(1)当n=2时,12+1+12+2=7121324.(2)假设当n=k(kN+)时不等式成立,即1k+1+1k+2++12k1324,那么当n=k+1时,1k+2+1k+3++12k+1=1k+2+1k+3++12k+12k+1+12k+2+1k+1-1k+1=1k+1+1k+2+1k+3++12k+12k+1+12k+2-1k+11324+12k+1+12k+2-1k+1=1324+12k+1-12k+2=1324+122k+1k+11324.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档