奥数知识 :长方体和正方体(四)
长方体与正方体奥数题及答案
1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。
80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。
78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。
五年级奥数之长方体和正方体的表面积
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
五年级奥数19讲:长方体和正方体
长×宽×2+长×高×2+宽×高×2
正方体表面积: 棱长×棱长×6
长方体体积:长×宽×高 正方体体积:棱长×棱长×棱长
长、正方体体积公式的统一 底面积高 横截面长
口头说:
1、棱长3厘米的正方体 2、已知a=2分米,b=3分米,
h=1分米
3、一个底面是正方形的长方体 s=25平方分米,h=0.8分米
5、一个长方体表面积78平 方厘米,底面积15平方厘 米,底面周长16厘米,求 长方体的体积。
6、一个底面为正方形的 长方体的铁盒,展开它 的侧面可得到一个边长 为12分米的正方形。这 个纸盒的体积是多少?
7、在一个涂红色正方体木块 每个面上等距离切上n刀,一 共可得多少个小正方体,其 中一面红、两面红、三面红、 各个面都是木本色的正方块 各几块?
1、长方体的长5厘米,宽和高都
是3厘米,棱长和是( 44厘米) 2、正方体的棱长是5厘米,棱长
和是( 60厘米) 3、长方体的棱长和是60分米,长
6厘米,宽5厘米,高是( 4厘米) 4、正方体的棱长和是60分米,棱
长是( 5分米 )
1、有一个棱长是3厘米的正方 体,先从它的每个顶点处挖去 一个棱长是1厘米的小正方体, 再在它每个面的中央粘上一个 棱长是1厘米的小厘米的小正方 体。 所得物体的表面 积是多少平方 厘米?
8、一涂满红色的正方体, 每面待距离切若干刀后,得 到若干个小正方块,其中两 面红的共计108块,求一面 红的有多少块?
99、、有现一有个一长不为规1则0的厘物米体,,宽 6想厘要米测的出水它槽的,体里积面。装该了想一什 部么分样水的,办现法把?这一不规则的 物体放进水中,水升高了2 厘米,请问这个不规则物体 的体积是多少?
2、图中是一个各面上依次
奥数长方体与正方体
试一试:
有一个长方体,前面和上面两个 面面积和为209平方厘米,并且 长、宽、高都是以厘米为单位的 数,且都是质数,求这个长方体 的表面积。
例5:
一个长方体的前面、上面、右 面的面积分别为40、60、24平方厘 米,求这个长方体的体积。
试一试:
一个长方体的三个侧面积分别是 6平方分米、10平方分米、15平 方分米,这个长方体的体积是多 少?
例6:
把一个正方体平均分成3个长方体, 已知每个—长方体的表面积是150平 方厘米,求原来正方体的表面积。
试一试:
把一个正方体平均分成2个长 方体,已知每个长方体的表面积 是120平方厘米,求原来正方体 的表面积。
例7:
一个棱长为6厘米的正方体木块, 如果把它锯成棱长为2厘米的小正方 体,表面积增加了多少平方厘米?
试一试:
把27块棱长是1厘米的小正方体 堆成一个大正方体,这个大正方 体的表面积比原来所有的小正方 体的面积之和少多少平方厘米?
例8:
将两块棱长相等的正方体木块拼成 一个长方体,已知长方体棱长总和是 96厘米,每块正方体木块的体积是多 少立方厘米?
试一试:
把三个完全一样的长方体木块拼 成一个大长方体,这个大长方体 的棱长总和是100厘米,那么大 长方体的表面积是多少平方厘米?
试一试:
一个长方体的横截面是一个边长 4厘米的正方形,把它截成两段 后,得到两个完全一样的小长方 体,每个小长方体的表面积比原 来长方体的表面积减少80平方厘 米。求原来长方体的体积。
例4:
一个长方体,它的前面和上面的面积 之和是156平方厘米,并且长、宽、 高都是质数,这个长方体的体积是 多少?
例1:
一个长方体的高是10厘米,宽是5厘 米,侧面积是260平方厘米。它的体 积是多少立方厘米?
小学六年级奥数试题详解 长方体和正方体
第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。
解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。
五年级奥数经典培训讲义——长方体、正方体(四)(无答案)全国通用
五年级数学活动练习卷正方体、长方体(四)姓名得分1. 有一个棱长为5厘米的正方体木块,如图(1)所示,从它的每个面看都有一个穿透的完全相同的孔,求这个立体图形的表面积。
(大桥考题)分析与解:由于正方体中间被穿了孔,表面积不好计算。
我们可将这个立体图形看成由8个棱长为2厘米的正方体(在8个顶角处)和12个棱长为1厘米的正方体(在12条棱的中间处)粘合而成,如图(2)所示。
(1)(2)2. 如图是一个棱长为2厘米的正方体,在正方体上表面的正中向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为0.5厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为0.25厘米,那么最后得到的立体图形的表面积是多少平方厘米?3. 一个正方体木块棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块。
这60块长方体的表面积的和是多少?4. 在一个棱长为3厘米的正方体上面的正中间向下挖一个棱长为2厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为0.5厘米,那么最后得到的立体图形的表面积是多少平方厘米?5. 如图,一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积。
6. 一个正方体木块,棱长8厘米。
如果在这个木块的六个面的中心位置各挖去一个边长为2厘米的正方形孔,直透对面。
所得立体图形的体积是多少?表面积是多少?7. 图中A 的面积是25平方米,B 的面积是15平方米,h 是4米。
现在把A 处的土堆到B 处,使A 、B 两处同样高,这时B 处比原来升高了多少米?hBA8. 如右图,是五个同样的正方体,求底面所有数字之和。
655543322119. 一个长方体,体积462立方厘米,在表面涂上漆,分成棱长为1厘米的小正方体,已知三个面涂上漆的有86个,则两个面涂上漆的有多少个?10. 有30个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?请用图画出来。
五年级奥数-立体图形问题
课程五立体图形问题1.长方体、正方体表面积的计算 2。
长方体、正方体的切割问题 3。
长方体、正方体的体积4。
不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则 先求出必备条件,再求表面积(有盖还是无盖)。
(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一 后再计算。
(3)求所需用的面积材料时,一般用“进一法“取近似值. (4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积 就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。
1.长方体和正方体的体积概念及其计算公式 (1)长方体体积=长×宽×高 V 长方体=abc(2) 正方体体积=棱长×棱长×棱长 V 正方体=a 3 2.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。
水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?学习目标重 点总 结(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3).在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。
解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米) 在角上时,剩下部分的表面积是700(平方厘米); 在面上时,剩下部分的表面积是: 700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米。
五年级奥数.几何.正方体与长方体表面积
长方体与正方体表面积知识框架一、基础知识本讲内容从我们熟悉的平面扩展到了三维立体空间,教学目标是培养学生的空间想象能力,对于长方体和正方体的表面积和体积的计算我们在学校的课本上都已经学习过,都是相对比较简单的,今天我们一起将这部分内容进行拓展和研究.我们主要研究的对象是复杂的立方体的体积和表面积计算方法.同学生要记住知识是有限的,但想象力是无限的.①长方体表面积:若长方体的长、宽、高分别为a、b、c,那么可得:长方体的表面积:S长方体=2(ab+bc+ac);如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).②正方体的表面积:我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形.如果它的棱长为a,那么可得:正方体的表面积:S正方体=6a2;如右图,正方体共有六个面(每个面都是全等的正方形),八个顶点,十二条棱.二、立体图形的表面积计算常用公式:立体图形示例表面积公式相关要素长方体S = 2(ab+bc+ac)三要素:a、b、c正方体S = 6a2 一要素:a重难点重点:长方体与正方体的表面积和体积的计算公式的理解性记忆与运用难点:三视图法求表面积例题精讲【例1】如果一个边长为2厘米的正方体的表面积增加192平方厘米后仍是正方体,则边长增加______厘米.错误!未找到引用源。
【巩固】一小桶油漆恰好可以漆一个边长为0.5米的正方体,要漆一个边长为一米的立方体,则需要______小桶同样油漆.【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【巩固】如图,有一个边长是10的立方体,如果它的左上方截去一个边分别是10,5,3的长方体,那么它的表面积减少了百分之几?【例4】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【巩固】如图,在一个棱长为8厘米的正方体上放一个棱长为5厘米的小正方体,求这个立体图形的表面积.【例5】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?【巩固】如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是_ 平方厘米.【例6】如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的倍.【巩固】有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【例7】小华用相同的若干个小正方体摆成一个立体(如图2).从上体上面看这个立方体,看到的图形是图①~③中的____ .(填序号)③①②【巩固】用一些棱长是1的小正方体码放成一个立体如下图,请画出从上面和正面看到的图形【例8】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【巩固】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色(底面不涂).求被涂成红色的表面积.【巩固】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?课堂检测1.一个正方体的棱长为3厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.2.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.3.下图是用若干个棱长为1的小正方体铁块焊接成的几何体,请画出从正面,侧面,上面看到的视图家庭作业1.右图是一个边长为5厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)2.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?3.有八个大小一样的正方体,用胶粘接成如下的大正方体,表面积比原来减少了24平方厘米.求所成形体的表面积..4.把五块相同的立方体木块拼成如图所示的形体,表面积比原来减少了96平方厘米.所成形体的表面积是_______平方厘米.5.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?6.将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米教学反馈学生对本次课的评价Page 11 of 11○特别满意○满意○一般家长意见及建议家长签字:。
小学奥数讲义:长方体与正方体
小学奥数讲义:长方体与正方体长方体与正方体【知识要点】1、正方体棱长和=棱长×12 长方体棱长和=(长+宽+高)×42、长方体和正方体的表面积,就是长方体和正方体6个面的总面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6表面积在计算时的特殊情况:(1)一般情况需要计算6个面的面积;(2)有时只要计算5个面的面积:如计算游泳池粉刷,游泳池贴瓷砖,浴缸,教室、房间的粉刷面积,无盖的盒子……(3)有时只要计算4个面的面积:如计算饮料的包装纸,通风管……(4)有时只要计算1个面的面积:如游泳池的占地面积,冰箱、洗衣机的占地面积……3、正方体体积=棱长×棱长×棱长长方体体积=长×宽×高通用体积公式:体积=底面积×高【精选例题】1、一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?2、把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米?最小是多少平方厘米?3、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少?4、一个长方体纸盒,长8厘米,宽是长的43,高是宽的一半。
这个长方体的棱长总和是多少厘米?5、一个体积为160立方厘米的长方体中两个侧面的面积分别为20厘米,32厘米,如图,求这个长方体底面的面积(即图中阴影部分的面积)。
6、一个底面长为25厘米,宽为20厘米的长方体容器,里面盛有水。
当把一个正方体木块放入水中时,木块的12部分没入水中,此时水面升高了1厘米。
五年级奥数经典培训讲义——长方体和正方体 基础部分 全国通用
长方体和正方体姓名:一、长方体和正方体的认识1、长方体的特征:长方体是由6个长方形围成的立体图形。
○1观察长方体,长方体有几个面?每个面都是什么形状?比一比相对面是不是完全相同?○2两个面相交的边叫做棱。
数一数,长方体有几条棱?这些棱可以分成几组?每组中的几条棱是不是相等?○3三条棱相交的点叫做顶点。
长方体有几个顶点?2、长方体通常画成下图那样:相交于通一丁点的三条棱分别叫做长方体的长、宽、高。
3、正方体的特征:正方体是有6个完全相同的正方形围成的立体图形。
你也能从面、棱、顶点角度,说说可见,正方体是一种特殊的长方体。
如图1图1 图另外,还有一种特殊的长方体,如图2。
它的长厘米,宽厘米,高厘米,它的左面和面完全相同,都是正方形。
其余四个面。
都是长厘米,宽厘米的形。
4、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12练一练:1、请你画一个长方体和一个正方体。
长方体:正方体:2、一个长方体长4厘米,宽3厘米,高2厘米,它的前面是()形,长是()厘米,宽是()厘米;它的右面是()形,长是(),宽是();长方体的下面、左面、前面分别和()面、()面、()面完全相同。
3、小学数学课本的长是21厘米,宽14.5厘米,高0.8厘米,则它的底面是(),面积是()。
4、用一根48厘米的铁丝围成一个正方体,其棱长是()厘米。
5、李师傅用两根一样长的铁丝分别围成一个长方体和一个正方体,已知长方体的长10厘米,宽6厘米,高5厘米。
那么正方体的棱长是()厘米。
6、一个长方体是由3个棱长4厘米的正方体拼成的,这个长方体的长是(),宽是(),高是()。
他最多有()面完全相同,面积为()。
7、用一根长为60厘米的铁丝扎成一个正方体框架,长7厘米,宽5厘米,高是()厘米。
8、用5个完全一样的正方体拼成一个长方体,这个长方体所有棱长总和是112厘米,求长方体的底面积是(),原来一个正方体的棱长总和是()厘米。
小学五年级奥数长方体和正方体知识点
【导语】长⽅体(⼜称矩体,cuboid)是底⾯为长⽅形的直四棱柱(或上、下底⾯为矩形的直平⾏六⾯体)。
其由六个⾯组成的,相对的⾯⾯积相等,可能有两个⾯(可能四个⾯是长⽅形,也可能是六个⾯都是长⽅形)是正⽅形。
以下是⽆忧考整理的相关资料,希望对您有所帮助!【篇⼀】 知识点 1.长⽅体的特征:有6个⾯,相对的⾯完全相同;有12条棱,相对的棱长度相等;有8个顶点 2.正⽅体的特征:正⽅体的6个⾯完全相同;12条棱的长度全相等;有8个顶点。
3.长⽅体长、宽、⾼的意义:相交于同⼀顶点的三条棱的长度分别叫做长⽅体的长、宽、⾼。
长⽅体和正⽅体的表⾯积1.表⾯积的意义:长⽅体或正⽅体6个或5个⾯的总⾯积,叫做它的表⾯积。
2.长⽅体的表⾯积的计算⽅法:(2个) 3.正⽅体表⾯积的计算⽅法:正⽅体的表⾯积=棱长2×6 长⽅体和正⽅体的体积1.体积的意义:物体所占的空间的⼤⼩叫做体积。
2.体积单位:⽴⽅⽶、⽴⽅分⽶、⽴⽅厘⽶;字母表⽰:m3,dm3,cm3。
3.体积单位间的进率:1m3=1000dm3dm3=1000cm3. 4.容积的意义:箱⼦、油桶等所能装下物体的体积,叫做箱⼦等的容积。
5.容积的单位和容积单位之间的进率:1L=1000ml 6.容积单位和体积单位之间的换算:1L=dm31cm3.=1ml 7.长⽅体体积计算公式和正⽅体体积计算公式。
8.容积与体积的计算⽅法相同,只是要从⾥⾯量它的长、宽和⾼。
【篇⼆】 奥数题长⽅体和正⽅体的体积 有⼀块长24厘⽶的正⽅形厚纸⽚,如果在它的四个⾓各剪去⼀个⼩正⽅形,就可以做成⼀个⽆盖的纸盒,现在要使做成的纸合容积,剪去的⼩正⽅形的边长应为⼏厘⽶? 分析:2014年⼩学六年级奥数题长⽅体和正⽅体的体积:根据题意,可设剪去的⼩正⽅形的边长是x,可利⽤体积公式表⽰出剪去后的纸盒的体积,因为纸盒的边长⼀定,即2x+(12-x)+(12-x)=24是⼀个定值,那么当2x等于12-x时,纸盒的体积2×2x(12-x)(12-x),所以计算出2x等于12-x中的未知数即可知道剪去的⼩正⽅形的边长,列式解答即可. 解:如图 设剪去的⼩正⽅形边长为x厘⽶, 则纸盒容积为:V=x(24-2x)(24-2x), =2×2x(12-x)(12-x), 因2x+(12-x)+(12-x)=24, 故当2x=12-x时,其乘积, 2x=12-x, 3x=12, x=4, 即x=4时,其乘积即纸盒容积也. 答:剪去的⼩正⽅形的边长应为4厘⽶. 点评:解答此题的关键是依据正⽅体的体积公式表⽰出这个纸盒的体积,要使体积算式中的2x、12-x、12-x应该相等,所以算式中的2x等于12-x,纸盒的体积,解答即可.【篇三】 ⼩学⽣如何区分长⽅体和正⽅体? 由六个长⽅形(相对的两个⾯也可能是正⽅形)所围成的六⾯体,叫做长⽅体。
小学六年级奥数重点长方体和正方体知识点带试题解析
小学六年级奥数重点长方体和正方体知识点带试题解析长方体和正方体知识点(一)长方体和正方体的特征(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。
2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【题目1】:一个长方体和一个正方体的棱长之和相等。
已知长方体的长是6分米,宽是4分米,高是2分米,求正方体的表面积和体积?【解析】:要求出正方体的表面积和体积,必须先求出正方体的棱长。
长方体有12条棱分为3组:4条长、4条宽、4条高;正方体有12条棱,每条棱的长度都相等。
设这个正方体的棱长为x分米,根据题意,可以列出方程:12x=(6+4+2)×4解得:x﹦4正方体的棱长为4分米。
所以正方体的表面积为:42×6﹦96(平方分米)。
正方体的体积为:43﹦64(立方分米)。
【题目2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。
已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。
【解析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。
厚度不计,铁皮盒的容积也就相当于它的体积。
铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。
所以,铁皮盒底面的宽为:546÷2.8÷15.6﹦12.5(分米)。
则铁皮原来的宽为:12.5+2.8×2﹦18.1(分米)。
由长方形铁皮原来的长、宽,可以求出它的面积为:21.2×18.1﹦383.72(平方分米)。
五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案
长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。
这个语言的字母是:圆、三角形还有长方体及其它各种形体。
”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。
长方体和正方体是我们最熟悉的几何体。
我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。
提高作图能力、观察能力、计算能力和空间想象力。
二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。
【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。
你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。
数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。
相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。
已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。
奥数知识 :长方体和正方体(四)
奥数知识:长方体和正方体(四)【例题】:如图所示是一个长8分米,宽6分米,高5分米的长方体木块,现将它按图中虚线锯开,先锯成24块小长方体,这24块小长方体的表面积之和是多少?【思路】:如上图所示,沿着长宽面锯开了3次;沿着长高面锯开了1次,沿着宽高面锯开了2次。
每锯开一次就增加2个对应面的面积。
这24块小长方体的表面积之和就等于原长方体的表面积加上锯开时增加面的面积:8×6×(2+3×2)+8×5×(2+1×2)+6×5×(2+2×2)﹦724(平方厘米)。
练习一:1.一个棱长6厘米正方体木块,把它的表面涂上红色,然后把它锯成棱长1厘米的小正方体,问一面红色的有( )块;二面红色的有( )块;三面红色的有( )块;没有红色的有( )块。
2. 将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体有3块,原来长方体的表面积是()。
3. 把若干个体积相等的正方体拼成一个大正方体,然后在其表面涂上红色,已知一面涂色的小正方体有24个,那么两面涂色的小正方体有()个。
【例题】:一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深为0.5米。
现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?【思路】:假设容器中的水不流动,长方体铁块提起24厘米,则铁块露出水面的部分浸湿24厘米,铁块下方有一块底面边长15厘米、高24厘米的长方体空隙。
要填满铁块下方的空隙,容器里的水位还会下落:15×15×24÷(60×60-15×15)﹦1.6(厘米)。
所以所以铁块提前24厘米后,露出水面的铁块上被水浸湿的部分长为:24+1.6﹦25.6(厘米)。
五年级上册奥数专题系列-长方体和正方体的体积与表面积 沪教版 (含答案)
图1 图2 图3图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.【例 7】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.【考点】长方体与正方体【难度】3星【题型】填空【解析】可以将这个图形看作一个八棱柱,表面积和为:⨯-⨯⨯+⨯+++++++=()()(平方厘米).87662616661787292也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,【考点】长方体与正方体 【难度】3星 【题型】填空 【关键词】2010年,第8届,走美杯,3年级,初赛,第12题【解析】 注意底面放在桌子上,不能被染到。
从上向下看有10个:从左向右看有6个;从前向后看有7个。
因此被染色的面有()1067236++⨯=个面【答案】36【例 11】 用6块右图所示(单位:cm )的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【考点】长方体与正方体 【难度】4星 【题型】解答【解析】 要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2(343334)266(cm )⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最小,如图⑵所示,长为18,宽为2,高为1,所以最大的表面积为2(18118212)2112(cm )⨯+⨯+⨯⨯=【答案】112【例 12】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?(1)的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比:::。
【考点】长方体与正方体【难度】4星【题型】填空【关键词】2007年,第五届,走美杯,初赛,六年级,第11题【解析】体积比为3:8:13【答案】3:8:13【例 14】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【考点】长方体与正方体【难度】3星【题型】解答【解析】44(1234)456⨯++++⨯=(平方米).【答案】56【例 15】如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多______ 块.【考点】长方体与正方体 【难度】4星 【题型】填空【解析】 三面涂上红色的小正方体有:425428⨯+⨯=个,两面涂上红色的小正方体有:341416⨯+⨯=个,所以三面涂红色的比两面涂红色的多281612-=块. 【答案】12【例 16】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图1所示,从上面看如图2,那么这个几何体至少用了 块木块.【考点】长方体与正方体 【难度】4星 【题型】填空 【关键词】2007年,迎春杯,中年级,复赛,9题【解析】 这道题很多同学认为答案是26块.这是受思维定势的影响,认为图2中每一格都要至少放一块.其实,有些格不放,看起来也是这样的.如下图,带阴影的3块不放时,小正方体块数最少,为23块.【答案】23块【例 17】 右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红图1图2倍. 【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2008年,迎春杯,六年级,初赛【解析】 ()2264:616:1a a ⎡⎤⎡⎤⨯⨯=⎣⎦⎣⎦. 【答案】16:1【例 20】 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2010年,迎春杯,高年级复赛,3题【解析】 假设小正方体棱长是1,大正方体棱长就是6,大正方体露在外面的表面积是6661215⨯⨯-=,小正方体露在外面的表面积是5,所以有215543÷=倍.【答案】43【例 21】 如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是 平方厘米。
新人教版五年级下册,奥数辅导第四周,长方体正方体
姓名:1、 5.2立方米=()立方分米 0.35立方分米=()立方厘米4.15平方分米=()平方厘米 8460立方分米=()立方米72.5立方分米=()立方厘米 10020立方分米=()立方米3.2立方分米=()立方厘米500立方分米=()立方米9立方米500立方分米=()立方米=()立方分米1700平方厘米=()平方分米=()平方米2、有一个长方体的底面是正方形,边长12分米,高为4.2分米,将这个长方体平均截成两个相同的长方体,表面积增加()或()。
3、将长是45厘米的长方体截成三段,这样表面积就增加160平方厘米,这个长方体原来的体积是()。
4、一个长方体铁块,底面积是64平方厘米,高是5厘米,把它锻造成一个截面边长是4厘米的正方形的长方体,这个长方体的高是()。
5、分别计算下面两个图形的棱长总和、表面积、体积。
6、一个长30厘米,截面是正方形的长方体,如果长增加5厘米,表面积就增加80平方厘米,求原来长方体的表面积和体积。
7、一个正方体的棱长和是72厘米,如果它的高延长到10厘米,它的体积和表面积各增加多少?8、一个长方体的侧面展开后正好是一个正方形,长方体底面也是一个正方形,已知长方体的高是16cm,这个长方体的体积是多少立方厘米?9、有一个长方体容器,长30厘米,宽22厘米,高14厘米,里面的水深7厘米,如果把这个容积盖紧,宽和高的面朝下,垂直坚起来,容器里面的水深多少厘米?10、一个长方体的表面积是67.92平方分米,底面的面积是19平方分米,底面周长是17.6分米,这个长方体的体积是多少立方分米?11、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?12、有一个棱长为12厘米的正方体木块,从它的上面、前面、左面中心分别凿一个边长为4厘米的正方形孔。
那么,穿孔后木块的体积是多少立方厘米?表面积又是多少平方厘米?13、有一个形状如上图所示的零件,求它的体积和表面积。
(完整版)正方体和长方体的体积奥数
(完整版)正方体和长方体的体积奥数
本文将介绍正方体和长方体的体积计算方法,以及与奥数相关的数学问题和解答。
正方体和长方体是几何学中常见的立体图形,学生在奥数考试中经常会遇到与它们相关的问题。
正方体的体积计算方法
正方体是一种具有六个相等的正方形面的立体图形。
要计算一个正方体的体积,只需将正方体任意一个边长的立方即可,即 V = a³,其中 V 代表体积,a 代表边长。
长方体的体积计算方法
长方体是一种具有六个面,其中相对的面是相等的矩形的立体图形。
要计算一个长方体的体积,只需要将长方体的长度、宽度和高度相乘即可,即 V = lwh,其中 V 代表体积,l 代表长度,w 代表宽度,h 代表高度。
奥数问题和解答
下面是两个与正方体和长方体的体积相关的奥数问题和解答:
1. 一个正方体的边长为 2cm,则它的体积是多少?
解答:根据正方体的体积计算方法,V = a³,代入 a = 2cm,即V = 2³ = 8cm³。
2. 一个长方体的长度为 3cm,宽度为 4cm,高度为 5cm,则它的体积是多少?
解答:根据长方体的体积计算方法,V = lwh,代入 l = 3cm,w = 4cm,h = 5cm,即 V = 3 * 4 * 5 = 60cm³。
以上是正方体和长方体的体积计算方法以及与奥数相关的问题和解答。
通过掌握这些知识,学生可以更好地应对奥数考试中的相关题目。
(800 字)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数知识:长方体和正方体(四)
【例题】:如图所示是一个长8分米,宽6分米,高5分米的长方体木块,现将它按图中虚线锯开,先锯成24块小长方体,这24块小长方体的表面积之和是多少?
【思路】:如上图所示,沿着长宽面锯开了3次;沿着长高面锯开了1次,沿着宽高面锯开了2次。
每锯开一次就增加2个对应面的面积。
这24块小长方体的表面积之和就等于原长方体的表面积加上锯开时增加面的面积:
8×6×(2+3×2)+8×5×(2+1×2)+6×5×(2+2×2)
﹦724(平方厘米)。
练习一:
1.一个棱长6厘米正方体木块,把它的表面涂上红色,然后把它锯成棱长1厘米的小正方体,问一面红色的有( )块;二面红色的有( )块;三面红色的有( )块;没有红色的有( )块。
2. 将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体有3块,原来长方体的表面积是()。
3. 把若干个体积相等的正方体拼成一个大正方体,然后在其表面涂上红色,已知一面涂色的小正方体有24个,那么两面涂色的小正方体有
()个。
【例题】:一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深为0.5米。
现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
【思路】:假设容器中的水不流动,长方体铁块提起24厘米,则铁块露出水面的部分浸湿24厘米,铁块下方有一块底面边长15厘米、高24厘米的长方体空隙。
要填满铁块下方的空隙,容器里的水位还会下落:15×15×24÷(60×60-15×15)﹦1.6(厘米)。
所以所以铁块提前24厘米后,露出水面的铁块上被水浸湿的部分长为:24+1.6﹦25.6(厘米)。
练习二:1. 有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。
取出铁后,水面下降了10厘米。
这个长方体容器的底面积是多少平方厘米?
2. 有一个正方体容器,边长是20厘米,里面注满了水。
有一根长50厘米,横截面是12平方厘米的长方形的铁棒,现将铁棒垂直插入水中。
问:会溶出多少立方厘米的水?
3.有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?
练习三 :
1.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?
2一根长方体木料长3.6米,切成3段后表面积增加24平方分米,原来木料的体积是()立方分米。
3.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米?
4.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?
5. 一个正方体和一个长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了40平方米。
原来正方体的表面积是()平方厘米。
6.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘米。
7.一个长方体,如果高减少3厘米,就成为一个正方体。
这时表面积比原来减少了96平方厘米。
原来长方体的体积是多少立方厘米?
8. 一个长15厘米,宽6厘米,高4厘米的正方体的木块,可以截成多少块棱长2厘米的正方体木块?
9. 一个正方体的棱长如果扩大3倍,那么表面积扩大( )倍,体积扩大( )倍.
10.一个棱长是3厘米的正方体木块,各面中心凿穿一孔面边长是1厘米的正方形柱孔,它余下的体积是多少立方厘米?表面积是多少?。