(最新整理)2018年高考全国2卷理科数学word版官方答案

合集下载

2018全国高考数学二试题及答案(理科)

2018全国高考数学二试题及答案(理科)

的素数中,随机选取连个不同的数,其和等于 30 的概率是( )
A. 1 12
【答案】C
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为( )
A. 1 5
【答案】C
为了预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两 个线性回归模型.根据 2000 年至 2016 年的数据(时间 变量 t 的值依次为1, 2, ,17 )建立模型①:y 30.4 13.5t ;根据 2010 年至 2016
年的数据(时间变量 t 的值依次为1, 2, ,7 )建立模型②: y 99 17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 【解析】(1)由题意可知,用模型①预测 2018 年投资额为
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
【解析】(1)当 a 1时,f (x) ex x2 ,则 f x() e x2x .令 h(x) f (x) ex 2x ,
由 h(x) ex 2 知 h(x) 在 (0, ln 2) 上单调递减,在 (ln 2, ) 上单调递增.从而 h(x) f (x) h(ln 2) f (ln 2) 2 2ln 2 0 ,所以 f (x) 在 (0, ) 上单调递增.
S3 3a1 3d 21 3d 15 解得 d 2 .所以 an 7 2(n 1) 2n 9 . (2)由(1)可知 Sn n2 8n (n 4)2 16 .由二次函数性质可知当 n 4 时,Sn 取 得最小值 16 . 18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿 元)的折线图.

2018年高考全国新课标2卷理科数学word版及答案

2018年高考全国新课标2卷理科数学word版及答案

文档绝密★启用前2018 年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及底稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:此题共12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1 2i1.1 2iA .4 3 iB . 4 3 i C.3 4 i D .3 4 i555555552.已知会合 A x,y x2y2≤3,x Z ,y Z ,则A中元素的个数为A . 9B . 8C.5 D . 43f e x e x.函数x x2的图像大概为4.已知向量a, b 知足 | a | 1 , a b 1 ,则 a (2a b)A . 4B . 3C.2 D . 05x2y21( a0, b 0) 的离心率为3,则其渐近线方程为.双曲线b2a2A . y2xB . y3x C. y2D. y3x x226.在△ABC 中,cos C5,BC1,AC5,则AB 25A.4 2B. 30C. 29D.2 57. 算 S1 1 1 1 1开始13⋯99, 了右 的程序框 ,24100在空白框中 填入N0,T 0A . i i 1i 1B . ii2 是否i100C . ii 31NS N TD . ii4NiT1出 STi 1束8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就.哥德巴赫猜想是“每个大于2 的偶数能够表示 两个素数的和”,如30 7 23 .在不超30 的素数中,随机 取两个不一样的数,其和等于 30 的概率是A .11C .1D .112B .1415189.在 方体 ABCDA 1B 1C 1D 1 中, ABBC 1 , AA 13 , 异面直 AD 1 与 DB 1 所成角的余弦A . 1B .5C .5D .2552610.若 f (x) cos xsin x 在 [ a, a] 是减函数, a 的最大 是ππ3πD .πA .B .C .44211 .已知 f (x) 是定 域 (, ) 的奇函数, 足f (1 x)f (1x) .若 f (1) 2 ,f (1) f (2) f (3) ⋯f (50)A . 50B . 0C .2D .502 212.已知 F 1 , F 2是 C :x2y 2 1( a b 0) 的左,右焦点,A 是 C 的左 点,点 P 在 A 且斜率ab3的直 上, △ PF 1F 2 等腰三角形,F 1F 2 P 120 , C 的离心率6211D .1A .B .C .4323二、填空 :本 共 4 小 ,每小 5 分,共 20 分。

(完整word版)2018高考全国2卷理科数学带答案

(完整word版)2018高考全国2卷理科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>3 C .A .2y x =± B .3y x=6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 297.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。

(精校版)2018年全国卷Ⅱ理数高考试题文档版(含答案)(20200901145437)

(精校版)2018年全国卷Ⅱ理数高考试题文档版(含答案)(20200901145437)

绝密★启用前注意事项:2018 年普通高等学校招生全国统一考试理科数学1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.1 2i 1 2iA . 4 3 i5 5B.4 3 i5 5C.3 4 i5 5D.3 4 i5 52. 已知集合 2Ax ,y x2y ≤3 ,x Z ,y Z ,则 A 中元素的个数为A .9B . 8C . 5D . 43. 函数 f xexe xx的图像大致为4. 已知向量 a ,b 满足 | a | 1 , a b 1 ,则 a (2a b )A .4B . 3C . 2D . 0x2 y2 5. 双曲线221( a a b0, b 0) 的离心率为3 ,则其渐近线方程为A . y2xB . y 3 xC . y2 xD . y3x 226. 在 △ABC 中, cos C5 , BC 1 , AC 5 ,则 AB25A . 4 2B . 30C . 29开始 D . 2 57. 为计算 S 1,设计了右侧的程序框图,N 0, T 0则 在 空 白 框中应填入A . i i 1是i 1i 100否21 1 1112 3 499 1002 2 B . i i 2 C . i i3 D . i i 48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是11A .B .121411C .D .15189. 在长方体 ABCDA 1B 1C 1D 1 中, AB BC 1 , AA 13 ,则异面直线 AD 1 与 DB 1 所成角的余弦值为A .1 5B. 5 6C. 5D.2 210. 若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A . π4B. π23π C.D . π411. 已知 f ( x) 是定义域为 (,) 的奇函数,满足 f (1 x)f (1 x) .若 f (1) 2 ,则f (1) f (2)f (3) f (50)A . 50B . 0C . 2D . 5012. 已知 F , F 是椭圆 Cx y 1( a b 0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率12: 22ab为3 的直线上, △ PF FF F P120C1 2为等腰三角形,1 262 1 1 ,则 的离心率为1 A .B .32C .D .34二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i+=-A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为 A.y = B.y = C.y = D.y x =6.在ABC△中,cos2C 1BC =,5AC =,则AB = A.B.CD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

(完整word版)2018年全国2卷理科数学试卷及答案

(完整word版)2018年全国2卷理科数学试卷及答案

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

(完整word版)2018年全国2卷理科数学试卷及答案(2),推荐文档

(完整word版)2018年全国2卷理科数学试卷及答案(2),推荐文档

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .5 C .5 D .210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)

2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。

既可以突出重点又可以提高复习信心,效率和效益也会双丰收。

少做、不做难题,努力避免“心理饱和”现象的加剧。

保持平常心,顺其自然2018年普通高等学校招生全国统一考试数学试题 理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国2卷理科数学带详细标准答案

2018高考全国2卷理科数学带详细标准答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己地姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹地签字笔书写,字体工整、笔迹清楚. 3.请按照题号顺序在各题目地答题区域内作答,超出答题区域书写地答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹地签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素地个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=地图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>A.y =B.y =C.y x =D.y = 6.在ABC △中,cos2C =1BC =,5AC =,则AB = A..7.为计算11111123499100S =-+-++-,设计了右侧地程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想地研究中取得了世界领先地成果.哥德巴赫猜想是“每个大于2地偶数可以表示为两个素数地和”,如30723=+.在不超过30地素数中,随机选取两个不同地数,其和等于30地概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角地余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 地最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞地奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:地左,右焦点,A 是C 地左顶点,点P 在过A地直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 地离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处地切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+地最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥地顶点为S ,母线SA ,SB 所成角地余弦值为78,SA 与圆锥底面所成角为45°,若SAB △地面积为,则该圆锥地侧面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答.(一)必考题:共60分. 17.(12分)记n S 为等差数列{}n a 地前n 项和,已知17a =-,315S =-. (1)求{}n a 地通项公式; (2)求n S ,并求n S 地最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)地折线图.为了预测该地区2018年地环境基础设施投资额,建立了y 与时间变量t 地两个线性回归模型.根据2000年至2016年地数据(时间变量t 地值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年地数据(时间变量t 地值依次为1,2,,7)建立模型②:ˆ9917.5yt =+.(1)分别利用这两个模型,求该地区2018年地环境基础设施投资额地预测值; (2)你认为用哪个模型得到地预测值更可靠?并说明理由. 19.(12分)设抛物线24C y x =:地焦点为F ,过F 且斜率为(0)k k >地直线l 与C 交于A ,B 两点,||8AB =.(1)求l 地方程;(2)求过点A ,B 且与C 地准线相切地圆地方程. 20.(12分)如图,在三棱锥P ABC -中,AB BC == 4PA PB PC AC ====,O 为AC 地中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角地正弦值. 21.(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 地参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩(θ为参数),直线l 地参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 地直角坐标方程;(2)若曲线C 截直线l 所得线段地中点坐标为(1,2),求l 地斜率. 23.[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥地解集; (2)若()1f x ≤,求a 地取值范围. 绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B8.C9.C10.A11.C12.D二、填空题13.2y x = 14.9 15.12-16.三、解答题 17.解:(1)设{}n a 地公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 地通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为−16. 18.解:(1)利用模型①,该地区2018年地环境基础设施投资额地预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年地环境基础设施投资额地预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到地预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年地数据对应地点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年地数据建立地线性模型①不能很好地描述环境基础设施投资额地变化趋势.2010年相对2009年地环境基础设施投资额有明显增加,2010年至2016年地数据对应地点位于一条直线地附近,这说明从2010年开始环境基础设施投资额地变化规律呈线性增长趋势,利用2010年至2016年地数据建立地线性模型ˆ9917.5yt =+可以较好地描述2010年以后地环境基础设施投资额地变化趋势,因此利用模型②得到地预测值更可靠.(ⅱ)从计算结果看,相对于2016年地环境基础设施投资额220亿元,由模型①得到地预测值226.1亿元地增幅明显偏低,而利用模型②得到地预测值地增幅比较合理.说明利用模型②得到地预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)由题意得(1,0)F ,l 地方程为(1)(0)y k x k =->. 设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 地方程为1y x =-.(2)由(1)得AB 地中点坐标为(3,2),所以AB 地垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆地圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆地方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.解:(1)因为4AP CP AC ===,O 为AC 地中点,所以OP AC ⊥,且OP = 连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r地方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u r取平面PAC 地法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r.设平面PAM 地法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|2OB =uu u r n ..解得4a =-(舍去),43a =.所以4()333=--n.又(0,2,PC =-u u u r,所以cos ,4PC =uu u r n . 所以PC 与平面PAM.21.解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞地最小值.①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->.故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.22..解:(1)曲线C 地直角坐标方程为221416x y +=.当cos 0α≠时,l 地直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 地直角坐标方程为1x =.(2)将l 地参数方程代入C 地直角坐标方程,整理得关于t 地方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段地中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 地斜率tan 2k α==-.23.解:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥地解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 地取值范围是(,6][2,)-∞-+∞.21(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a . 解:(1)()e 2x f x x '=-,()e 2x f x ''=-.当ln2x <时,()0f x ''<,当ln2x >时,()0f x ''>,所以()f x '在(,ln 2)-∞单调递减,在(ln 2,)+∞单调递增,故()(ln 2)22ln 20f x f ''≥=->,()f x 在(,)-∞+∞单调递增.因为0x ≥,所以()(0)1f x f ≥=.(2)当0x >时,设2e ()xg x a x=-,则2()()f x x g x =,()f x 在(0,)+∞只有一个零点等价于()g x 在(0,)+∞只有一个零点.3e (2)()x x g x x -'=,当02x <<时,()0g x '<,当2x >时,()0g x '>,所以()g x 在(0,2)单调递减,在(2,)+∞单调递增,故2e ()(2)4g x g a ≥=-.若2e 4a <,则()0g x >,()g x 在(0,)+∞没有零点.若2e 4a =,则()0g x ≥,()g x 在(0,)+∞有唯一零点2x =.若2e 4a >,因为(2)0g <,由(1)知当0x >时,2e 1x x >+,22e 1()1x g x a a x x =->+-,故存在1(0,2)x ∈⊆,使1()0g x >. 4422e e (4)1616a ag a a a a a=->- 2e x x >,版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.LDAYt 。

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。

所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。

2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。

2018年全国Ⅱ卷理科数学真题及答案详解详解

2018年全国Ⅱ卷理科数学真题及答案详解详解

2018年普通高等学校招生全国统一考试(全国卷2)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A .B .C .D .2.已知集合,则中元素的个数为A .9B .8C .5D .43.函数的图像大致为4.已知向量,满足,,则 A .4B .3C .2D .05.双曲线A .B .C .D . 6.在中,,,,则 A .BCD .7.为计算,设计了右侧的程序框图,则在空白框中应填入12i12i+=-43i 55--43i 55-+34i 55--34i 55-+(){}223A x y x y x y =+∈∈Z Z ,≤,,A ()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 22221(0,0)x y a b a b-=>>y =y =y =y x =ABC △cos2C =1BC =5AC =AB =11111123499100S =-+-++-…A .B .C .D .8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .B .C .D .9.在长方体中,,与所成角的余弦值为 A .BCD10.若在是减函数,则的最大值是A .B .C .D .11.已知是定义域为的奇函数,满足.若,则 A .B .0C .2D .5012.已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为A .B .C .D .1i i =+2i i =+3i i =+4i i =+30723=+1121141151181111ABCD A B C D -1AB BC ==1AA 1AD 1DB 15()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C23121314二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2018年高考全国2卷理科数学带答案解析

(word完整版)2018年高考全国2卷理科数学带答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题 理科数学 (全国II卷)参考答案

2018年高考真题 理科数学 (全国II卷)参考答案

20 第(1)小题正确答案及相关解析 20 第(2)小题正确答案及相关解析
Байду номын сангаас 21 第(1)小题正确答案及相关解析 21 第(2)小题正确答案及相关解析
22 第(1)小题正确答案及相关解析 22 第(2)小题正确答案及相关解析
23 第(1)小题正确答案及相关解析 23 第(2)小题正确答案及相关解析
2018 年高考真题 理科数学 (全国 II 卷)参考答案
1~5 D A B B A 6~10 A B C C A 11~12 C D
13.
14. 9 15.
16.
17. 17 第(1)小题正确答案及相关解析
17 第(2)小题正确答案及相关解析
18 第(1)小题正确答案及相关解析
18 第(2)小题正确答案及相关解析 19 第(1)小题正确答案及相关解析 19 第(2)小题正确答案及相关解析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年高考全国 2 卷理科数学 word 版官方答案
16.已知圆锥的顶点为 S ,母线 SA , SB 所成角的余弦值为 7 , SA 与圆锥底面所成角为 45°,若
8
△SAB 的面积为 5 15 ,则该圆锥的侧面积为__________. 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,
A. 1
12
B. 1
14
C. 1
15
D. 1
18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1 , AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为
A. 1
5
B. 5
6
C. 5
5
D. 2
2
10.若 f (x) cos x sin x 在[a, a] 是减函数,则 a 的最大值是
C. 29
D. 2 5
理科数学试题 第 2 页(共 11 页)
2018 年高考全国 2 卷理科数学 word 版官方答案
7.为计算 S 1 1 1 1 1 1 ,设计了右
开始
234
99 100
N 0, T 0
侧的程序框图,则在空白框中应填入
i 1
A. i i 1 B. i i 2 C. i i 3 D. i i 4
投资额 240 220 200 180 160 140 120 100 80 60 40 20 0
209 220 184 171 148 129 122
35 37 42 42 47 53 56 14 19 25
是 i 100 否
N N 1 i
S N T
T T 1 i 1
输出 S
结束
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每
个大于 2 的偶数可以表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取
两个不同的数,其和等于 30 的概率是
1 (a
bLeabharlann 0)的左,右焦点,
A

C
的左顶点,点
P
在过
A
且斜率

3 6
的直线上,
△PF1F2
为等腰三角形,
F1F2 P
120
,则
C
的离心率为
A. 2
3
B. 1
2
C. 1
3
D. 1
4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.曲线 y 2ln(x 1) 在点 (0, 0) 处的切线方程为__________.
2018 年高考全国 2 卷理科数学 word 版官方答案
2018 年高考全国 2 卷理科数学 word 版官方答案
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018 年高考全国 2 卷理科数 学 word 版官方答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和 反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2018 年高考全国 2 卷理科数学 word 版官方答案的全部内容。
理科数学试题 第 1 页(共 11 页)
绝密★启用前
2018 年高考全国 2 卷理科数学 word 版官方答案
2018 年普通高等学校招生全国统一考试
理科数学
本试卷共 23 题,共 150 分,共 4 页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形
A.4
B.3
C.2
D.0
5.双曲线
x2 a2
y2 b2
1 (a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A. y 2x
B. y 3x
C. y 2 x
2
6.在 △ABC 中, cos C 5 , BC 1 , AC 5 ,则 AB
25
D. y 3 x
2
A. 4 2
B. 30
1 2i
A. 4 3 i
55
B. 4 3 i
55
C. 3 4 i
55
D. 3 4 i
55
2.已知集合 A {(x, y) | x2 y2 3, x Z, y Z} ,则 A 中元素的个数为
A.9
B.8
3.函数 f (x) ex ex 的图象大致为
x2
C.5
D.4
4.已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b)
每个试题考生都必须作答。第 22、23 为选考题。考生根据要求作答。 (一)必考题:共 60 分. 17.(12 分)
记 Sn 为等差数列{an} 的前 n 项和,已知 a1 7 , S3 15 . (1)求{an} 的通项公式; (2)求 Sn ,并求 Sn 的最小值.
18.(12 分) 下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿元)的折线图.
A. π
4
B. π
2
C. 3π
4
D. π
11.已知 f (x) 是定义域为 (, ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,
则 f (1) f (2) f (3) f (50)
A. 50
B.0
C.2
D.50
12.已知
F1

F2
是椭圆
x2 C:a2
y2 b2
码区域内。 2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,
字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在
草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1. 1 2i
x 2 y 5≥ 0,
14.若 x, y 满足约束条件 x 2y 3≥ 0, 则 z x y 的最大值为__________.
x 5≤ 0,
15.已知 sin α cos β 1, cos α sin β 0 ,则 sin(α β) __________.
理科数学试题 第 3 页(共 11 页)
相关文档
最新文档