材料分析测试方法-4

合集下载

材料分析测试方法

材料分析测试方法

材料分析测试方法材料分析测试方法是一种用于确定材料的组成成分、结构特征和性能特性的实验方法。

通过对材料进行分析测试,可以提供有关材料的关键信息,为科学研究、工程设计和质量控制等提供数据支持。

以下是几种常用的材料分析测试方法。

1.光学显微镜分析:光学显微镜是一种使用可见光进行观察的显微镜。

通过使用透射或反射光学系统,可以对材料进行观察,并研究其表面形貌、晶体结构和材料中的微小缺陷等信息。

2.扫描电子显微镜分析:扫描电子显微镜(SEM)是一种通过扫描电子束来观察材料的表面形貌和微观结构的显微镜。

SEM可以提供高分辨率的图像,并能够进行化学成分分析、能谱分析和逆向散射电子显微镜等特殊分析。

3.X射线衍射分析:X射线衍射(XRD)是一种通过用高能X射线照射材料,根据材料中晶格原子的间距和位置来分析材料结构的方法。

XRD可以用来确定晶体结构、晶体取向和晶体缺陷等信息。

4.能谱分析:能谱分析是一种通过测量材料在不同能量范围内的辐射或吸收来分析其化学成分的方法。

常见的能谱分析方法包括X射线能谱分析(XPS)、能量色散X射线能谱分析(EDX)、傅里叶变换红外光谱分析(FTIR)等。

5.热分析:热分析是一种通过对材料在加热或冷却过程中的物理和化学变化进行分析的方法。

常见的热分析方法包括差示扫描量热法(DSC)、热重分析(TGA)和热解吸法(TPD)等。

6.压力测试:压力测试是一种通过使用压力传感器和脉冲测定器等设备来测量材料的力学性能和材料的变形特性的方法。

常见的压力测试包括硬度测试、拉伸测试、压缩测试和扭曲测试等。

7.化学分析:化学分析是一种通过对材料进行化学试剂处理和测量来确定其化学成分和化学特性的方法。

常用的化学分析方法包括气相色谱(GC)、液相色谱(HPLC)和质谱分析等。

8.磁性测试:磁性测试是一种通过测量材料在外加磁场下的响应来分析材料磁性的方法。

常见的磁性测试方法包括霍尔效应测量、磁滞回线测量和磁力显微镜测量等。

材料分析测试方法课后答案

材料分析测试方法课后答案

第一章一、选择题1.用来进行晶体结构分析的X射线学分支是()A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称()A.Kα;B. Kβ;C. Kγ;D. Lα。

3. 当X射线发生装置是Cu靶,滤波片应选()A.Cu;B. Fe;C. Ni;D. Mo。

4. 当电子把所有能量都转换为X射线时,该X射线波长称()A.短波限λ0;B. 激发限λk;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题)A.光电子;B. 二次荧光;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,λ0和λk都随之减小。

()2. 激发限与吸收限是一回事,只是从不同角度看问题。

()3. 经滤波后的X射线是相对的单色光。

()4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。

()5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。

()三、填空题1. 当X射线管电压超过临界电压就可以产生X射线和X射线。

2. X射线与物质相互作用可以产生、、、、、、、。

3. 经过厚度为H的物质后,X射线的强度为。

4. X射线的本质既是也是,具有性。

5. 短波长的X射线称,常用于;长波长的X射线称,常用于。

习题1.X射线学有几个分支?每个分支的研究对象是什么?2. 分析下列荧光辐射产生的可能性,为什么?(1)用CuK αX 射线激发CuK α荧光辐射;(2)用CuK βX 射线激发CuK α荧光辐射;(3)用CuK αX 射线激发CuL α荧光辐射。

3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”?4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它?5. 产生X 射线需具备什么条件?6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。

材料现代分析测试方法

材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。

通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。

下面将介绍几种常用的材料现代分析测试方法。

一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。

质谱分析法适用于分析有机物和无机物。

其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。

二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。

不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。

核磁共振谱学适用于有机物和无机物的分析。

由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。

三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。

不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。

红外光谱学适用于有机物和无机物的分析。

它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。

四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。

不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。

X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。

它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。

五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。

扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。

透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。

材料分析测试方法考点总结

材料分析测试方法考点总结

材料分析测试方法考点总结1.化学成分分析化学成分分析是材料分析测试的基础内容之一、它可以通过测定材料中的元素含量来确定材料的化学成分。

常用的化学成分分析方法包括:火花光谱分析、光谱分析、质谱分析、原子光谱分析等。

2.物理性能测试物理性能测试是评估材料力学性质的重要手段。

包括材料的硬度、强度、韧性、弹性模量等。

常用的物理性能测试方法有:拉伸试验、硬度测试、冲击试验、压缩试验、剪切试验等。

3.微观结构分析微观结构分析是检测材料内部组织和晶体结构的重要方法。

常用的微观结构分析方法包括:显微镜观察、扫描电子显微镜(SEM)观察、透射电子显微镜(TEM)观察、X射线衍射(XRD)分析等。

4.表面分析表面分析是研究材料表面化学组成、结构和形貌的重要手段。

主要包括表面形貌观察和分析、表面成分分析、表面组织分析等。

常用的表面分析方法有:扫描电子显微镜(SEM)观察、能谱分析(EDS)、X射线光电子能谱(XPS)分析、原子力显微镜(AFM)观察等。

5.热分析热分析是通过对材料在不同温度下的热响应进行测定和分析,来研究材料热性能的一种方法。

典型的热分析方法包括:热重分析(TGA)、差热分析(DTA)、差示扫描量热分析(DSC)等。

6.包装材料测试包装材料测试是对包装材料的物理性能、化学性能、机械性能、耐久性能等进行测试评估的一种方法。

常用的包装材料测试方法有:抗拉强度测试、撕裂强度测试、温湿度测试、冲击测试、水汽透过性测试等。

7.表征技术表征技术是通过测定和分析材料的性质和性能,来获得材料的各种特征和参数的方法。

常用的表征技术包括:拉曼光谱、红外光谱、紫外-可见分光光度计、液相色谱-质谱分析等。

总结而言,材料分析测试方法主要涵盖了化学成分分析、物理性能测试、微观结构分析、表面分析、热分析、包装材料测试和表征技术。

掌握这些测试方法,可以有效评估和控制材料的质量、性能和性质,为材料科学和工程提供有力支持。

材料分析测试方法部分课后习题答案

材料分析测试方法部分课后习题答案

第一章X射线物理学根底2、假设X射线管的额定功率为1.5KW,在管电压为35KV时,容许的最大电流是多少?答:1.5KW/35KV=0.043A .4、为使Cu靶的K 3线透射系数是K〞线透射系数的1/6,求滤波片的厚度.答:因X光管是Cu靶,应选择Ni为滤片材料.查表得:科m a =49.03cm2 /g, m 3 = 290cm2/g, 有公式,,,故:,解得:t=8.35um t6、欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/ 入Vk=6.626 X10-34 >2.998 M08/(1.602 M0-19 X0.71 M0-10)=17.46(kv)入0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm)其中h为普郎克常数,其值等于 6.626 X10-34e为电子电荷,等于1.602 X10-19C故需加的最低管电压应声7.46(kv),所发射的荧光辐射波长是0.071纳米.7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应答:⑴ 当x射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同, 这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射.⑵当x射线经束缚力不大的电子或自由电子散射后, 可以得到波长比入射x射线长的X射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射.⑶一个具有足够能量的x射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系x射线,这种由x射线光子激发原子所发生的辐射过程,称荧光辐射.或二次荧光.⑷指x射线通过物质时光子的能量大于或等于使物质原子激发的能量, 如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所彳^的功W,称此时的光子波长入称为K系的吸收限.⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应.第二章X射线衍射方向2、下面是某立方晶第物质的几个晶面, 试将它们的面间距从大到小按次序重新排列:(123 ), (100) , (200) , (311 ) , ( 121 ) , ( 111 ) , (210) , (220) , ( 130), (030), ( 221 ), (110).答:立方晶系中三个边长度相等设为a,那么晶面间距为d=a/那么它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、(311 )、( 123).4、〞-Fe属立方晶体,点阵参数a=0.2866 .如用CrKoX射线(入=0.2291mm )照射,试求(110)、(200)及(211)可发生衍射的掠射角.答:立方晶系的晶面间距:=a / ,布拉格方程:2dsin 0 =入,故掠射角0 =arcsin (入/2 ),由以上公式得:2d(110)sin 0 1=入,得0 1=34.4 °,同理0 2=53.1 °, 0 3=78.2 °.6、判别以下哪些晶面属于[111]晶带:(110), (231 ) , (231 ), (211 ) , (101 ), (133), (112), (132) , (011 ), (212).答:(110)、(231)、(211)、(112)、(101)、(011)属于[111]晶带.由于它们符合晶带定律公式:hu+kv+lw=07、试计算(311 )及(132)的共同晶带轴.答:由晶带定律:hu+kv+lw=0 ,得:-3u+v+w=0 (1) , -u-3v+2w=0 (2), 联立两式解得:w=2v, v=u,化简后其晶带轴为:[112].第三章X射线衍射强度1、用单色X射线照射圆柱柱多晶体试样, 其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录?答:当单色X射线照射圆柱柱多晶体试样时,衍射线将分布在一组以入射线为轴的圆锥而上.在垂直于入射线的平底片所记录到的衍射把戏将为一组同心圆. 此种底片仅可记录局部衍射圆锥,故通常用以试样为轴的圆筒窄条底片来记录.2、原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系?答:(1)原子散射因数f是一个原子中所有电子相干散射波的合成振幅与单个电子相干散射波的振幅的比值.它反映了原子将X射线向某一个方向散射时的散射效率.(2)原子散射因数与其原子序数有何关系, Z越大,f越大.因此,重原子对X射线散射的水平比轻原子要强.3、洛伦兹因数是表示什么对衍射强度的影响?其表达式是综合了哪几个方面考虑而得出的?答:洛伦兹因数是表示几何条件对衍射强度的影响. 洛伦兹因数综合了衍射积分强度, 参加衍射的晶粒分数与单位弧长上的积分强度.4、多重性因数的物理意义是什么?某立方第晶体,其{100}的多重性因数是多少?如该晶体转变为四方系,这个晶体的多重性因数会发生什么变化?为什么?答:(1)表示某晶面的等同晶面的数目.多重性因数越大,该晶面参加衍射的几率越大,相应衍射强度将增加.(2)其{100}的多重性因子是6; (3)如该晶体转变为四方晶系多重性因子是4; (4)这个晶面族的多重性因子会随对称性不同而改变.6、多晶体衍射的积分强度表示什么?今有一张用CuKa摄得的鸨〔体心立方〕的德拜相,试计算出头4根线的相对积分强度〔不计算A〔 3和e-2M,以最强线的强度为100〕.头4根线的.值如下:答:多晶体衍射的积分强度表示晶体结构与实验条件对衍射强度影响的总和I = I0832 卡〔e2 mc2 〕 2 V VC2 P|F|2 〔f〕〔 @A〔昵-2M即:查附录表 F 〔p314〕,可知:20.20 Ir = P F 2 1+COS2 0 sin2 tecs 0 = 14.12; 29.20 Ir =P F 21+COS2 0 sin2 6cos 0 = 6.135 ; 36.70 Ir = P F 2 1+COS2 0 sin2 Scos 0 = 3.777 ; 43.60Ir = P F 2 1+COS2 0 sin2 Qcos 0 = 2.911不考虑A〔9〕〕、e-2M、P 和|F|2 I1=100; I2=6.135/4.12=43.45; I3=3.777/14.12=26.75;I4=2.911/4.12=20.62头4根线的相对积分强度分别为100、43.45、26.75、20.26.第四章多晶体分析方法2、同一粉末相上背射区线条与透射区线条比拟起来其.较高还是较低?相应的d较大还是较小?既然多晶粉末的晶体取向是混乱的,为何有此必然的规律.答:背射区线条与透射区线条比拟, .较高,相应的d较小.产生衍射线必须符合布拉格方程,2dsin 0= %对于背射区属于2.高角度区,根据d= "2sin Q.越大,d越小.3、衍射仪测量在入射光束、试样形状、试样吸收以及衍射线记录等方面与德拜法有何不同?答:〔1〕入射X射线的光束:都为单色的特征X射线,都有光栏调节光束.不同:衍射仪法:采用一定发散度的入射线,且聚焦半径随 2 0变化;德拜法:通过进光管限制入射线的发散度.〔2〕试样形状:衍射仪法为平板状,德拜法为细圆柱状.〔3〕试样吸收:衍射仪法吸收时间短,德拜法吸收时间长,约为10〜20h .〔4〕记录方式:衍射仪法采用计数率仪作图,德拜法采用环带形底片成相,而且它们的强度〔I〕对〔2.〕的分布〔I-2.曲线〕也不同;4、测角仪在采集衍射图时, 如果试样外表转到与入射线成30.角,那么计数管与入射线所成角度为多少?能产生衍射的晶面,与试样的自由外表呈何种几何关系?答:当试样外表与入射X射线束成30.角时,计数管与入射线所成角度为60.,能产生衍射的晶面与试样的自由外表平行.第八章电子光学根底1、电子波有何特征?与可见光有何异同?答:〔1〕电子波与其它光一样,具有波粒二象性. 〔2〕可见光的波长在390 —760nm ,在常用加速电压下,电子波的波长比可见光小5个数量级.2、分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦水平的影响.答:电磁透镜的聚焦原理:利用通电短线圈制造轴对称不均匀分布磁场,是进入磁场的平行电子束做圆锥螺旋近轴运动.电磁透镜的励磁安匝数越大,电子束偏转越大,焦距越短.3、电磁透镜的像差是怎样产生的?如何来消除和减少像差?答:电磁透镜的像差包括球差、像散和色差.(1)球差即球面像差,是磁透镜中央区和边沿区对电子的折射水平不同引起的,增大透镜的激磁电流可减小球差.(2)像散是由于电磁透镜的轴向磁场不对称旋转引起.可以通过引入一强度和方位都可以调节的矫正磁场来进行补偿(3)色差是电子波的波长或能量发生一定幅度的改变而造成的.稳定加速电压和透镜电流可减小色差.4、说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提升电磁透镜的分辨率?答:(1)光学显微镜分辨本领主要取决于照明源的波长;衍射效应和像差对电磁透镜的分辨率都有影响.(2)使波长减小,可降低衍射效应.考虑与衍射的综合作用,取用最正确的孔径半角.5、电磁透镜景深和焦长主要受哪些因素影响?说明电磁透镜的景深大、焦长长,是什么因素影响的结果?假设电磁透镜没有像差, 也没有衍射埃利斑,即分辨率极高,此时它们的景深和焦长如何?答:(1)电磁透镜景深为Df=2 Ar0/tan %受透镜分辨率和孔径半角的影响.分辨率低,景深越大;孔径半角越小,景深越大.焦长为DL=2 Ar0加2/ , M为透镜放大倍数.焦长受分辨率、孔径半角、放大倍数的影响.当放大倍数一定时,孔径半角越小焦长越长.(2)透镜景深大,焦长长,那么一定是孔径半角小,分辨率低. (3)当分辨率极高时,景深和焦长都变小.第九章透射电子显微镜1、透射电镜主要由几大系统构成?各系统之间关系如何?答:(1)由三大系统构成,分别为电子光学系统、电源与限制系统和真空系统.(2)电子光学系统是透射电镜的核心, 为电镜提供射线源, 保证成像和完成观察记录任务.供电系统主要用于提供电子枪加速电子用的小电流高压电源和透镜激磁用的大电流低压电源.真空系统是为了保证光学系统时为真空, 预防样品在观察时遭到污染, 使观察像清楚准确.电子光学系统的工作过程要求在真空条件下进行.2、照明系统的作用是什么?它应满足什么要求?答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成.它的作用是提供一;.束亮度高、照明孔经角小、平行度好、束流稳定的照明源.要求:入射电子束波长单一,色差小,束斑小而均匀,像差小.3、成像系统的主要构成及其特点是什么?答:成像系统主要是由物镜、中间镜和投影镜组成.(1)物镜:物镜是一个强激磁短焦距的透镜,它的放大倍数较高,分辨率高.(2)中间镜:中间镜是一个弱激磁的长焦距变倍透镜,可在0到20倍范围调节.(3)投影镜:和物镜一样,是一个短焦距的强激磁透镜.4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并画出光路图.答:如果把中间镜的物平面和物镜的像平面重合, 那么在荧光屏上得到一幅放大像, 这就是电子显微镜中的成像操作,如图(a)所示.如果把中间镜的物平面和物镜的后焦面重合,那么在荧光屏上得到一幅电子衍射把戏, 这就是电子显微镜中的电子衍射操作, 如图(b)所示.5、样品台的结构与功能如何?它应满足哪些要求?答:结构:有许多网孔,外径3mm的样品铜网.(1)样品台的作用是承载样品,并使样品能作平移、倾斜、旋转,以选择感兴趣的样品区域或位向进行观察分析. 透射电镜的样品台是放置在物镜的上下极靴之间, 由于这里的空间很小,所以透射电镜的样品台很小,通常是直径3mm的薄片.(2)对样品台的要求非常严格. 首先必须使样品台牢固地夹持在样品座中并保持良好的热;在2个相互垂直方向上样品平移最大值为十mm ;样品平移机构要有足够的机械密度,无效行程应尽可能小.总而言之,在照相暴光期间样品图像漂移量应相应情况下的显微镜的分辨率.6、透射电镜中有哪些主要光阑,在什么位置?其作用如何?答:(1)透镜电镜中有三种光阑:聚光镜光阑、物镜光阑、选区光阑.(2)聚光镜的作用是限制照明孔径角,在双聚光镜系统中,它常装在第二聚光镜的下方;物镜光阑通常安放在物镜的后焦面上, 挡住散射角较大的电子, 另一个作用是在后焦面上套取衍射来的斑点成像;选区光阑是在物品的像平面位置,方便分析样品上的一个微小区域.7、如何测定透射电镜的分辨率与放大倍数. 电镜的哪些主要参数限制着分辨率与放大倍数?答:(1)分辨率:可用真空蒸镀法测定点分辨率;利用外延生长方法制得的定向单晶薄膜做标样,拍摄晶格像,测定晶格分辨率.放大倍数:用衍射光栅复型为标样,在一定条件下拍摄标样的放大像,然后从底片上测量光栅条纹像间距, 并与实际光栅条纹间距相比即为该条件下的放大倍数.(2)透射电子显微镜分辨率取决于电磁透镜的制造水平,球差系数,透射电子显微镜的加速电压.透射电子显微镜的放大倍数随样品平面高度、加速电压、透镜电流而变化.8、点分辨率和晶格分辨率有何不同?同一电镜的这两种分辨率哪个高?为什么?答:(1)点分辨率像是实际形貌颗粒, 晶格分辨率测定所使用的晶格条纹是透射电子束和衍射电子束相互干预后的干预条纹, 其间距恰好与参与衍射的晶面间距相同, 并非晶面上原子的实际形貌相.(2)点分辨率的测定必须在放大倍数时测定,可能存在误差;晶格分辨率测定图需要先知道放大倍数,更准确.所以,晶格分辨率更高.第十章电子衍射1、分析电子衍射与X射线衍射有何异同?答:电子衍射的原理和X射线相似,是以满足(或根本满足)布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射把戏在几何特征上也大致相似. 但电子波作为物质波,又有其自身的特点:(1)电子波的波长比X射线短得多,通常低两个数量级;(2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易点阵会沿着样品厚度方向延伸成杆状,因此,增加了倒易点阵和爱瓦尔德球相交截的时机, 结果使略微偏离布拉格条件的电子束也可发生衍射.(3)因电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角较小的范围内反射球的球面可以近似地看成是一个平面, 从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面上.(4)原子对电子的散射水平远高于它对X射线的散射水平(约高出四个数量级)2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?答:倒易点阵是在正点阵的基石^上三个坐标轴各自旋转90度而得到的.关系:零层倒易截面与电子衍射束是重合的, 其余的截面是在电子衍射斑根底上的放大或缩小.3、用爱瓦尔德图解法证实布拉格定律.答:作一个长度等于1/入的矢量K0,使它平行于入射光束,并取该矢量的端点O作为倒点阵的原点.然后用与矢量K0相同的比例尺作倒点阵.以矢量K0的起始点C为圆心,以1/入为半径作一球,那么从(HKL)面上产生衍射的条件是对应的倒结点HKL (图中的P点)必须处于此球面上,而衍射线束的方向即是C至P点的联接线方向,即图中的矢量K的方向.当上述条件满足时,矢量(K- K0)就是倒点阵原点O至倒结点P (HKL)的联结矢量OP, 即倒格失R* HKL.于是衍射方程K- K0=R* HKL得到了满足.即倒易点阵空间的衍射条件方程成立.又由g*=R* HK , 2sin d/ Fg* , 2sin d/ 入=1/d , 2dsin 0= X,证毕.9、说明多晶、单晶及非单晶衍射把戏的特征及形成原理.答:单晶衍射斑是零层倒易点阵截面上的斑点, 是有规律的斑点;多晶衍射斑是由多个晶面在同一晶面族上构成的斑点, 构成很多同心圆,每个同心圆代表一个晶带;非晶衍射不产生衍射斑,只有电子束穿过的斑点.第十一章晶体薄膜衍衬成像分析1、制备薄膜样品的根本要求是什么?具体工艺过程如何?双喷减薄与离子减薄各适用于制备什么样品?答:1、根本要求:〔1〕薄膜样品的组织结构必须和大块样品的相同,在制备过程中,组织结构不发生变化;〔2〕相对于电子束必须有足够的透明度〞;〔3〕薄膜样品应有一定的强度和刚度,在制备、夹持和操作过程中不会引起变形和损坏;〔4〕在样品制备的过程中不允许外表氧化和腐蚀.2、工艺为:〔1〕从实物或大块试样上切割厚度为0.3mm-0.5mm 厚的薄皮;〔2〕样品薄皮的预先减薄,有机械法和化学法两种;〔3〕最终减薄.3、离子减薄:1〕不导电的陶瓷样品;2〕要求质量高的金属样品;3〕不宜双喷电解的金属与合金样品.双喷减薄:1〕不易于腐蚀的裂纹端试样;2〕非粉末冶金样式;3〕组织中各相电解性能相差不大的材料;4〕不易于脆断、不能清洗的试样.2、什么是衍射衬度?它与质厚衬度有什么区别?答:由于样品中不同位向的晶体的衍射条件不同而造成的衬度差异叫做衍射衬度. 质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的.4、什么是消光距离?影响消光距离的主要物性参数和外界条件是什么?答:〔1〕由于衍射束与透射之间存在强烈的相互作用, 晶体内透射波与入射波的强度在晶体深度方向上发生周期性的振荡,此振荡的深度周期叫消光距离.〔2〕影响因素:晶体特征,成像透镜的参数.9、说明挛晶与层错的衬度特征,并用各自的衬度形成原理加以解释.答:〔1〕挛晶的衬度特征是:挛晶的衬度是平直的,有时存在台阶,且晶界两侧的晶粒通常显示不同的衬度,在倾斜的晶界上可以观察到等厚条纹.〔2〕层错的衬度是电子束穿过层错区时电子波发生位相改变造成的.其一般特征是:1〕平行于薄膜外表的层错衬度特征为,在衍衬像中有层错区域和无层错区域将出现不同的亮度,层错区域将显示为均匀的亮区或暗区. 2〕倾斜于薄膜外表的层错,其衬度特征为层错区域出现平行的条纹衬度. 3〕层错的明场像,外侧条纹衬度相对于中央对称,当时,明场像外侧条纹为亮衬度,当时,外侧条纹是暗的;而暗场像外侧条纹相对于中央不对称, 外侧条纹一亮一暗.4〕下外表处层错条纹的衬度明暗场像互补, 而上外表处的条纹衬度明暗场不反转.10、要观察钢中基体和析出相的组织形态,同时要分析其晶体结构和共格界面的位向关系, 如何制备样品?以怎样的电镜操作方式和步骤来进行具体分析?答:把析出相作为第二相来对待,把第二相萃取出来进行观察,分析晶体结构和位向关系;利用电子衍射来分析,用选区光阑套住基体和析出相进行衍射, 获得包括基体和析出相的衍射把戏进行分析,确定其晶体结构及位向关系.第十三章扫描电子显微镜1、电子束入射固体样品作用时会产生哪些信号?它们各具有什么特点?答:主要有六种:1〕背散射电子:能量高;来自样品外表几百nm深度范围;其产额随原子序数增大而增多.用作形貌分析,显示原子序数称度,定性地用作成分分析2〕二次电子:能量较低;对样品外表状态十分敏感.不能进行成分分析.主要用于分析样品表面形貌.3〕吸收电子:其衬度恰好和SE或BE信号调制图像衬度相反;与背散射电子的衬度互补. 吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析.4〕透射电子:透射电子信号由微区的厚度、成分和晶体结构决定.可进行微区成分分析.5〕特征X射线:用特征值进行成分分析,来自样品较深的区域.6〕俄歇电子:各元素的俄歇电子能量值很低;来自样品外表1 —2nm范围.它适合做外表分析.2、扫描电镜的分辨率受哪些因素影响?用不同信号成像时,其分辨率有何不同?所谓扫描电镜的分辨率是指用何种信号成像时的分辨率?答:在其他条件相同的情况下, 电子束的束斑大小、检测信号的类型以及检测部位的原子序数是影响扫描电镜分辨率的三大因素. 不同信号成像时,其作用体不同,二次电子分辨率最高,其最用的体积最小.所以扫描电镜的分辨率用二次电子像分辨率表示.3、扫描电镜的成像原理与透射电镜有何不同?答:不用电磁透镜放大成像, 而是以类似电视摄影显像的方式, 利用细聚焦电子束在样品表面扫描激发出来的物理信号来调质成像的.4、二次电子像和背射电子像在显示外表形貌衬度时有何相同与不同之处?答:在成像过程中二者都可以表示外表形貌;二次电子像作用区域小, 对外表形貌的作用力大;背散射电子作用区域大,对其外表形貌作用水平小.第十五章电子探针显微分析1、电子探针仪与扫描电镜有何异同?电子探针如何与扫描电镜和透射电镜配合进行组织结构与微区化学成分的同位分析?答:二者结构上大体相同, 但是探测器不同,电子探针检测仪根据检测方式有能谱仪和波谱仪,扫描电镜探测器主要是光电倍增管,对电子和背散射电子.电子探针仪与扫描电镜再加一个能谱仪进行组合.2、波谱仪和能谱仪各有什么优缺点?答:〔1〕波谱仪是用来检测X射线的特征波长的仪器,而能谱仪是用来检测X射线的特征能量的仪器.与波谱仪相比能谱仪:〔2〕优点:1 〕能谱仪探测X射线的效率高;2〕在同一时间对分析点内所有元素X射线光子的能量进行测定和计数, 在几分钟内可得到定性分析结果, 而波谱仪只能逐个测量每种元素特征波长.3〕结构简单,稳定性和重现性都很好;4〕不必聚焦,对样品外表无特殊要求,适于粗糙外表分析.〔3〕缺点:1〕分辨率低;2〕能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素;3〕能谱仪的Si〔Li〕探头必须保持在低温态,因此必须时时用液氮冷却.4、要分析钢中碳化物成分和基体中碳含量,应选用哪种电子探针仪?为什么?答:对碳元素〔6号元素〕能谱仪分析仪误差大,应用波谱仪;能谱仪分析轻元素检测困难且精度低,波谱仪可分析原子序数从4到92间的所有元素.5、要在观察断口形貌的同时, 分析断口上粒状夹杂物的化学成分, 选用什么仪器?用怎样的操作方式进行具体分析?答:应选用配置有波谱仪或能谱仪的扫描电镜. 具体的操作分析方法是:通常采用定点分析,也可采用线扫描方式.。

材料分析测试方法(04)

材料分析测试方法(04)

第四章 材料现代分析测试方法概述一、填空1、常见的衍射分析主要有3种,即( )、( )和( )。

2、常见的3种电子显微分析是( )、( )和( )。

3、依据入射电子的能量大小,电子衍射分为( )和( );依据电子束是否穿透样品,电子衍射分为( )和( )。

二、选择1、下列分析方法中,( )可用于区别FeO 、Fe 2O 3和Fe 3O 4。

A 、原子发射光谱;B 、扫描电镜;C 、原子吸收光谱;D 、穆斯堡尔谱2、下列分析方法中,( )可用于测定Ag 的点阵常数。

A 、X 射线衍射分析;B 、红外光谱;C 、原子吸收光谱;D 、紫外光电子能谱3、下列分析方法中,( )可用于测定高纯Y 2O 3中稀土杂质元素的质量分数。

A 、X 射线衍射分析;B 、透射电镜;C 、原子吸收光谱;D 、紫外可见吸收光谱4、砂金中含金量的检测,可选用下列方法中的( )。

A 、X 射线荧光光谱;B 、原子力显微镜;C 、红外吸收光谱;D 、电子衍射5、黄金制品中含金量的无损检测,可选用下列方法中的( )。

A 、电子探针;B 、X 射线衍射分析;C 、俄歇电子能谱;D 、热重法6、几种高聚物组成之混合物的定性分析与定量分析,可选用下列方法中的( )。

A 、描隧道显微镜;B 、透射电镜;C 、红外吸收光谱;D 、X 射线光电子能谱7、某薄膜样品中极小弥散颗粒(直径远小于1μm )的物相鉴定,可以选择下列方法中的( )。

A 、X 射线衍射分析;B 、原子吸收光谱;C 、差示扫描量热法;D 、分析电子显微镜8、验证奥氏体(γ)转变为马氏体(α)的取向关系(即西山关系):γα)111//()011(,γα]110//[]001[,可选用下列方法中的( )。

A 、X 射线衍射;B 、红外光谱;C 、透射电镜;D 、俄歇电子能谱9、淬火钢中残留奥氏体质量分数的测定,可选用下列方法中的( )。

A 、X 射线衍射;B 、红外光谱;C 、透射电镜;D 、俄歇电子能谱10、镍-铬合金钢回火脆断口晶界上微量元素锑的分布(偏聚)的研究,可以选择下列方法中的( )。

材料测试分析方法(究极版)

材料测试分析方法(究极版)

材料测试分析⽅法(究极版)绪论1分析测试技术?获取物质的组成、含量、结构、形态、形貌以及变化过程的技术和⽅法。

2材料分析测试的思路从宏观到微观形貌(借助显微放⼤技术)从外部到内在结构(借助X射线衍射技术)从⽚段到整体(借助红外,紫外,核磁,X射线光谱,光电⼦能谱等)3分析测试技术的发展的三个阶段?阶段⼀:分析化学学科的建⽴;主要以化学分析为主的阶段。

阶段⼆:分析仪器开始快速发展的阶段阶段三:分析测试技术在快速、⾼灵敏、实时、连续、智能、信息化等⽅⾯迅速发展的阶段4现代材料分析的内容及四⼤类材料分析⽅法?表⾯和内部组织形貌。

包括材料的外观形貌(如纳⽶线、断⼝、裂纹等)、晶粒⼤⼩与形态、各种相的尺⼨与形态、含量与分布、界⾯(表⾯、相界、晶界)、位向关系(新相与母相、孪⽣相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应⼒。

晶体的相结构。

各种相的结构,即晶体结构类型和晶体常数,和相组成。

化学成分和价键(电⼦)结构。

包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。

有机物的分⼦结构和官能团。

形貌分析、物相分析、成分与价键分析与分⼦结构分析四⼤类⽅法。

5化学成分分析所⽤的仪器?化学成分的表征包括元素成分分析和微区成分分析。

所⽤仪器包括:光谱(紫外光谱、红外光谱、荧光光谱、激光拉曼光谱等)⾊谱(⽓相⾊谱、液相⾊谱、凝胶⾊谱等)。

热谱(差热分析、热重分析、⽰差扫描量热分析等)。

表⾯分析谱(X射线光电⼦能谱、俄歇电⼦能谱、电⼦探针、原⼦探针、离⼦探针、激光探针等)。

原⼦吸收光谱、质谱、核磁共振谱、穆斯堡尔谱等。

6.现代材料测试技术的共同之处在哪⾥?除了个别的测试⼿段(扫描探针显微镜)外,各种测试技术都是利⽤⼊射的电磁波或物质波(如X射线、⾼能电⼦束、可见光、红外线)与材料试样相互作⽤后产⽣的各种各样的物理信号(射线、⾼能电⼦束、可见光、红外线),探测这些出射的信号并进⾏分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。

材料分析测试方法

材料分析测试方法

材料现代分析方法:(基于电磁辐射及运动粒子束与物质相互作用的各类性质建立)光谱分析、衍射分析、电子能谱分析、电子显微分析;(基于物理性质、电化学性质与材料的特征关系)色谱分析、质谱分析、电化学分析、热分析。

X射线产生的条件:1.以某种方式得到一定量的自由电子2.在高真空中,在高压电场作用下迫使这些电子作定向高速运动3.在电子运动路径上设障碍物,以急剧改变电子的运动速度连续谱的变化规律的产生机理:当X射线管两级间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰击,由于阳极的阻碍作用,电子将产生极大的负加速度。

根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续Ⅹ射线谱。

量子理论认为,当能量为eV的电子与阳极靶的原子碰撞时,电子损失自已的能量,其动能的一部份以x射线光子的形式辐射出来,其余部份转变为热能。

在与阳极把相碰的众多电子中,有的辐射一个光子,有的则多次碰撞辐射多个能量各异的光子,它们的总和就构成连续谱。

激发电压:当管电压超过某临界值时,特征谱才会出现,该临界电压称激发电压。

特征X射线谱的频率只与阳极靶物质的原子结构有关,而与其他外界因素无关,是物质的固有特性。

1913-1914年莫塞莱发现物质发出的特征波长与它本身的原子序数存在下列关系:1/λ=K(Z−σ),式中,K和σ为常数。

该式称莫塞莱定律,它是X射线光谱分析的基本依据,是X射线光谱学的重要公式。

根据莫塞莱定律,将实验结果所得到的未知元素的特征X射线谱线波长,与已知的元素波长相比较,可以确定它是何种元素。

X射线与物质的相互作用:一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果,并且吸收是造成强度衰减的主要原因。

X射线的散射(相干散射、不相干散射),X射线的吸收(光电效应、俄歇效应)俄歇效应:俄歇在1925年发现,原子中K层的一个电子被打出后,它就处于K激发状态,其能量为E K。

材料现代分析测试方法优选全文

材料现代分析测试方法优选全文
(5)黍占结固化性茹结固化性高分子材料、陶瓷材料、复合材 料及粉末冶金材料,大多数靠茹结剂在一定条件下将各组分 茹结固化而成。因此,这些材料应注意在成型过程中,各组 分之间的茹结固化倾向,才能保证顺利成型质量。
上一页 下一页 返回
19.1 材料选择的原则
3.材料的选择应力求使零件生产的总成本最低 除了使用性能与工艺性能外,经济性也是选材必须考虑的重要
学、物理、化学等性能。它是保证该零件可靠工作的基础。 对一般机械零件来说,选材时主要考虑的是其机械性能(力学 性能)。而对于非金属材料制成的零件,则还应该考虑其工作 环境对零件性能的影响。 零件按力学性能选材时,首先应正确分析零件的服役条件、 形状尺寸及应力状态,结合该类零件出现的主要失效形式, 找出该零件在实际使用中的主要和次要的失效抗力指标,以 此作为选材的依据。根据力学计算,确定零件应具有的主要 力学性能指标。能够满足条件的材料一般有多种,再结合其 他因素综合比较,选择出合适材料。
阻而停止下来。 X射线发生装置示意图
下一页 返回
(二)X射线的性质
X射线从本质上来说,和无线电波、可见光、γ射线等一样,也是电磁波,其波长 范围在0 001~100 nm之间,介于紫外线和γ射线之间,但没有明显的分界。
上一页 返回
(二)特征谱
特征X射线产生原理图 特征谱的相对强度是由电子在各能级之间的跃迁几率决定的,还与跃 迁前原来壳层上的电子数多少有关 。 由于愈靠近原子核的内层电子的结合能愈大,所以击出同一靶材原子
上一页 下一页 返回
项目十九 材料及热处理选择
19.1 材料选择的原则 19.2 材料选择的一般步骤
19.1 材料选择的原则
机械零件的选材是一项十分重要的工作。选材是否恰当,特别 是一台机器中关键零件的选材是否恰当,将直接影响到产品的 使用性能、使用寿命及制造成本。选材不当,严重的可能导致 零件的完全失效。设计人员在进行零件的选材时,应对该零件 的服役条件,应具备的主要性能指标。能满足要求的常用材料 的性能特点、加工工艺性及成本高低等。进行全面分析,综合 考虑。

现代材料分析测试方法

现代材料分析测试方法

现代材料分析测试方法1. 引言现代材料分析测试方法是研究材料的成分、结构和性质的重要手段。

随着科技的不断发展,材料分析测试方法也在不断创新和完善。

本文将介绍几种常见的现代材料分析测试方法,包括质谱分析、光谱分析、电子显微镜等。

2. 质谱分析质谱分析是一种通过量子力学原理和物质中的粒子相互作用来研究材料成分的方法。

质谱分析主要通过测量材料中原子、分子或离子的质量和相对丰度来确定其组成。

质谱分析可以用于确定材料中的元素、同位素分布以及化合物的结构等。

现代质谱分析技术包括质谱仪、气相色谱质谱联用技术等。

质谱分析方法的不断发展和创新使得其在材料分析中的应用范围越来越广。

3. 光谱分析光谱分析是一种通过测量物质与电磁辐射的相互作用来研究材料的方法。

光谱分析可以用于确定材料的结构、成分和性质。

光谱分析涉及的范围很广,包括可见光谱、红外光谱、紫外光谱、拉曼光谱等。

每种光谱分析方法都有其特定的应用领域和优势。

例如,可见光谱可以用于分析有机化合物的吸收光谱,红外光谱可以分析材料中的官能团等。

4. 电子显微镜电子显微镜是一种利用电子束来观察和研究材料的仪器。

电子显微镜可以提供高分辨率的图像,可以观察到材料的表面形貌和内部结构。

电子显微镜可以分为扫描电子显微镜(SEM)和透射电子显微镜(TEM)两种类型。

扫描电子显微镜主要用于观察材料的表面形貌和形态,透射电子显微镜则可以用于观察材料的晶体结构和原子排列等。

5. X射线衍射X射线衍射是研究材料结构的重要手段。

通过将射线照射到材料上,观察射线在材料中的衍射模式,可以得到材料的晶体结构和晶格参数等信息。

X射线衍射方法适用于研究晶体材料,对于无定形材料或非晶态材料的研究有一定的局限性。

随着X射线源和探测器的不断改进,X射线衍射方法的分辨率和灵敏度得到了大幅提高。

6. 热分析热分析是研究材料热性质的方法,包括热重分析(TG)、差热分析(DSC)等。

热重分析可以测量材料在不同温度下的质量变化,用于分析材料的热稳定性和热分解过程。

材料测试技术测资料4

材料测试技术测资料4

1.电子束入射固体样品表面会激发那些信号?它们有那些特点和用途?1背射电子:被固体原子核反弹回来的部分入射电子,弹性背散射:散射角大于90°,能量无变化;非弹背散射:入射电子和核外电子撞击产生,能量方向都变化,表层几百纳米深度,原子序数衬度,形貌衬度,定性成分分析,2二次电子:被入射电子轰出来的核外电子,表层5-10nm深度,表面形貌敏感衬度,分辨率高(扫描电镜分辨率),有效显示样品表面形貌3吸收电子:入射电子进入样品后经过多次非弹性散射能量消失殆尽最后被样品吸收(无透射),与背散射电子衬度互补,反映原子序数定性微区成分分析4透射电子:入射电子穿过薄试样部分,由微区厚度成分晶体结构决定,有些特征能量损失的非弹配合电子能量分析器进行微区成分分析5特征X射线:原子内层电子受激发后,能级跃迁中直接释放的具有特征能量和波长的电磁波辐射,原子序数与特征能量对应关系,微区元素分析6俄歇电子:原子内层电子跃迁过程中释放出的能量将核外空位层电子打出成为二次电子,平均自由程小,俄歇电子特征值,试样表面有限原子层发出,表层化学成分分析2.扫描电镜的分辨率影响因素不同的信号分辨率扫描电镜的分辨率(1)影响因素:入射电子束束斑直径入射束在样品中中扩展效应,信噪比杂散电磁场和机械震动等(检测信号类型,检测部位原子序数)(2)二次电子扫描象分辨本领最高,约等于入射电子束直径,一般为6-10nm,背射电子50-200,吸收电子和X射线100-1000(3)二次电子3.扫描电镜的成像原理与透射电镜有何不同,电子光学系统的排列顺序如何?扫描电镜:逐点成像,把样品表面不同特征,按顺序成比例转化成视频信号完成一帧图像,电子枪发出电子束经栅级聚焦后在加速电压作用下,经过两三个电磁透镜组成的电子光学系统汇聚成细的电子束聚焦样品表面。

透射电镜:透射电镜使用电磁透镜放大成像。

由电子枪和两个聚光镜组成照明系统,产生一束聚焦很细,亮度高,发散度小的电子束,由物镜、中间镜和投影镜三个透镜组成三级放大成像系统,最后在屏幕上得到电子衍射谱4.二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处?相同:都是利用电子信号的强弱来形成形貌衬度不同:1背散射电子是在一个较大的作用体积呗入射电子激发出的,成像单元大,分辨率较二次低2背散射电子能量高,以直线逸出,因而样品背部电子无法检测到,成一片阴影,衬度较大无法分辨细节,二次电子可以利用在检测器收集光栅上加正电压来吸收较低能量的二次电子,使背部及凹坑处逸出电子能以弧状运动轨迹被吸收,使图像层次增加,细节清晰5.二次电子像景深很大,样品凹坑底部都能清楚地显示出来,其原因何在?二次电子对样品表面形貌敏感度强,空间分辨率高,信号收集率高,形成立体在检测器收集光栅上加正电压来吸收较低能量的二次电子,使背部及凹坑处逸出电子能以弧状运动轨迹进入闪烁体被吸收,使图像层次增加,细节清晰6.电子探针仪与扫描电镜有何异同?相同:1镜筒和样品室无本质区别2都是利用电子束轰击固体样本产生信号分析不同:1电子探针检测特征X射线,扫描电镜检测多种信号一般利用二次电子2电子探针得到是元素分布图,用于成分分析扫描电镜得到是表面形貌图电子探针成分透射电镜组织形貌衍射操作晶体结构扫描电镜表面形貌7.波谱仪和能谱仪它们的定义以及各有什么优缺点?能谱:优点:1探测X射线效率高2分析速度快2-3分完成元素定性全分析3探测器尺寸小靠近样品区4不必聚焦使用粗糙表面5工作束流小样品污染小缺点:1分辨率低谱线重叠2能谱中检测器Si(Li)的铍窗口限制超轻元素X射线的测量,只能分析原子序数大于11的元素3能谱探头必须保持低温,使用用液氮冷却4 峰背低低含量分析准确差波谱:1波普通过分光体衍射,探测X射线效率低-灵敏度低2波谱只能逐个测量每种元素特征波长3结构复杂4对样品表面要求高8.波谱仪有哪两种形式。

材料分析测试方法

材料分析测试方法

材料分析测试方法材料分析是一种对材料进行深入研究和测试的过程,以了解其成分、结构和性能,为后续加工和应用提供依据。

材料分析测试方法的选择需要根据具体材料的种类和测试目的来确定,以下是一些常用的材料分析测试方法。

1. 光学显微镜观察:这是一种常用的材料分析方法,通过放大显微镜观察材料表面和断面的形貌和结构,可以判断材料是否存在裂纹、气孔等缺陷,并对晶体结构和晶粒大小进行分析。

2. 扫描电子显微镜(SEM):通过SEM观察材料的表面形貌和微观结构,可以获得更高分辨率的图像。

此外,SEM还可以进行能谱分析,即通过能谱仪检测样品表面元素的种类和含量。

3. X射线衍射(XRD):通过对材料中晶体结构的X射线衍射图谱进行分析,可以确定晶体的晶格常数和晶面指数,从而确定材料的晶体结构类型和晶相组成。

4. 热重分析(TGA):通过在不同温度下测定材料的质量变化,可以了解材料的热稳定性、热分解行为和含水量等信息。

5. 差示扫描量热仪(DSC):通过测量材料在加热和冷却过程中的热流量变化,可以分析材料的热性能、热稳定性和相变行为。

6. 傅里叶变换红外光谱(FTIR):通过对材料在红外波段吸收特征的分析,可以确定材料的化学组成和官能团。

7. 硬度测试:通过在材料表面施加一定载荷进行压痕,然后测量压痕的尺寸,可以计算出材料的硬度值,用于评价材料的抗压强度。

8. 受限液浸渗透测试:通过将流体施加到材料表面,测量其在材料中的渗透深度和速率,用于评估材料的渗透性能和应用领域。

9. 电子能谱(XPS):通过测量材料表面的散射电子能谱,可以确定表面元素的种类、分布情况和化学状态,用于表征材料的表面化学性质。

10. 拉伸试验:通过在材料上施加拉力,测量其应力和应变的关系,可以确定材料的力学性能,如抗拉强度、屈服强度和延伸率等。

以上是一些常用的材料分析测试方法,不同的测试方法可以提供不同的信息,综合使用这些方法将有助于全面了解材料的性质和性能,为材料的选择、加工和应用提供科学依据。

材料的现代分析测试方法

材料的现代分析测试方法

02
七.阴极荧光
单击此处添加正文,文字是您思想 的提炼,请尽量言简意赅地阐述观 点。
04
六.俄歇电子
单击此处添加正文,文字是您思想 的提炼,请尽量言简意赅地阐述观 点。
八.电子束感生电效应
一. 电子束感生电导信号 二. 电子束感生电压信号
第三节 SEM工作原理
第四节 SEM的构造
一.电子光学系统
添加标题
醇、丙酮或超声波 清洗法清理
添加标题
轻易清除。
添加标题
干净。
二.非金属材 料试样制备
一.在试样表面上蒸涂或沉积一层导电 膜。碳、金、银、铬、铂和金钯合 金等均可做导电膜材料。
二.导电膜应均匀、连续,厚度为 200~300Å。
三.生物医学材料试样制备
01
清洗、固定
02
脱水、干燥
03
导电处理等
EhhE 尽量言简意赅地阐述观点。
原理
λ——特征X射线波长
02
c ——光速
h ——普朗克常数
能谱仪组成 信号放大系统
显示系统
检测系统 数据处理系统
X射线能谱 仪的基本组 成
三.波谱仪与能谱仪比较
分析速度快. 分析灵敏度高.
结构紧凑、稳定性好.
与波谱仪相比,能谱仪的优 点:
三.波谱仪与能谱仪比较
组成: 电子枪, 电磁聚光镜, 光阑,
样品室等.
作用: 用来获得扫描电子束, 作为
使样品产生各种物理信号的
激发源.
电子枪
聚光镜(电磁 透镜)
光阑 样品室
用于SEM的电子枪有两种类型
热电子发射型: 普通热阴极三极电子枪 六硼化镧阴极电子枪 场发射电子枪: 冷场发射型电子枪 热场发射型电子枪

材料分析测试方法

材料分析测试方法

材料分析测试方法材料分析测试方法是指通过一系列的实验和测试手段,对材料的成分、结构、性能等进行分析和评定的方法。

在工程领域和科学研究中,材料分析测试方法是非常重要的,它可以帮助我们了解材料的特性,指导材料的设计、制备和应用。

下面将介绍几种常见的材料分析测试方法。

首先,光学显微镜是一种常用的材料分析测试方法。

通过光学显微镜,我们可以观察材料的表面形貌、晶粒结构、孔隙分布等特征。

这对于金属、陶瓷、高分子材料等的分析非常有帮助,可以直观地了解材料的微观结构和性能。

此外,透射电镜和扫描电镜也是常用的材料分析测试方法,它们可以进一步放大材料的微观结构,观察材料的晶体形貌、晶界特征、颗粒大小等,为材料的分析提供更多的信息。

其次,化学分析是另一种重要的材料分析测试方法。

化学分析可以通过化学试剂与被测物质发生化学反应,从而确定材料的成分和含量。

常见的化学分析方法包括滴定法、显色反应法、火焰原子吸收光谱法等。

这些方法可以用于分析金属材料、无机非金属材料、有机高分子材料等,对于材料的成分分析非常有帮助。

另外,热分析是一种通过加热材料,测量其在温度变化过程中物理性质和化学性质的变化来分析材料的方法。

常见的热分析方法包括热重分析、差热分析、热膨胀分析等。

这些方法可以用于分析材料的热稳定性、热分解特性、热膨胀系数等,对于材料的热性能分析非常有帮助。

最后,机械性能测试是评价材料力学性能的重要方法。

常见的机械性能测试方法包括拉伸试验、压缩试验、弯曲试验、硬度测试等。

这些方法可以用于评价材料的强度、韧性、硬度等力学性能,对于材料的力学性能分析非常有帮助。

总之,材料分析测试方法是多种多样的,每种方法都有其特点和适用范围。

在实际工程和科学研究中,我们需要根据具体的材料类型和分析目的,选择合适的测试方法进行分析。

通过材料分析测试方法,我们可以全面了解材料的特性,为材料的设计和应用提供科学依据。

材料分析测试方法,材料分析测试技术

材料分析测试方法,材料分析测试技术

材料分析测试方法,材料分析测试技术材料分析测试方法材料分析的基本原理(或称技术基础)是指测量信号与材料成分、结构等的特征关系。

?采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法。

1、X-射线衍射分析:物相成分、结晶度、晶粒度信息2、电子显微镜:材料微观形貌观察 3、热分析:分析材料随温度而发生的状态变化 4、振动光谱:分子基团、结构的判定5、X-射线光电子能谱:一种表面分析技术,表面元素分析6、色谱分析:分析混合物中所含成分的物理方法对连续X射线谱的解释:(1)根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。

(2)量子力学概念,当能量为eV的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hν的光子,即“韧致辐射”。

大量的电子到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。

深圳宇冠专业第三方材料分析检测机构,电话:+86-755-23695858 深圳光明新区观光路3009号招商局光明科技园B4栋4B单元材料分析测试技术第一章材料分析测试技术概述(材料分析测试目的和物理角度论述基本粒子与材料的相互作用)第一节一般原理第二节衍射分析方法概述第三节电子显微分析方法概述第四节电子能谱分析方法概述第五节光谱分析方法慨述第六节色谱、质谱及电化学分析方法概述第七节其他分析方法概述第八节计算机在分析测试技术中的应用概述第二章X射线衍射分析第一节X射线物理基础1 x射线的产生2 连续X射线谱3 特征X射线谱第二节X射线衍射衍射方向1、布拉格方程2、倒易点阵及衍射矢量方程3、厄瓦尔德图解第三节x射线衍射强度1、一个电子的散射强度2、原子散射强度3、晶胞衍射强度4、小晶体散射与衍射积分强度5、多晶体衍射积分强度6、影响衍射强度的其它因素(参考文献 )。

材料分析测试方法-4

材料分析测试方法-4



《材料分析测试方法》
三、吸收因子

X射线穿过试样时,必然有一些被试样所吸收。 试样的形状各异,X射线在试样中穿过的路径不 同,被吸收的程度也各异。
1.圆柱试样的吸收因素,
反射和背反射的吸收不同,吸收与θ有关。
2.平板试样的吸收因素,
在入射角与反射角相等时,吸收与θ无关。
《材料分析测试方法》
圆柱样品的吸收随θ 角降低而增大
线散射到某一方向的效率。
上节课要点
《材料分析测试方法》
一个晶胞对X射线的散射——结构振幅 或 结构因子F
F表示以一个电子散射振幅度量的单胞中所有原子的散射波
在(hkl)反射方向上的合成振幅。 FHKL 方程也无衍射——称为系统消光。
j 1 当 FHKL 0 时,(HKL)面既使与入射X射线满足布拉格
《材料分析测试方法》
2. 相对强度
实际工作时无需测量I0值,一般只需要强度的相对值, 即相对积分强度,它时同一衍射花样的同一物相各衍射线 的相互比较。 去掉常数项,得:
I 相对
1 cos2 2 P F 2 A e 2 M sin cos
2
《材料分析测试方法》
m 0
N1 1
i 2m
N 2 1 n 0
e
i 2n
N3 1 p 0
i 2p e Ae FG

强度与振幅的平方成正比,故
IM Ie F G
2 2
上节课要点
《材料分析测试方法》
消光规律:



简单点阵: 任意 (hkl) 晶面均可产生衍射,无消光 体心点阵: 当 h+k+l = 2n,(hkl) 晶面衍射 当 h+k+l = 2n+1,(hkl) 晶面消光 面心点阵: 当 h、k、l 全奇或全偶, (hkl)晶面衍射 当 h、k、l 奇偶混杂, (hkl) 晶面消光

材料分析测试方法

材料分析测试方法

材料分析测试方法1. 扫描电子显微镜 (Scanning Electron Microscopy, SEM): SEM通过照射材料表面并收集所产生的散射电子来观察材料的形貌和表面特征。

它能够提供高分辨率和高深度的表面图像,并且可以通过能谱分析来确定元素的分布情况。

2. 透射电子显微镜 (Transmission Electron Microscopy, TEM): TEM是一种在材料中传输电子束来观察材料的内部结构和晶体缺陷的技术。

它提供了更高分辨率的图像和更详细的结构信息,可以用来研究纳米材料、薄膜、合金和晶体等。

3. X射线衍射 (X-ray Diffraction, XRD): XRD可以通过照射材料表面或内部来观察和分析材料的结构和有序性。

通过测量X射线入射和出射角度的差异,可以确定材料中的晶格参数和晶体结构。

4. 热重-差热分析 (Thermogravimetric Analysis, TGA): TGA可以通过对材料在加热过程中的质量变化进行监测和分析,以确定其热稳定性、失重行为、热分解特性和热化学性质等信息。

同时,差热分析可以提供材料热量变化的信息。

5. 红外光谱 (Infrared Spectroscopy, IR): 红外光谱可以通过测量材料对红外辐射的吸收和散射来分析其分子结构、功能团和化学键。

通过红外光谱可以确定材料的组成和结构信息,并且可以应用于材料识别、质量控制和病理分析等领域。

6. 核磁共振 (Nuclear Magnetic Resonance, NMR): NMR通过对材料中的核磁共振信号进行测量和分析,可以了解材料的分子结构和化学环境。

NMR广泛应用于有机化学、化学物理学和生物化学领域,可以确定化学物质的结构、反应动力学和分子间相互作用等。

7. 拉伸试验 (Tensile Test): 拉伸试验是一种用来测量材料力学性能的常见方法。

通过施加拉伸力并测量拉伸过程中的载荷和变形,可以确定材料的屈服强度、抗拉强度、伸长率和断裂韧性等。

《材料分析测试方法》课程笔记

《材料分析测试方法》课程笔记

《材料分析测试方法》课程笔记第一章:x射线的物理学基础一、x射线的性质1. x射线的定义与产生x射线是一种波长位于紫外线和γ射线之间的电磁波,其波长范围大约在0.01纳米到10纳米之间。

x射线的产生通常是通过x射线管,其中高速运动的电子撞击金属靶材(如铜或钨)时,由于突然减速,电子会将部分动能转换为x 射线。

2. x射线的特点(1)穿透能力:x射线的穿透能力远强于可见光,能够穿透大多数非金属物质,但会被重金属等高原子序数物质吸收。

(2)电离作用:x射线能够电离物质,从原子或分子中移除电子,导致形成带电的离子。

(3)荧光效应:x射线能够激发某些物质发光,这种现象称为荧光效应。

(4)生物效应:x射线对生物组织具有损害作用,可以破坏细胞结构,因此在使用时需要谨慎。

二、x射线谱1. x射线谱的分类x射线谱主要包括两种类型:连续谱和特征谱。

2. 连续谱连续谱是由高速电子撞击靶材时产生的,它包含了从低能量到高能量的一系列波长。

连续谱的强度随波长的增加而减小,其峰值波长与加速电子的电压有关。

3. 特征谱特征谱是由靶材原子的内层电子跃迁到外层轨道时释放的特定能量的光子形成的。

每种元素都有其特定的特征谱线,这些谱线对应于元素原子内电子能级的特定差异。

三、x射线与物质的相互作用1. 吸收x射线在穿透物质时,其强度会随着穿透深度的增加而减弱,这是因为物质中的原子吸收了部分x射线能量。

吸收系数与物质的种类、密度和x射线的波长有关。

2. 散射(1)弹性散射(康普顿散射):x射线光子与物质中的自由电子发生碰撞后,光子的能量和方向发生改变,但波长不变。

(2)非弹性散射(瑞利散射):x射线光子与物质中的原子或分子相互作用,能量部分转化为物质的内能,导致光子的能量降低,波长变长。

3. 荧光当x射线光子的能量足够高时,可以激发物质中的原子或分子,使其电子跃迁到更高能级,随后返回基态时释放出能量,通常以可见光的形式。

4. 产生电子对在x射线能量非常高时(大于1.022 MeV),x射线光子在物质中可以转化为一个正电子和一个负电子。

材料分析测试方法-4

材料分析测试方法-4

F 表示以一个电子散射振幅度量的单胞中所有原子的散射波
n
? 在(hkl )反射方向上的合成振幅。 FHKL ?
f j ei? j
当 FHKL ? 0 时,(HKL )面既使与入射 X射j?线1 满足布拉格
方程也无衍射 ——称为系统消光。
2d sin? ? ? ——衍射的必要条件
FHKL ? 0 ——衍射的充分条件
《材料分析测试方法》
3.3 多晶的衍射强度
? 多晶粉末的衍射强度除了与结构因子有关外,还与衍射 方向、样品吸收等因素有关。
多晶衍 射强度
结构因子 角因子 (包括极化因子和洛伦兹因子) 多重性因子 吸收因子
温度因子
《材料分析测试方法》
一、多重性因子
? 对多晶体试样,因同一{ hkl } 晶面族的各晶面组面间距 相同,由布拉格方程知它们具有相同的 θ,其衍射线构 成同一衍射圆锥的母线。通常将同一晶面族中等同晶面 数P 称为多重性因子,用Phkl 表示。
上节课要点
《材料分析测试方法》
X射线衍射方法
三种主要的衍射方法: 劳埃法—连续X射线入射固定的单晶体 周转晶体法—单色X射线入射绕某晶轴转动的单晶体 粉末法—单色X射线入射多晶粉末
上节课要点
《材料分析测试方法》
结构因子(F hkl )
结构因子 ——定量表征原子排布以及原子种类 对衍射强度影响规律的参数,用单胞内所以 原子的散射波在衍射方向上的合成振幅来表 示。
上节课要点
《材料分析测试方法》
一个电子对 X射线的散射
? 电子对X射线散射的本质 ——X射线光子与电子 作用时,迫使电子绕平衡位置振动,产生相同 频率和波长与入射束相同。
? 电子散射强度 ——汤姆孙公式 ? 电子散射强度与散射角有关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子对X射线散射:完全由其中所含的电子产生。
原子的散射强度:Ia= f Ie (f ≤ Z)
原子散射因子—以一个电子散射波振幅为单位度量 的一个原子的散射波的振幅,反映一个原子将X射 线散射到某一方向的效率。
上节课要点
《材料分析测试方法》
一个晶胞对X射线的散射——结构振幅 或 结构因子F
F表示以一个电子散射振幅度量的单胞中所有原子的散射波
上节课要点
《材料分析测试方法》
X射线衍射方法
三种主要的衍射方法: 劳埃法—连续X射线入射固定的单晶体 周转晶体法—单色X射线入射绕某晶轴转动的单晶体 粉末法—单色X射线入射多晶粉末
上节课要点
《材料分析测试方法》
结构因子(Fhkl)
结构因子——定量表征原子排布以及原子种类 对衍射强度影响规律的参数,用单胞内所以 原子的散射波在衍射方向上的合成振幅来表 示。
《材料分析测试方法》
圆柱样品的吸收随θ角降低而增大
《材料分析测试方法》
四、温度因子
原子本身是在振动的,且振幅随温度升高而增大。 当温度升高,原子振动加剧,必然给衍射带来影响,主要
表现在:1.晶胞膨胀;2.衍射线强度减小;3.产生非相干 散射。 温度因子定义:有热振动时的衍射强度与无热振动时的衍 射强度之比
注意多重性因子P与晶系有关! 不同晶系和指数的P值见附录
《材料分析测试方法》
二、角因子
因为实际晶体不一定是完整的,存在大小、厚薄、形 状等不同;另外,X射线的波长也不是绝对单一,入 射束之间也不是绝对平行,而是有一定的发散角。这 样,X射线衍射强度将受到X射线入射角、参与衍射的 晶粒数、衍射角的大小等因素的影响。
在偏离布拉格角时衍射强度也不为零 衍射线 衍射峰
《材料分析测试方法》
将上述几种因素合并在一起,有:
( ) 1 cos 1
sin 2
sin 2
分别表示晶粒大小、晶粒个数、单位弧长积分强度的影响, 总称为洛伦兹因子
与极化因子合并,则有:
( ) 1 cos2 2 1 cos 1
2 sin 2
整个晶体的散射波的合成波,即得到衍射束强
度。 AM AeF
eimnp
N1 1
N2 1
N3 1
AeF
ei 2m
ei 2n
ei 2p
AeFG
mnp
m0
n0
p0
强度与振幅的平方成正比,故
IM Ie F 2 G 2
上节课要点
《材料分析测试方法》
消光规律:
简单点阵: 任意 (hkl) 晶面均可产生衍射,无消光
上节课要点
《材料分析测试方法》
一个电子对X射线的散射
电子对X射线散射的本质——X射线光子与电子 作用时,迫使电子绕平衡位置振动,产生相同 频率和波长与入射束相同。
电子散射强度——汤姆孙公式 电子散射强度与散射角有关
(2θ= 0 处,散射强度最强,为相干散射)
上节课要点
《材料分析测试方法》
一个原子对X射线的散射
I相对
P
F
2
1 cos2 2 sin2 cos
1
2l
e2M
《材料分析测试方法》
方法:确定单胞中原子个数和位置坐标,分别带入结构因 子计算公式中,归纳、讨论导出结果。
当 F = 0 消光;当 F ≠ 0 衍射 结论:体心立方:h+k+l 偶数衍射、奇数消光
面心立方:hkl 全奇或全偶衍射,奇偶混杂消光
上节课要点
《材料分析测试方法》
一个晶体对X射线的衍射——形状因子
按位相对所有晶胞的散射波进行叠加,就得到
sin 2
化简得
(
)
1 cos2 2 sin2 cos
角因子
《材料分析测试方法》
三、吸收因子
X射线穿过试样时,必然有一些被试样所吸收。 试样的形状各异,X射线在试样中穿过的路径不 同,被吸收的程度也各异。
1.圆柱试样的吸收因素, 反射和背反射的吸收不同,吸收与θ有关。
2.平板试样的吸收因素, 在入射角与反射角相等时,吸收与θ无关。
体心点阵: 当 h+k+l = 2n,(hkl) 晶面衍射 当 h+k+l = 2n+1,(hkl) 晶面消光
面心点阵: 当 h、k、l 全奇或全偶, (hkl)晶面衍射 当 h、k、l 奇偶混杂, (hkl) 晶面消光
《材料分析测试方法》
3.3 多晶的衍射强度
多晶粉末的衍射强度除了与结构因子有关外,还与衍射 方向、样品吸收等因素有关。
综合考虑,温度因子为e-2M (M为与θ、λ、T有关的函数)
《材料分析测试方法》
五、粉末法衍射强度
1.强度绝对值
I
I0
3 32R
e2 mc2
2
V Vc 2
P
F
2
A e2M
吸收因子和温度因子随θ的变化规律相反,可认为这两 个因子互相抵消,要求不严时可忽略。
《材料分析测试方法》
2. 相对强度
多晶衍 射强度
结构因子 角因子 (包括极化因子和洛伦兹因子) 多重性因子 吸收因子 温度因子
《材料分析测试方法》
一、多重性因子
对多晶体试样,因同一{ hkl } 晶面族的各晶面组面间距 相同,由布拉格方程知它们具有相同的θ,其衍射线构 成同一衍射圆锥的母线。通常将同一晶面族中等同晶面 数P 称为多重性因子,用Phkl 表示。
显然,在其它条件相间的情况下,多重性因子越大,则 参与衍射的晶粒数越多,或者说,每一晶粒参与衍射的 几率越多。
《材料分析测试方法》
对于立方晶系 {100}晶面族有_6_个等同晶面,P100 = _6_ {111}晶面族有_8_个等同晶面,P111 = _8_ {123}晶面族有_4_8个等同晶面,P123 = _4_8
nቤተ መጻሕፍቲ ባይዱ
在(hkl)反射方向上的合成振幅。 FHKL f jei j 当 FHKL 0 时,(HKL)面既使与入射X射j1线满足布拉格
方程也无衍射——称为系统消光。
2d sin ——衍射的必要条件
FHKL 0 ——衍射的充分条件
上节课要点
《材料分析测试方法》
结构因子的计算
掌握简单点阵、体心点阵、面心点阵结构因子的计算。
实际工作时无需测量I0值,一般只需要强度的相对值, 即相对积分强度,它时同一衍射花样的同一物相各衍射线 的相互比较。
去掉常数项,得:
I相对
P
F
2
1 cos2 2 sin2 cos
A
e2M
《材料分析测试方法》
德拜法的衍射相对强度
I相对
P
F
2
1 cos2 2 sin2 cos
A
e2M
衍射仪法的衍射相对强度
相关文档
最新文档