表面活性剂化学
表面活性剂化学反应
表面活性剂化学反应在化学领域中,表面活性剂是一类能够改善液体表面性质的化学物质。
表面活性剂在日常生活和工业生产中都有着广泛的应用,比如洗涤剂、乳化剂、泡沫剂等等。
表面活性剂的化学反应是其发挥作用的关键,本文将对表面活性剂的化学反应进行探讨。
首先,表面活性剂在水溶液中的化学反应是其应用的重要方面之一。
当表面活性剂溶解在水中时,会发生丰富的化学反应。
比如阴离子表面活性剂在水中会形成胶束结构,这种结构在清洁剂中的应用十分广泛。
此外,阳离子表面活性剂在水中也会发生吸附作用,这种吸附作用在染料工业中有着重要的应用。
总的来说,表面活性剂在水溶液中的化学反应对其性能和功能起着决定性的作用。
其次,表面活性剂与其他化学物质之间的化学反应也是其应用的关键。
比如,表面活性剂与油脂之间的作用,是洗涤剂中的一个典型例子。
表面活性剂中的亲水基团与油脂中的疏水基团之间会发生疏水作用,从而使油脂分散在水中。
这种化学反应导致了表面活性剂在清洁剂中的有效性。
此外,表面活性剂还可以与酸碱等其他化学物质发生中和反应,从而影响其表面性质和乳化性能。
最后,表面活性剂在生物体系中的化学反应也是研究的热点之一。
在细胞膜表面,存在大量的表面活性剂,它们通过化学反应调节细胞内外环境的平衡。
表面活性剂在生物体系中的作用涉及到病毒颗粒、细胞膜融合等重要生物学过程,其化学反应机制值得深入研究。
综上所述,表面活性剂的化学反应是其在各个领域中应用的重要基础。
通过了解表面活性剂的化学反应机制,我们可以更好地理解其性质和功能,为其在日常生活和工业生产中的应用提供科学依据和技术支持。
希望本文能为读者提供一些有益的信息,促进对表面活性剂化学反应的深入理解。
17种常用表面活性剂汇总
17种常用表面活性剂月桂基磺化琥珀酸单酯二钠(DLS)一、英文名: Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa四、产品特性1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体;2. 泡沫细密丰富;无滑腻感,非常容易冲洗;3. 去污力强,脱脂力低,属常见的温和性表面活性剂;4. 能与其它表面活性剂配伍,并降低其刺激性;5. 耐硬水,生物降解性好,性能价格比高。
五、用途与用量:1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2.推荐用量:10—60%。
脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;性能价格比高;4.有优良的钙皂分散和抗硬水性能;5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品;6.脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。
广泛用于涂料、皮革、造纸、油墨、纺织等行业。
2、推荐用量:在香波中为8-12%,在浴液中用量为10-15%,其它化妆品中为0.5-5%。
应用时PH值不应超过7。
椰油酸单乙醇酰胺磺基琥珀酸单酯二钠DMSS一、英文名:Disodium Cocoyl Monoethanolamide Sulfosuccinate二、化学名称:椰油酸单乙醇酰胺磺基琥珀酸单酯二钠三、结构式:RCONHCH3Na)COONa2CH2OCOCHCH(SO四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;稳泡性能优于醇醚型磺基琥珀酸单酯二钠;4.有优良的钙皂分散和抗硬水性能;5.脱脂力低,去污力适中,极易冲洗且无滑腻感。
表面活性剂化学知识点
表⾯活性剂化学知识点表⾯活性剂化学第⼀讲表⾯活性剂概述1、降低表⾯张⼒为正吸附,溶质在溶液表⾯的浓度⼤于其在溶液本体中的浓度,此溶质为表⾯活性物质。
增加表⾯张⼒为负吸附,溶质在溶液表⾯的浓度⼩于其在溶液本体中的浓度,此溶质为表⾯惰性物质。
2、表⾯张⼒γ:作⽤于单位边界线上的这种⼒称为表⾯张⼒,⽤γ表⽰,单位是N·m -1。
影响纯物质的γ的因素(1) 物质本⾝的性质(极性液体⽐⾮极性液体⼤,固体⽐液体⼤)(2) 与另⼀相物质有关。
纯液体的表⾯张⼒是指与饱和了其本⾝蒸汽的空⽓之间的界⾯张⼒。
(3)与温度有关:⼀般随温度升⾼⽽下降. (4)受压⼒影响较⼩.3、表⾯活性剂的分⼦结构特点 “双亲结构”亲油基:⼀般是由长链烃基构成,以碳氢基团为主亲⽔基:⼀般为带电的离⼦基团和不带电的极性基团疏⽔基的疏⽔性⼤⼩:脂肪烷基>脂肪烯基>脂肪烃-芳基>芳基>带有弱亲⽔基的烃基。
相同的脂肪烃疏⽔性强弱顺序:烷烃>环烷烃>烯烃>芳⾹烃。
从HLB 值考虑,亲⽔基亲⽔性的⼤⼩排序:-SO4Na 、-SO3Na 、-OPO3Na 、-COONa 、—OH 、—O - 4、离⼦表⾯活性剂(⼀)阴离⼦表⾯活性剂:起表⾯活性作⽤的部分是阴离⼦。
1)⾼级脂肪酸盐:①通式:(RCOO)n-Mn+脂肪酸盐②分类:⼀价⾦属皂(钾、钠皂);⼆价或多价皂(铅、钙、铝皂);有机胺皂(三⼄醇胺皂) ③性质:具有良好的乳化能⼒,易被酸及多价盐破坏,电解质使之盐析。
④应⽤:具有⼀定的刺激性,只供外⽤。
2)硫酸化物:①通式:R-OSO3-M+②分类:硫酸化油(硫酸化蓖⿇油称⼟⽿其红油);⾼级脂肪醇硫酸脂(⼗⼆烷基硫酸钠) 。
③性质:可与⽔混溶,为⽆刺激的去污剂和润湿剂;乳化性很强,稳定、耐酸、钙,易与⼀些⾼分⼦阳离⼦药物发⽣沉淀。
④应⽤:代替肥皂洗涤⽪肤;有⼀定刺激性,主要⽤于外⽤软膏的乳化剂。
有时也⽤于⽚剂等固体制剂的润湿剂或增溶剂。
3)磺酸化物:①通式:R·SO3-M+②分类:脂肪族磺酸化物,如⼆⾟玻珀酸脂磺酸钠;烷基芳基磺酸化物,如⼗⼆烷基苯磺酸钠,常⽤洗涤剂;烷基苯磺酸化物;胆酸盐,如⽜磺胆酸钠。
17种常见的表面活性剂
月桂基磺化琥珀酸单酯二钠(DLS)一、英文名:Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学构造式:ROCO-CH2-CH(SO3Na)-COONa四、产品特性1 .常温下为白色细腻膏体,加热后(>70βC)为透亮液体;2 .泡沫细密丰富;无滑时感,格外简洁冲洗;3 .去污力强,脱脂力低,属常见的温存性外表活性剂;4 .能与其它外表活性剂配伍,并降低其刺激性;5 .耐硬水,生物降解性好,性能价格比高。
五、技术指标:1 .外观(25βC):纯白色细腻膏状体2 .含量(%) :48.0—50.03 .Na2SO3 (%) :≤0.504 .PH 值11 %水溶液): 5.5—7.0六、用途与用量:1 .用途:配制温存高粘度高度清洁的洗手膏(液)、泡沫洁面音、泡沫洁面*、泡沫剃须膏, 也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2 .推举用量:10—60%。
脂肪醵聚氧乙烯醒(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氯乙烯酸(3)磺基琥珀酸单酯二钠三、化学构造式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1 .具有优良的洗涤、*化、分散、润湿、增溶性能;2 .刺激性低,且能显著降低其他外表活性剂的刺激性;3 .泡沫丰富细密稳定;性能价格比高;4 .有优良的钙皂分散和抗硬水性能;5 .复配性能好,能与多种外表活性剂和植物提取液(如皂角、首乌)复配,形成格外稳定的体系,创制自然用品;6 .脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、技术指标:1 .外观(25℃):无色至浅**透亮粘稠液体2 .活性物(%) :30.0±2.03 .PH 值(1%) : 5.5-6.54 .色泽(APHA) :≤505 .Na2SO3 (%):≤0.36 .泡沫(mm) :≥150六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它扮装品、洗涤日化产品等,还可作为*化剂、分散剂、润湿剂、发泡剂等。
17种常用表面活性剂汇总
17种常用表面活性剂月桂基磺化琥珀酸单酯二钠(DLS)一、英文名: Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa四、产品特性1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体;2. 泡沫细密丰富;无滑腻感,非常容易冲洗;3. 去污力强,脱脂力低,属常见的温和性表面活性剂;4. 能与其它表面活性剂配伍,并降低其刺激性;5. 耐硬水,生物降解性好,性能价格比高。
五、用途与用量:1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2.推荐用量:10—60%。
脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;性能价格比高;4.有优良的钙皂分散和抗硬水性能;5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品;6.脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。
广泛用于涂料、皮革、造纸、油墨、纺织等行业。
2、推荐用量:在香波中为8-12%,在浴液中用量为10-15%,其它化妆品中为0.5-5%。
应用时PH值不应超过7。
椰油酸单乙醇酰胺磺基琥珀酸单酯二钠DMSS一、英文名:Disodium Cocoyl Monoethanolamide Sulfosuccinate二、化学名称:椰油酸单乙醇酰胺磺基琥珀酸单酯二钠三、结构式:RCONHCH2CH2OCOCHCH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;稳泡性能优于醇醚型磺基琥珀酸单酯二钠;4.有优良的钙皂分散和抗硬水性能;5.脱脂力低,去污力适中,极易冲洗且无滑腻感。
化学表面活性剂的性质与应用
化学表面活性剂的性质与应用化学表面活性剂是一类广泛应用于工业和生活中的重要物质。
它们以其特殊的性质,在各种领域中起着关键作用。
本文将详细介绍化学表面活性剂的性质和应用。
一、化学表面活性剂的定义化学表面活性剂是一类具有分子结构上的特殊性质,能够吸附在液体表面并降低表面张力的物质。
它们以亲水性和疏水性部分构成,因此可以在液体中形成胶束,并在界面上发挥应用。
二、化学表面活性剂的性质1. 降低表面张力化学表面活性剂能在液体表面或液体-固体界面降低表面张力,由于其分子结构的特殊性质,使其在水中部分分子吸附在液体表面上,使表面张力降低。
2. 分散作用化学表面活性剂能使油和水两种互不溶于单质混合,分散作用使油颗粒分散在水中,形成乳状液。
这对于液体的混合、溶解和吸收有着重要的应用。
3. 乳化作用化学表面活性剂在水和油界面能够形成乳状液,使两者混合得更加均匀。
这种乳化作用在食品、化妆品和润滑剂等领域有广泛应用。
4. 润湿性化学表面活性剂具有良好的润湿性,能够降低固体表面的接触角,使液体能够在固体表面上均匀分布。
这对于清洁剂、涂料和涂层等领域非常重要。
5. 增稠性化学表面活性剂在高浓度时能形成胶束,形成网状结构,增加液体的黏性。
这种增稠性在洗涤剂、油漆和胶水等领域有广泛应用。
三、化学表面活性剂的应用1. 清洁剂化学表面活性剂作为清洁剂的重要组分,能够有效降低水的表面张力,增强溶解能力,使污垢更容易被清洗。
例如,洗衣粉中的表面活性剂能够去除衣物上的污渍。
2. 洗护产品化学表面活性剂在洗发水、沐浴露等洗护产品中发挥重要作用。
它们能够降低洗涤液的表面张力,使洗涤剂更容易被清洗,从而有效去除头发和皮肤上的油脂和污垢。
3. 化妆品化学表面活性剂在化妆品中起到乳化、稳定和润湿的作用。
例如,乳状化妆品中的表面活性剂能够使油和水充分混合,使化妆品更易于使用和吸收。
4. 农药与肥料化学表面活性剂在农药和肥料中用作助剂,能够提高药剂或肥料对植物和土壤的附着性,提高效果,并降低泥土中的表面张力。
表面活性剂与各种化学反应的深度解析
表面活性剂与各种化学反应的深度解析表面活性剂,这一在日常生活和工业生产中广泛应用的化合物,其特性使得它能够与众多物质发生反应。
本篇文章将深入探讨表面活性剂与各种化学反应的关联,帮助您更全面地理解这一重要的化学物质。
一、表面活性剂的基本性质表面活性剂是一种具有两亲结构的化合物,由疏水性烃基和亲水性基团组成。
这种特殊的结构使得表面活性剂能够降低溶液的表面张力,从而产生丰富的物理化学性质。
二、表面活性剂与酸碱反应酸碱反应是表面活性剂最常见的一种反应类型。
在酸性和碱性条件下,表面活性剂的亲水性基团和疏水性基团之间的平衡会发生改变。
例如,在酸性条件下,表面活性剂的亲水性基团更易与氢离子结合,从而增强其亲水性;而在碱性条件下,疏水性基团更易与氢氧根离子结合,从而增强其疏水性。
三、表面活性剂与氧化还原反应表面活性剂在氧化还原反应中也有着重要的作用。
例如,某些表面活性剂能够作为催化剂,促进氧化还原反应的进行。
同时,在某些情况下,表面活性剂的氧化还原反应也会对其结构和性能产生影响。
四、表面活性剂与聚合反应聚合反应是生成高分子化合物的反应过程。
在聚合反应中,表面活性剂可以作为乳化剂、分散剂等角色,对聚合物的结构和性能产生重要影响。
此外,某些表面活性剂还可以参与到聚合反应中,成为聚合物链的一部分。
五、表面活性剂与生物反应在生物领域,表面活性剂的应用也十分广泛。
例如,脂溶性维生素的吸收需要借助表面活性剂;在生物膜的研究中,表面活性剂可以模拟细胞膜的结构和功能;此外,一些具有特殊功能的表面活性剂还可以参与到生物催化反应中。
六、结论表面活性剂作为一种具有两亲结构的化合物,能够与多种物质发生反应。
了解表面活性剂与各种化学反应的关联,有助于我们更好地应用这一重要的化学物质,推动相关领域的发展。
表面活性剂 化学名词
化学名词表面活性剂(surfactant),是指是能使目标溶液表面张力显著下降的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
中文名表面活性剂外文名surfactant别名表面活性物质应用学科化学分类离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等特性两亲性作用降低目标溶液的表面张力简介表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
起源历史①公元前2500年——1850年羊油和草木灰制造肥皂羊油——三羧酸酯简称三甘酯,经碱水解→羧酸盐+单甘酯+二甘酯+甘油19世纪中叶一方面肥皂开始实现工业化大生产,另一方面,也出现了化学合成的表面活性剂。
②土耳其红油的出现:土耳其红油即蓖麻油与硫酸反应的产物,蓖麻油为蓖麻油酸的三甘酯,深度磺化,耐酸耐硬水③19世纪初,矿物原料制备洗涤剂石油工业的发展→石油硫酸(绿油)。
蜡和茶的磺化混合物,溶于酸中,呈绿黑色,用碱中和制得。
精细化学品化学第二章表面活性剂
+ 甲醇溶剂 加热
RN
C H3 C H3
2C O2
+2 H2O
高级烷基胺与低级卤代烷得反应
C16H33
CH3
N
+ CH3 CXl-
石油醚溶剂
C16H33
CH3
加压 80oC 1h
. CH3
N+ CH3 X CH3
3、6、2、2 含杂原子得季铵盐
1 含氧原子 含酰氨基得 含醚基得
2 含氮原子
特点:就是亲水得季铵阳 离子与烷基疏水基就是 通过酰胺键、酯键、醚 键或硫醚等基团相连接
60-80oC
CH3
C12H25
十二烷基三甲基溴化铵
CH3
醇介质
C16H33 X + N CH3
回流
CH3
C16H33
十六烷基三甲基溴化铵
. CH3
N+ CH3
Br- 溴
X
CH3
. CH3
N+ CH3 X CH3
2 高级烷基叔胺与低级卤代烷得反应
C12H25
CH3
加热
N
+ CH3 CXl-
CH3
加压
氨基酸型 R-NH2CHCHCOOH 甜菜碱型 RN+(CH3)2CH2COO-
非离子表面活性剂
在水中不会解离成离子:
聚乙二醇型(聚氧乙烯型)
多元醇型
R-O(CH2CH2O)nH R-COOCH2C(CH2OH)3
3、3 亲水亲油平衡值 HLB(hydrophile-lipophile balance)
2 可以和所有其她类型得表面活性剂复配 3 毒性低、对皮肤眼睛刺激性小 4 耐水硬性和耐高浓度电解质性 5 良好得生物降解性
表面活性剂的化学原理
表面活性剂的化学原理表面活性剂是一类广泛应用于日常生活和工业生产中的化学物质。
它们具有降低液体表面张力和增强液体与固体或气体的相互作用能力的特性。
本文将介绍表面活性剂的化学原理,包括其结构、作用机制和应用领域。
一、表面活性剂的结构表面活性剂分为两个部分:亲水基团和疏水基团。
亲水基团是具有亲水性的部分,通常是由含氧、氮或硫等原子组成的极性基团。
疏水基团是具有疏水性的部分,通常是由长链烷基或芳香基等非极性基团组成。
这种结构使得表面活性剂既能与水相互作用,又能与油脂等疏水物质相互作用。
二、表面活性剂的作用机制表面活性剂在液体表面形成一个分子层,称为吸附层。
吸附层的形成是由于表面活性剂分子的亲水基团与水分子形成氢键,同时疏水基团与空气或油脂分子相互作用。
这种吸附层能够降低液体表面的张力,使液体更容易湿润固体表面。
表面活性剂还能够形成胶束结构。
当表面活性剂的浓度超过临界胶束浓度时,表面活性剂分子会自组装形成胶束。
胶束是由亲水基团朝向水相,疏水基团朝向内部形成的微小球状结构。
胶束能够包裹住油脂等疏水物质,使其分散在水相中,从而实现乳化、分散和溶解等作用。
三、表面活性剂的应用领域1. 清洁剂:表面活性剂是清洁剂中的主要成分,能够降低水的表面张力,使水更容易湿润和渗透,从而提高清洁效果。
例如,洗衣液、洗洁精等清洁剂中都含有表面活性剂。
2. 个人护理产品:表面活性剂能够使洗发水、沐浴露等个人护理产品产生丰富的泡沫,提供良好的清洁和洗净效果。
3. 化妆品:表面活性剂在化妆品中起到乳化、分散和稳定等作用。
例如,乳液、面霜和化妆品中的乳化剂和分散剂都是表面活性剂。
4. 农药和农业助剂:表面活性剂可以提高农药的润湿性和渗透性,增强其吸附和渗透作用,提高农药的效果。
5. 石油和化工工业:表面活性剂在石油开采、油田注水、油水分离等过程中起到重要作用。
此外,表面活性剂还广泛应用于润滑剂、防锈剂、乳化剂等领域。
总结:表面活性剂是一类具有降低液体表面张力和增强液体与固体或气体相互作用能力的化学物质。
表面活性剂的化学原理
表面活性剂的化学原理表面活性剂,又称为界面活性剂,是一类具有分子结构特殊的化合物,能够在两种不相溶的物质之间降低表面或界面的张力,使其能够混合或分散的物质。
表面活性剂在日常生活和工业生产中起着重要作用,比如洗涤剂、乳化剂、分散剂等都离不开表面活性剂的应用。
那么,表面活性剂的化学原理是什么呢?本文将从表面活性剂的结构特点、作用原理和应用领域等方面进行探讨。
一、表面活性剂的结构特点表面活性剂的分子结构通常由亲水性头基和疏水性尾基组成。
亲水性头基通常是含有羟基(-OH)、羧基(-COOH)、胺基(-NH2)等极性基团的物质,能与水分子形成氢键,使其具有亲水性;而疏水性尾基通常是长链脂肪酸基团或芳香烃基团,不与水分子相互作用,具有疏水性。
这种结构使得表面活性剂分子在水溶液中形成胶束结构,亲水性头基朝向水相,疏水性尾基朝向油相,从而降低了界面张力,使油水两相能够混合。
二、表面活性剂的作用原理1. 降低表面张力:表面活性剂的主要作用之一是降低液体表面的张力。
在水中加入表面活性剂后,表面活性剂分子会在水表面聚集形成一层薄膜,使水分子之间的相互作用减弱,从而降低了表面张力。
这种降低表面张力的作用使得水能够更好地湿润固体表面,起到清洁和去污的作用。
2. 乳化和分散:由于表面活性剂分子具有亲水性和疏水性部分,因此它们可以在水和油之间形成乳液或分散系统。
在乳化过程中,表面活性剂的疏水性部分与油相互作用,亲水性部分与水相互作用,使油微粒分散在水中形成乳液。
在分散过程中,表面活性剂能够包裹住固体颗粒或液滴,防止其聚集沉降,保持分散状态。
3. 渗透和渗透压调节:表面活性剂在生物体内具有调节渗透和渗透压的作用。
在细胞膜上形成的磷脂双分子层就是一种天然的表面活性剂,能够调节细胞内外液体的渗透压,维持细胞内稳定的环境。
三、表面活性剂的应用领域1. 洗涤剂:洗涤剂是表面活性剂最常见的应用之一。
表面活性剂能够降低水的表面张力,使水能够更好地湿润衣物表面,起到去污和清洁的作用。
物理化学中的表面活性剂
物理化学中的表面活性剂表面活性剂是物理化学领域中的一类重要化合物,它们在许多领域中发挥着关键作用。
本文将介绍表面活性剂的定义、分类、性质以及在实际应用中的重要性。
一、表面活性剂的定义和分类表面活性剂是一类具有降低液体表面张力的化合物。
它们通常由两部分组成:亲水基团和疏水基团。
亲水基团能与水分子形成氢键,而疏水基团则对水不具有亲和力。
根据亲水基团的性质,表面活性剂可分为阴离子、阳离子、非离子和两性离子四类。
阴离子表面活性剂是最常见的一类,其亲水基团通常是负离子,如硫酸根、磺酸根等。
阳离子表面活性剂的亲水基团是正离子,如胺基、季铵盐等。
非离子表面活性剂则没有离子基团,通常是由多个氧原子组成的聚氧乙烯链。
两性离子表面活性剂则同时具有正离子和负离子基团。
二、表面活性剂的性质表面活性剂具有许多独特的性质,这使得它们在各种应用中发挥重要作用。
1. 降低表面张力:表面活性剂能够在液体表面形成单分子膜,降低液体的表面张力。
这使得液体能够更容易湿润固体表面,提高液体在固体上的润湿性。
2. 分散和乳化作用:表面活性剂在液体中形成胶束结构,能够有效地分散固体颗粒或液滴。
这使得表面活性剂在洗涤剂、乳化剂等领域有广泛应用。
3. 胶束形成:表面活性剂在适当浓度下能够形成胶束结构。
胶束是由表面活性剂分子组成的微小球形结构,疏水基团朝向内部,亲水基团朝向外部。
胶束的形成使得表面活性剂在溶液中具有良好的分散性和乳化性。
4. 表面吸附:表面活性剂能够在固体表面吸附形成单分子层,这对于改善固体表面性质、调节固体颗粒的分散性和稳定性具有重要作用。
三、表面活性剂的应用表面活性剂在许多领域中都有广泛的应用。
1. 日用化学品:表面活性剂是洗涤剂、肥皂、洗发水等产品的重要成分。
它们能够有效地去除油污和污渍,并提供良好的润湿性。
2. 医药领域:表面活性剂在药物制剂中常用作乳化剂、分散剂和溶剂。
它们能够改善药物的稳定性和生物利用度。
3. 石油工业:表面活性剂在石油开采中被广泛应用。
化学实验室中的表面活性剂
化学实验室中的表面活性剂表面活性剂在化学实验室中扮演着重要的角色。
它们具有改变液体和固体表面性质的能力,促进物质之间的相互作用。
本文将介绍表面活性剂的定义、分类以及在化学实验室中的应用。
一、表面活性剂的定义表面活性剂,也称为界面活性剂,是一类具有分子结构上的两性特征的化学物质。
它们能够将液体表面降低表面张力,提高液体对固体表面的润湿性。
表面活性剂通常由两部分组成:亲水性头基和疏水性烃基。
亲水性头基与水分子有较强的相互作用,而疏水性烃基则与非极性物质更容易相互作用。
二、表面活性剂的分类根据表面活性剂的电离性质,可以将其分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性表面活性剂四类。
1. 阴离子表面活性剂:阴离子表面活性剂的头基带有负电,如月桂酸钠和十二烷基苯磺酸钠。
这类表面活性剂在水中形成阴离子,常用于洗涤剂、肥皂和洗发水等产品中。
2. 阳离子表面活性剂:阳离子表面活性剂的头基带有正电,如辛基三甲基氯化铵。
这类表面活性剂通常用于消毒剂和柔软剂等产品中。
3. 非离子表面活性剂:非离子表面活性剂的头基没有电荷,如聚氧乙烯辛醇和辛基均聚氧乙烯醚。
这类表面活性剂在水中不离子化,常用于乳化剂、稳定剂和润滑剂等产品中。
4. 两性表面活性剂:两性表面活性剂既具有阳离子特性,又具有阴离子特性,如硫酸羟乙基胺盐。
这类表面活性剂常用于调节表面电荷和稳定胶体系统。
三、表面活性剂的应用表面活性剂在化学实验室中应用广泛,以下介绍几种常见的应用案例。
1. 乳化剂表面活性剂可以将水和油相互乳化,形成稳定的乳液。
它在化学实验室中常用于制备乳状荧光标记物、乳液溶液和液体微胶囊。
2. 表面张力调节剂表面活性剂能够改变液体的表面张力,使其更易于在固体表面上润湿。
在化学实验室中,表面活性剂被广泛应用于润湿测量、沉积薄膜和制备液体进样器等领域。
3. 分散剂表面活性剂可以在溶液中分散固体颗粒,形成稳定的胶体溶液。
在化学实验室中,分散剂常用于制备溶胶、纳米颗粒和胶体粒子。
常用的十七种表面活性剂
常用的十七种表面活性剂月桂基磺化琥珀酸单酯二钠( DLS)一、英文Disodium Monolauryl二、化学名:月桂基磺化琥珀酸单酯二钠三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa四、产品特性1.常温下为白色细腻膏体,加热后(>70C)为透明液体;2.泡沫细密丰富;无滑腻感,非常容易冲洗;3.去污力强,脱脂力低,属常见的温和性表面活性剂;4.能与其它表面活性剂配伍,并降低其刺激性;5.耐硬水,生物降解性好,性能价格比高。
脂肪醇聚氧乙烯醚( 3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氧乙烯醚( 3)磺基琥珀酸单酯二钠三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;性能价格比高;4.有优良的钙皂分散和抗硬水性能;5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌) 复配,形成十分稳定的体系,创制天然用品;6.脱脂力低,去污力适中,极易冲洗且无滑腻感。
椰油酸单乙醇酰胺磺基琥珀酸单酯二钠DMSS一、英文名:Disodium Cocoyl Monoethanolamide Sulfosuccinate二、化学名称:椰油酸单乙醇酰胺磺基琥珀酸单酯二钠三、结构式:RCONHCH2CH2OCOCHCH(SO3Na)COONa四、产品特性:1.具有优良的洗涤、乳化、分散、润湿、增溶性能;2.刺激性低,且能显著降低其他表面活性剂的刺激性;3.泡沫丰富细密稳定;稳泡性能优于醇醚型磺基琥珀酸单酯二钠;4.有优良的钙皂分散和抗硬水性能;5.脱脂力低,去污力适中,极易冲洗且无滑腻感。
单月桂基磷酸酯MAP一、英文名:Lauryl alcohol phosphate acid ester二、化学名:单月桂基磷酸酯三、化学结构式:ROPO(OH) 2 R:为天然月桂醇四、产品特性:1.优良的乳化性和增溶性。
化学表面活性剂
化学表面活性剂化学表面活性剂是一类常见的化学物质,具有降低液体表面张力的作用。
它们可以在固液、气液和液液界面上发挥作用,改变表面性质。
在日常生活和工业生产中,化学表面活性剂发挥着重要的作用。
本文将探讨化学表面活性剂的定义、特性、分类以及应用领域。
一、定义与特性化学表面活性剂是一类具有两亲性的化合物,通常分为亲水性头基和疏水性烃链。
这种结构特点使得表面活性剂在不同相之间形成分子层结构,在水/油等液体界面上降低表面张力。
化学表面活性剂的主要特性包括:1. 降低表面张力:表面活性剂能够在液体表面形成分子层,使液体表面张力降低,使得液体分子能够更容易相互靠近,形成胶束结构。
2. 分散性:表面活性剂具有较好的分散性,可以将固体颗粒分散在液体中,形成均匀的悬浮液。
3. 乳化性:表面活性剂可以将两种互不溶的液体乳化,形成乳状液体。
4. 渗透性:表面活性剂能够渗透到固体表面,改变其表面性质。
5. 泡沫性:一些表面活性剂在搅拌或摩擦作用下能够产生泡沫。
二、分类根据其分子结构和作用方式的不同,化学表面活性剂可以分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性表面活性剂四类。
1. 阴离子表面活性剂:阴离子表面活性剂的疏水基团带有阴离子基团,如烷基苯磺酸盐和烷基硫酸盐。
这类表面活性剂广泛应用于洗涤剂、肥皂等清洁产品中。
2. 阳离子表面活性剂:阳离子表面活性剂的疏水基团带有阳离子基团,如季铵盐和季胺盐。
这类表面活性剂主要用于柔顺剂、杀菌剂等产品。
3. 非离子表面活性剂:非离子表面活性剂的疏水基团不含离子基团,如聚氧乙烯醚和聚氧乙烯醚硅油。
这类表面活性剂常用于护肤品、染料助剂等领域。
4. 两性表面活性剂:两性表面活性剂的分子同时具有阳离子和阴离子性质,如脂肪醇聚醚硫酸钠和缩水甘油醚磺酸盐。
这类表面活性剂多用于油田、药品制剂等行业。
三、应用领域化学表面活性剂在各个领域有着广泛的应用,如下所示:1. 洗涤行业:洗涤剂是化学表面活性剂最常见的应用之一。
表面活性剂的化学性质与分类
表面活性剂的化学性质与分类表面活性剂是一类能够降低液体表面张力的化合物,广泛应用于洗涤、化妆品、医药、食品和工业生产等领域。
根据其电荷性质,表面活性剂可以分为阴离子、阳离子、非离子和两性离子四大类。
本文将重点介绍阴离子表面活性剂的化学性质及分类。
一、阴离子表面活性剂的化学性质阴离子表面活性剂的亲水头部通常是羧基、磺酸基、硫酸基等阴离子基团,这些基团通过离子键与水分子相互作用,使表面活性剂的亲水性增强。
同时,阴离子表面活性剂的疏水尾部通常是长链烷基或芳基,这些基团通过非极性相互作用与有机物或其他不溶于水的物质结合,使表面活性剂的溶解性增强。
二、阴离子表面活性剂的分类1.硫酸盐表面活性剂硫酸盐表面活性剂是最早使用的阴离子表面活性剂之一,具有较高的表面活性,发泡性较强,广泛应用于洗涤和化妆品等领域。
但是,由于其刺激性较大,对人体和环境有一定的负面影响,因此逐渐被其他表面活性剂所取代。
2.磷酸盐表面活性剂磷酸盐表面活性剂的亲水头部通常是磷酸基团,疏水尾部通常是由脂肪醇或芳基构成。
这些表面活性剂具有较高的稳定性和溶解性,广泛应用于清洁和工业领域。
由于其较低的刺激性,也被应用于个人护理产品中。
3.羧酸盐表面活性剂羧酸盐表面活性剂是最常见的一种阴离子表面活性剂,通常由脂肪酸和碱反应制得。
这些表面活性剂具有较低的刺激性和较好的生物降解性,因此广泛应用于个人护理和化妆品等领域。
同时,由于其较低的发泡性,也被应用于洗涤剂和工业领域。
4.氨基酸表面活性剂氨基酸表面活性剂是一种特殊的阴离子表面活性剂,以氨基酸为基础构建亲水头部和疏水尾部。
这些表面活性剂具有温和、高效、可生物降解等优点,因此广泛应用于个人护理产品、洗涤剂、化妆品等领域。
由于其特殊的分子结构,氨基酸表面活性剂还可以与其他表面活性剂进行复配,提高产品的性能和效果。
子在分子的一侧有一个胺基,在另一侧有一个羧酸基。
在生命系统中,这使得它们非常通用,因为其他分子可以通过分子两侧的不同过程非常特定地附着。
表面活性剂原理
表面活性剂原理1. 什么是表面活性剂表面活性剂,又称为表活剂,是一类能够降低液体表面张力的化学物质。
表面活性剂分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性离子表面活性剂等。
这些化合物具有一定的亲水性和亲油性,使其能够在液体表面形成稳定的界面层。
2. 表面活性剂的分类2.1 阴离子表面活性剂阴离子表面活性剂分子中有一个带负电的水溶性基团。
这类表面活性剂在水中离解产生负离子,能够降低液体表面张力,具有良好的乳化、洗涤、去污和泡沫稳定等性质。
常见的阴离子表面活性剂有十二烷基硫酸钠和十二烷基苯磺酸钠等。
2.2 阳离子表面活性剂阳离子表面活性剂分子中有一个带正电的水溶性基团。
这类表面活性剂在水中离解后产生阳离子,能够使油脂或污渍中的颜料带负电,从而使其分散均匀,并与基质发生化学反应。
常见的阳离子表面活性剂有十六烷基三甲基溴化铵和十六烷基三甲基氯化铵等。
2.3 非离子表面活性剂非离子表面活性剂分子中没有离子组团,通常是由一个或多个亲水基团和一个亲油基团组成。
这类表面活性剂不易降低液体表面张力,但能够降低界面张力,广泛应用于乳化剂、分散剂和润湿剂等领域。
常见的非离子表面活性剂有聚氧乙烯辛醇和阿尔明小苏打等。
2.4 两性离子表面活性剂两性离子表面活性剂分子中同时存在带正电和带负电的基团。
这类表面活性剂能够在不同的pH值下实现正离子或负离子的特性,表现出较好的乳化、分散和润湿性能。
常见的两性离子表面活性剂有烷基二甲基戊基三甲基苯基氯化铵。
3. 表面活性剂的作用原理表面活性剂的作用原理是通过改变液体表面或界面的性质,实现液体与液体或液体与固体之间的相互作用。
表面活性剂分子的结构中一部分官能团喜欢与水分子结合形成氢键,这部分官能团称为亲水基团。
另一部分官能团则更喜欢与油脂等非极性物质相互作用,这部分官能团称为亲油基团。
当表面活性剂添加到水中时,亲水基团与水分子形成氢键,亲油基团则留在水面上,形成一个较为致密的分子层。
化学中的表面活性剂应用
化学中的表面活性剂应用表面活性剂是化学中广泛应用的一种物质,它具有优异的表面性质和溶液稳定性,能够增强界面的吸附性和吸附能力,常被称为“分子肥皂”。
表面活性剂可以分为阳离子、阴离子、非离子、混合型等多种类型,它们在化学工业、生活、环境保护等领域都具有不同的应用。
本文就重点介绍表面活性剂在化学领域中的应用。
一、乳化剂乳化剂是一种能够使两种不相溶的液体混合在一起的物质。
比如牛奶中的脂肪是不溶于水,但因为加入了乳化剂,能够稳定分散在水中,使牛奶变成了一种乳状的液体。
在农业、化工、食品、生物等工业中,乳化剂都有广泛的应用。
而表面活性剂正是乳化剂的主要成分。
阴离子型表面活性剂在制备乳化液时较为常见,如十二烷基苯磺酸钠、十二烷基硫酸钠等。
这些表面活性剂的极性基团可以与水相互作用,而烷基则相互吸引,因此这些表面活性剂较易吸附在液体表面,从而有效达到乳化的目的。
二、胶体稳定剂胶体是由小于1微米的颗粒所组成的分散系统,由于颗粒太小,会受到布朗运动和周围液体的碰撞而发生不规则运动,难以稳定。
而胶体稳定剂(也称分散剂)就是为了维持分散系统的稳定性而使用的一种物质。
表面活性剂具有双亲性,能够在液体和固体表面吸附,提高固体介质表面的亲和性,从而达到稳定分散液体或气体的目的。
阴离子表面活性剂如十二烷基硫酸钠、十二烷基苯磺酸钠能够与金属氧化物等物质表面发生化学反应,使其表面电荷分散,从而达到胶体稳定的目的。
而非离子表面活性剂如聚氧乙烯链和聚丙烯酰胺,可以通过引入氢键和疏水性作用,增加分散液体中颗粒之间的相互作用力,从而达到胶体稳定的效果。
三、清洗剂表面活性剂还可以用作清洗剂,在生活、卫生、环境卫生等方面都有重要的应用。
比如肥皂就是一种在生活中经常使用的表面活性剂清洁剂。
表面活性剂具有亲水基团和疏水基团,能够在水中形成聚集体,去除脏污。
同时,表面活性剂还能够降低水的表面张力,使其更容易渗透和清洗脏物。
阴离子表面活性剂如十二烷基硫酸钠、十二烷基苯磺酸钠等能够分解脂肪和吸附油类,去除油污和污渍;非离子表面活性剂一般较温和,不会破坏物体表面,如十二烷基酚聚氧乙烯醚等常用于清洁纺织品、皮革、橡胶等物体。
表面活性剂名词解释
表面活性剂名词解释表面活性剂是一类能降低液体表面张力和增强液体潮湿性能的化学物质。
它们由亲水和疏水基团组成,具有独特的分子结构,能在接触两种不相溶的物质界面时,减少液体之间的张力,使液体能够更好地湿润和扩展到固体表面上。
表面活性剂常用于各种日常生活和工业应用中,如洗涤剂、乳化剂、润滑剂和护肤品等。
表面活性剂分为阳离子、阴离子、非离子和两性离子四类,根据其在溶液中的离解行为来进行分类。
阳离子表面活性剂的分子结构中含有正电荷基团,通常具有良好的抗静电性能和蓄电荷功能,常用于柔顺剂和防静电剂中。
阴离子表面活性剂的分子结构中含有负电荷基团,能够在水中形成胶束结构,具有优异的洗净和乳化性能,广泛应用于洗涤剂和乳化剂等领域。
非离子表面活性剂的分子结构不带电荷,其亲水性和疏水性取决于分子结构中的羟基、醚键和酯键等官能团,常用于油水乳化和清洁剂中。
两性离子表面活性剂既具有阴离子又具有阳离子性质,对溶液中的离子敏感,广泛应用于石油开采和水处理等行业。
表面活性剂的主要功能是改善液体界面性能,包括降低液体表面张力、提高液体和固体之间的接触性能、增强液体的渗透性和扩散性、使液体能够在纳米尺度上进行稳定分散等。
在洗涤剂中,表面活性剂能够将污垢和油脂分散到溶液中,并使其悬浮、分散和乳化,从而实现洗涤和去污的功能。
在乳化剂中,表面活性剂能够将油脂和水相分散到溶液中,并形成稳定的乳液系统。
在润滑剂中,表面活性剂能够减少摩擦和磨损,提高润滑效果。
在护肤品中,表面活性剂能够改善产品的外观和质感,提高产品的渗透性和吸收性。
然而,表面活性剂虽然具有广泛的应用价值,但也存在一些潜在的问题。
首先,表面活性剂对环境和生态系统具有一定的毒性和污染性,特别是某些高效表面活性剂,它们具有较强的生物降解性能,但在制备过程中会释放大量的有机溶剂,对环境造成较大的负担。
其次,表面活性剂在生活中的过度使用也会对健康造成一定的影响,可能导致皮肤过敏或刺激等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 离子型表面活性剂通常比非离子型表面活
性剂的效率差得多。而当相反的离子和表面活 性剂离子强烈缔合时,尤其当相反的离子本身 是一种表面活性剂离子时,则其效率得以大大 改善。
• 例如,十二烷基硫酸钠的cmc为810-3 mo1 L-1,聚集数为80;加入NaCl使离子强度恒定在 0.1mo1L-1时,则cmc变为1.210-3 mo1L-1,聚 集数为112。其他离子表面活性剂也有类似情 况。
Байду номын сангаас 参考书目:
• (1)肖进新等,表面活性剂应用原理
•
化工出版社,2003
• (2)赵国玺等,表面活性剂作用原理
•
中国轻工业出版社,2003
• 考试形式:开卷
• 要求:有目的的学
•
带开拓思维的学
第二章 表面活性剂的结构和性能
表面活性剂的化学结构虽有其共性(两亲 结构),但由于表面活性剂的亲水基有非离子、 阴离子、阳离子以及两性等不同类型,疏水基 也有脂肪基、芳香基、环烷基和直链烃、支链 烃、多链烃等不同种类,故其性质也各有所异。 此外,表面活性剂疏水链的长短,亲水基和疏 水基的比例,分子形状,分子的大小,都影响 表面活性剂的性质。因此,有必要了解表面活 性剂的结构与性能的关系。
阳离子表面活性剂
R-NH2·HCl 伯胺盐
CH3 | R-N-HCl | H
仲胺盐
CH3 | R-N-HCl | CH3
叔胺盐
CH3 | R-N+-CH3Cl| CH3
季胺盐
两性表面活性剂
R-NHCH2-CH2COOH 氨基 酸型
CH3 | R-N+-CH2COO| CH3
甜菜碱型
非离子表面活性剂
表面活性剂化学
1 表面活性剂的结构、性能及相互关系 2 表面活性剂的特性及功能 3 在化学研究中的应用
有关表面活性剂领域简介
化学科学部“十一 五”优先发展领域
(1)新的合成策略、概念与方法 (2)化学反应过程、调控及实验与理论 (3)分子聚集体的构筑、有序结构和功能 (4)复杂化学体系理论与计算方法 (5)分析测试原理和检测新技术、新方法 (6)生命体系的化学过程与功能调控 (7)绿色化学与环境化学中的关键科学问题 (8)材料科学中的关键化学问题 (9)能源和资源中的基本化学问题 (10) 化学工程中的关键科学问题
•
cmc = 0 - cmc
• 式中cmc为cmc时的表面压。 0为纯溶 剂的表面张力, cmc为溶液在cmc时的表
面张力。
• 当水作为溶剂时往往可用cmc的值来 表示表面活性剂降低表(界)面张力的能
力。
• 2.3.2 疏水基的结构对性能的影响
• 1.疏水基类型的影响
• 表面活性剂的疏水基一般为长条状的碳 氢链,疏水基主体虽为烃类,但按实际 应用可以分成以下几种:
内部的浓度(C20)的负对数即pC20。pC20值越 大,表示降低表面张力的效率越高;pC20值增 加一单位,表示该表面活性剂降低表面张力的
效率提高10倍。
• 一切影响cmc的因素均能影响pC20 。这说明 什么?
• 疏水基团为碳链分支或双键时,因cmc上升, 则表面活性剂降低表面张力的效率变小;与同 碳质子数的直链相比,带有分支的链所起的作 用大致等于同碳原子数直链的2/3。即 一个 有长的直链表面活性剂降低表面张力效率较高。
一般具有以下特性: • (1) 一般情况下,与阳离子表面活性剂配伍
性差,易沉降或浑浊,但在某特定条件时也可 极大提高表面活性。 • (2) 抗 硬 水 性 能 差 , 对 硬 水 敏 感 性 RCOO- > ROPO32- > ROSO3- > RSO3-。 • (3) 羧酸盐在酸中易析出自由羧酸,硫酸盐在 酸中可发生自催化作用而迅速分解。
较大的影响。 (见表)
2.3表面活性剂结构和性能的关系
• 2.3.1 表面活性剂降低表面张力的效率和有效 值
• 表面张力或界面张力()降低能力的评价有 两种方法,一种方法是利用表面活性剂的效率; 另一种则是表面活性剂的有效值。
• 表面活性剂的效率(efficiency)由测定表面 活性剂使水的表面张力明显下降至一定值时的 所需浓度来度量的。
CH2OH H OH H O OH H O R
H OH n
4、两性离子型表面活性剂 (1)有较强的耐酸、耐碱性。 (2)有一定的杀菌性和抑霉性。 (3)有良好的乳化性和分散性。 (4)与其他类型表面活性剂有良好的配伍性,
在一般情况下会产生协同增效效应。
(5)可以吸附在带负电荷或正电荷的物质 表面上,而不生成憎水薄层,因此有很 好的润湿性和发泡性。
基)、聚丙二醇(-O-)等。
• (5)环烃基 • 主要是松香酸皂中的环烃基和环烷酸皂类中
的环烃基。 • (6)其他特殊疏水基 • 氟化烃基、硅氧烷基等。
• 注意: 双键是有弱亲水基作用的,对于胶束 的形成与减少1~l.5个-CH2-的效果相等。
•
• 若以直链烷基磺酸盐作为比较基准来
研究对位直链烷基苯磺酸盐(ABS) 的性 能,苯基具有的疏水性作用以Kp、cmc和 cmc值来评价,分别相当于2.5~3.5、
(6)低毒性和对皮肤、眼睛的低刺激性。
(7)极好的耐硬水性,甚至在海水中也可 以有效地使用。
(8)良好的生物降解性;因两性离子表面 活性剂在紫外区(蛋白质的吸收波段) 无吸收,背景干扰小,在生物分析中也 有广泛的应用。
• 5、影响表面活性剂特性的因素
• 表面活性剂的特性,如表面活性、胶束的 形成、增溶作用等,主要取决于表面活性剂自 身的结构像表面活性剂疏水链的种类、链长、 分支结构;头基的种类及数目、位置等。除本 身结构外,外部因素如温度、浓度、pH、电解 质、溶剂,其它表面活性剂、添加剂(极性有 机物、高分子物质)、时间等对这些特性都有
原子连到醚键氧原子的“自由电子对” 上。通过羟基和醚键中的氧原子与水形 成氢键而溶于水,故亲水性不强。
• 冠醚
• 所谓冠醚型非离子表面活性剂,是以 多个醚键结合成大环为亲水基的表面活 性剂,其性质类似非离子表面活性剂, 但又是具有独特性质的新型表面活性剂。 可依据冠醚环的大小与不同离子半径的 金属离子相结合,形成可溶于有机溶剂 相的络合物的特性,因此常作为相转移 催化剂。根据聚氧化乙烯数的多少可分 为四冠、六冠、八冠等。如:
具有以下特性: • (1)不离解,不受酸、碱、盐影响,耐硬水性
好,稳定性高。 • (2)与其它表面活性剂相容性好。
• (3)在一般固体表面上不易发生强烈吸附。 • (4)具有高表面活性,其水溶液的 低,cmc小,
胶团聚集较大,增溶作用强。具有良好乳化力 和去污力。
• (5)不带电,不与蛋白质结合;毒性低,对皮 肤刺激性小。
3.5、 3~4个-CH2-基,比脂环类(单 环)的疏水性略低。苯基的引入使cmc稍 为降低2~3 mNm-1。烷基链长N为12~14 时,cmc最小。
• 碳氟链是目前能使表面张力达到最低(15~ 20 mNm-1)的疏水基,硅氧烷链处于碳氟链和
• 碳氢链之间。碳氟链类的离子型活性剂的Kp一 般比碳氢链类的高,而cmc则低。硅氧烷链类 的Kp比碳氢链类的低,而cmc反而大?,胶束缔 合数则很小(5~10)。
• 从c8到c16,cmc减小240倍;cmc只则减小1.5倍。 • 可见,链长对效率和有效值的影响不同。 • 若链长为18或20或更长会如何?
• 表面活性剂降低表(界)面张力的效率可用
pC20来衡量。pC20定义为:
•
pC20=log(1/C20)
•
当表(界)面张力降低20 mN·m-1时,溶液
• (1) 脂肪族烃基
• 包括饱和烃基和不饱和烃基(双键和 三键)。如十二烷基、十八烷基、十八 烯基等。
• (2)芳香族烃基 • 如萘基、苯基、苯酚基等。 • (3) 脂肪烃芳香烃基 • 如十二烷基苯、二丁基萘基、壬烷基苯
酚等。 • (4)疏水基中有弱亲水基 • 蓖麻醇酸(-OH基)、油酸丁脂(-COO-
O
O
O
CH2 CH2 CH2 CH2 CH2
CH2 CH2 O
CH2 CH2 O
CH2 CH2 CH2 CH2 CH2 CH2
O
O
O
• (b)婉曲形 (水溶液中)
• 和离子型表面活性剂相反,聚氧乙 烯链的非离子型表面活性剂一般在温度 低时易溶解于水中成为澄清的溶液,温 度升高到一定程度后(对每一个表面活性 剂不同),表面活性剂将在水中浑浊、析 出、分层。其产生的原因是非离子表面 活性剂溶于水时,水分子以氢键与聚氧 乙烯醚的氧原子连结,此时水分子的氢
R-O-(CH2CH2O)nH 脂肪醇聚氧乙烯醚
R-(C6H4)-O(C2H4O)nH 烷基酚聚氧乙烯醚
R2N-(C2H4O)nH 聚氧乙烯烷基胺
R-CONH(C2H4O)nH 聚氧乙烯烷基酰胺
R-COOCH2(CHOH)3H 多元醇型
2.2 各类表面活性剂特性
1、阴离子型表面活性剂 与其它表面活性剂相比,阴离子表面活性剂
• (1) 优异的杀菌性(主要是季胺盐类)。杀菌 能力主要决定于它对细胞的渗透性和对蛋白质 的沉淀能力。
• (2) 容易吸附于一般固体表面。这主要是由于 水介质中的固体表面(固-液界面)一般是负 电性,如硅胶、活性炭等,所以正表面活性离 子容易被吸附在固体表面上于是有了某些特殊 用途。
• 3. 非离子表面活性剂 • 与离子表面活性剂相比,非离子表面活性剂
• 有效值(effectiveness) 是表面活性 剂能使溶液的表面张力降低到可能达到 的(一般在cmc附近)最小值(cmc),这种 方法是评价表面活性剂降低表(界)面张 力的能力。