聚合物复合材料 基体

合集下载

聚合物复合材料结构与力学性能

聚合物复合材料结构与力学性能

聚合物复合材料结构与力学性能聚合物复合材料是一种应用非常广泛的材料,它能够满足各种不同的应用需求。

而聚合物复合材料的结构和力学性能是影响它使用效果的两个重要因素。

在本文中,我们将着重探讨聚合物复合材料的结构和力学性能,阐述它们之间的关系。

一、聚合物复合材料的结构聚合物复合材料主要由基体和增强材料两部分组成。

基体是复合材料中主要起粘合作用的材料,一般为聚合物或金属。

而增强材料则是提高复合材料机械性能的关键,常见的增强材料有玻璃纤维、碳纤维、芳纶纤维等。

在复合材料的制备过程中,需要将基体与增强材料均匀混合,并且对增强材料进行定向排列,以便在力学应用过程中发挥出最佳的机械性能。

不同的增强材料能够在材料内部形成不同的结构。

例如,采用碳纤维增强材料制备的复合材料具有独特的多向异性结构。

这种结构使得复合材料在机械应用过程中可以适应各个方向的应力,并且具有优异的强度和刚度。

而采用芳纶纤维增强材料制备的复合材料,则具有更为致密的结构,能够提供更高的耐腐蚀性和抗疲劳性。

聚合物复合材料的结构不仅与增强材料的类型有关,还与增强材料的含量及其排列方式有关。

通过对增强材料含量的调整,可以控制复合材料的密度、强度和刚度等材料性能。

此外,增强材料的排列方式也能够对复合材料的性能产生影响。

例如,制备过程中的拉伸、挤压等工艺会使得增强材料的排列方向与基体方向不同,从而产生复合材料的各向异性结构,使得其机械性能更加出色。

二、聚合物复合材料的力学性能聚合物复合材料的机械性能是其最为重要的性能之一,也是材料选择和应用的主要考虑因素。

复合材料的机械性能主要包括强度、刚度、韧性等。

其中,强度和刚度是复合材料的特色,而韧性是影响其应用范围和使用寿命的关键因素。

强度是复合材料的抗拉、抗压、抗弯等力学性能表现。

采用不同的增强材料和结构以及增强材料含量的不同,可以得到不同强度的复合材料。

碳纤维增强聚合物复合材料具有高强度、高刚度和低密度的优异性能,适用于飞机、汽车、船舶等领域。

复合材料及其聚合物基体概论课件

复合材料及其聚合物基体概论课件
1.3.4 电性能 树脂分子由共价键组成,是一种优良的绝缘材料。 影响树脂电绝缘性能的因素有两个: 一是大分子链的极性;二是已固化树脂中杂质的存在。 1 )树脂大分子链中极性基团越多,极性越强,则电绝缘性越差; 2)已固化树脂中的杂质越少,则电性能越好。
复合材料及其聚合物基体概论课件
复合材料及其聚合物基体概论课件
3、树脂的断裂伸长率与结构的关系 1)大分子链的柔顺性:由C-C键组成的脂肪链是柔性链的代表,具有柔性链结构的树脂,伸长率较大;具有刚性链结构(苯环、萘环、联苯环等)的树脂,具有相当大的刚性,伸长率较小。 2)大分子链间的交联密度:交联密度越大,树脂的伸长率越小,呈现脆性。
复合材料及其聚合物基体概论课件
问题1 基体材料在复合材料中所起的作用是什么?
复合材料及其聚合物基体概论课件
基体材料在复合材料中的作用
1、粘结作用 基体材料作为连续相,把单根纤维粘成一个整体,使纤维共同承载。 2、均衡载荷、传递载荷 在复合材料受力时,力通过基体传给纤维。 3、保护纤维 在复合材料的生产与应用中,基体可以防止纤维受到磨损、遭受浸蚀。
复合材料及其聚合物基体概论课件
复合材料的分类
1、按基体材料类型分为 聚合物基复合材料(PMC) 金属基复合材料(MMC) 无机非金属基复合材料,包括陶瓷基复合材料 和水泥基复合材料(CMC)等 2、按增强材料类型分为 玻璃纤维增强复合材料;碳纤维增强复合材料 芳纶(Kevlar)纤维增强复合材料 UHMW-PE纤维增强复合材料等 3、按用途分为 结构复合材料、功能复合材料、 结构功能一体化复合材料
2)按用途分类: 纤维、橡胶、塑料(树脂)、涂料、粘结剂 3)按聚集态分类: 玻璃态、高弹态、粘流态
温度
变形

复合材料的基体材

复合材料的基体材

复合材料的基体材
常见的复合材料基体材料包括金属、聚合物和陶瓷等。

金属基体材料是最早被应用于复合材料的基体材料之一、金属基复合材料具有高强度、刚性和导热性能,还具有优良的机械性能和良好的成型性能。

由于金属本身的导热性和良好的电导性,金属基复合材料广泛应用于热传导和电传导方面的应用,如散热器、导电线和电子器件等。

聚合物基体材料是应用最广泛的复合材料基体材料之一、聚合物基复合材料具有重量轻、加工性能好、电绝缘性好、化学稳定性好等特点。

此外,聚合物基体材料的成本相对较低,易于大规模生产。

因此,聚合物基复合材料广泛应用于航空航天、汽车工业、电子设备和建筑等领域。

陶瓷基体材料具有高强度、高硬度、高耐压性和高耐磨性等特点。

陶瓷基复合材料的主要优点是在高温和高压环境下具有出色的性能。

陶瓷基复合材料常用于高性能陶瓷刀具、高温热力设备和用于材料强化的陶瓷纤维等领域。

此外,还有一些其他的基体材料,如碳纤维基体材料和纤维增强中空玻璃基体材料等。

碳纤维基体材料具有重量轻、高强度、高弹性模量和耐腐蚀性强等特点,常用于航空航天、汽车和体育器材等领域。

而纤维增强中空玻璃基体材料以其低密度、优良的隔热性能和抗雷击性能而得到广泛应用。

综上所述,复合材料的基体材料类型丰富多样,每种材料都有其独特的优点和应用领域。

随着科技的不断进步和需求的不断增加,对基体材料的研发和应用也在不断深入,为复合材料的发展提供了更广阔的空间。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料
聚合物基复合材料是由聚合物基体和增强物相互作用形成的复合材料,具有优异的力学性能、热稳定性和电绝缘性能,广泛应用于航空航天、汽车、建筑以及电子等领域。

聚合物基复合材料由于具有低密度、高强度、高刚度、耐腐蚀和自润滑等特点,在航空航天领域得到了广泛应用。

例如,碳纤维增强聚合物基复合材料具有高强度、低密度和耐高温性能,被广泛应用于制造飞机机身、翼面和发动机部件,能有效降低飞机的重量,提高燃油效率,提高飞机的载荷能力和飞行速度。

此外,聚合物基复合材料还被广泛应用于汽车制造领域。

相较于传统金属材料,聚合物基复合材料具有低密度、优异的力学性能和杰出的吸能能力,能够降低汽车整车重量,提高汽车燃油经济性和减少尾气排放。

因此,聚合物基复合材料被广泛应用于汽车车身、车顶、车门、引擎罩、底盘和车辆内部部件等。

在建筑领域,聚合物基复合材料也具有广泛的应用前景。

聚合物基复合材料具有轻质、高强度、耐候性和可塑性等特点,能够有效替代传统的建筑材料,例如水泥、钢材等。

聚合物基外墙材料、地板材料、隔热材料等聚合物基复合材料产品在建筑装饰、隔音隔热、防水防潮等方面具有广泛的应用。

此外,聚合物基复合材料还在电子领域得到了广泛应用。

聚合物基复合材料具有优异的电绝缘性能和低介电常数特点,能够有效隔离和保护电子元器件。

聚合物基复合材料在电路板、电子封装材料、电缆套管等领域具有广泛应用。

总之,聚合物基复合材料具有轻质高强、耐高温、抗腐蚀、电绝缘等一系列优异的特性,广泛应用于航空航天、汽车、建筑和电子等领域,为各行业的发展提供了更多的可能性。

复合材料聚合物基体

复合材料聚合物基体

(五)工艺件好,适应性强,不仅本身品种多,可 按一定比例相互渗混调节粘度与性能,且可选择 不同固化剂,满足不同操作工序与不同用途的要 求。环氧树脂体系可在5-180℃温度范围内固化, 不需要高压成型;
(六)具有良好的尺寸稳定性和耐久性。树脂本身 稳定性高,贮存的间长;
(七)能耐大多数霉菌,因此可在热带条件下使用; (八)成本比聚酯和酚醛树脂高,其些固化剂的毒
热固性酚醛树脂也可用来使二阶树脂固化,因为 它们分子中的羟甲基可与热塑性酚醛树脂酚环上 的活泼氢作用,交联成三向网状结构的产物
六次甲基四胺是热塑性酚醛树脂采用最广泛的固 化剂。热塑性酚醛树脂最广泛用于酚醛模压料, 大约有80%的模压料是用六次甲基四胺固化的。 用六次甲基四胺固化的二阶树脂还用作胶粘剂和 浇铸树脂。
酚醛树脂的脆性比较大、收缩率大、不耐碱、易 吸潮、电性能差,不及聚酯和环氧树脂;
耐热性和玻璃化转变温度较高; 极限氧指数32-36; 酚醛树脂在高温800-2500℃下在材料表面形成炭
化层,使内部材料得到保护,因此酚醛树脂广泛 用作烧蚀材料,用于火箭、导弹、飞机、宇宙飞 船等。
主要问题
酚醛树脂反应三个阶段
酚醛树脂根据反应程度可分为三个阶段; 甲阶(A阶)酚醛树脂,其反应程度低,分子量
低,具有可溶、可熔性;
乙阶(B阶)酚醛树脂,其反应程度及分子量均 有所提高,具有半熔性,呈凝料态;---凝胶速度
丙阶(C阶)酚醛树脂,其反应程度及分子量最 高,为交联网状结构,呈不熔不溶的固态。---固 化速度
7、无机氯:环氧树脂中的无机氯主要由氮化钠(副产物) 的残留引起的。它对环氧树脂固化后产物的电气性能、耐 水性能均有影响。树脂中的氯离子能与胺类固化剂发生反 应而影响树脂的固化,同时影响树脂的电性能。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料聚合物基复合材料是一种由聚合物基体和强化材料组成的复合材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑材料等领域。

聚合物基复合材料的研究和应用已经成为材料科学领域的热点之一。

首先,聚合物基复合材料的基本组成是聚合物基体和强化材料。

聚合物基体通常采用树脂类材料,如环氧树脂、酚醛树脂、聚酰亚胺树脂等,而强化材料则可以是玻璃纤维、碳纤维、芳纶纤维等。

这些强化材料可以有效地提高复合材料的强度和刚度,使其具有优异的力学性能。

其次,聚合物基复合材料具有许多优越的性能。

首先是轻质性能,由于聚合物基体的密度较低,加上强化材料的高强度,使得复合材料具有很高的比强度和比刚度。

其次是耐腐蚀性能,聚合物基复合材料在恶劣环境下具有良好的耐腐蚀性能,可以替代传统的金属材料。

此外,聚合物基复合材料还具有良好的设计自由度,可以根据实际需求进行定制加工,满足不同领域的应用需求。

再次,聚合物基复合材料的制备工艺多样。

常见的制备工艺包括手工层叠、注塑成型、压缩成型等,其中注塑成型是目前应用最广泛的工艺之一。

通过不同的制备工艺,可以得到不同性能的聚合物基复合材料,满足不同领域的需求。

最后,聚合物基复合材料的应用领域非常广泛。

在航空航天领域,聚合物基复合材料被广泛应用于飞机机身、发动机零部件等;在汽车制造领域,聚合物基复合材料被应用于车身结构、内饰件等;在建筑材料领域,聚合物基复合材料被应用于地板、墙板、梁柱等。

可以说,聚合物基复合材料已经成为现代工程领域不可或缺的材料之一。

综上所述,聚合物基复合材料具有轻质、高强度、耐腐蚀等优点,具有广阔的应用前景。

随着材料科学的不断发展,相信聚合物基复合材料将会在更多领域展现其无穷魅力。

第二章聚合物基复合材料的基体

第二章聚合物基复合材料的基体

第二章聚合物基复合材料的基体1.聚合物基体的作用复合材料=基体+增强剂(填充剂)复合材料的原材料包括基体材料和增强材料聚合物基体是FRP的一个必需组分。

在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体,因而整体性能直接影响复合材料性能。

基体的作用主要包括以下四个部分①将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均衡;②基体决定复合材料的一些性能。

耐热性、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;③基体决定复合材料成型工艺方法以及工艺参数选择等。

④基体保护纤维免受各种损伤。

此外,基体对复合材料的另外一些性能也有重要影响,如纵向拉伸、尤其是压缩性能,疲劳性能,断裂韧性等。

2.聚合物基体材料的分类用于复合材料的聚合物基体有多种分类方法,如按树脂热行为可分为热固性及热塑性两类。

热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砜、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变化。

热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分子量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子,这类基体通常是无定形的。

聚合物基体按树脂特性及用途分为:一般用途树脂、耐热性树脂、耐候性树脂、阻燃树脂等。

按成型工艺分为:手糊用树脂、喷射用树脂、胶衣用树脂、缠绕用树脂、拉挤用树脂等。

不饱和聚酯树脂、环氧树脂、酚醛树脂及被称为三大通用型热固性树脂。

它们是热固性树脂中用量最大、应用最广的品种。

3.聚合物基体的选择对聚合物基体的选择应遵循下列原则:(1)能够满足产品的使用需要;如使用温度、强度、刚度、耐药品性、耐腐蚀性等。

高拉伸(或剪切)模量、高拉伸强度、高断裂韧性的基体有利于提高FRP力学性能。

(2)对纤维具有良好的浸润性和粘接力;(3)容易操作,如要求胶液具有足够长的适用期、预浸料具有足够长的贮存期、固化收缩小等。

聚合物复合材料 基体

聚合物复合材料  基体

关键部件:空隙率<0.5% 重要部件:空隙率<1.0%
耐热性、耐溶剂性、耐盐雾和耐天侯老化性能 复合材料中增强体完全被树脂涂敷包埋,因此,树
脂的特性决定了复合材料的耐环境性能。
(2)对增强材料具有较大的粘附力
聚合物在复合材料中的一项重要作用是作为粘合剂将 增强材料、各种填料粘合成一个整体,从而构成一种具有 崭新性能的新材料。这种粘合作用非常重要。 改善其力学性能 基体部分承载,向增强材料传递载荷 保护增强材料免受周围介质、外界环境的侵蚀和磨蚀
调节双键密度增加树脂韧性降低树脂结晶度提高与乙烯基类交联单体的溶解性饱和二元酸名称树脂特性熔点邻苯二甲酸酐苯酐与交联单体苯乙烯相容性好131四氢邻苯二甲酸酐表面发粘得到改善102己二酸韧性好152韧性好133间苯二甲酸强度韧性耐热性和耐腐蚀性好330对苯二甲酸拉伸强度高348内次甲基四氢邻苯二甲酸酐热稳定性和热变形温度高165六氯内次甲基四氢邻苯二甲酸酐自熄性树脂2393二元醇作用
粘流态树脂 凝胶阶段
凝胶态
定型阶段
具有硬度的 固态
熟 化 阶 段
交联完全 固态树脂
① ②③
(10)不饱和聚酯固化体系
不饱和聚酯:1mol 交联剂:苯乙烯、氯化苯乙烯、乙烯基甲苯、α-甲基苯乙烯、
2,5-二溴苯乙烯等。用量1.5~3.0mol 引发剂:过氧化物或偶氮化合物,用量1~4% 促进剂:环烷酸钴 增粘剂:MgO,CaO,Ca(OH)2,Mg(OH)2 触变剂:气相法白碳黑(SiO2),用量2~6% 常温固化系统:过氧化甲乙酮+环烷酸钴
(3) 具有良好的工艺
粘度是树脂工艺性能的重要指标。聚合物应有恰当的粘度和流动性, 使复合材料易于加工成型。 粘度过大不易浸渍增强纤维及填料 粘度过小,在成型时易于流失

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用聚合物复合材料是由聚合物基体和填充物组成的材料,其中聚合物基体起到了至关重要的作用。

聚合物基体作为复合材料的主要组成部分,不仅决定了复合材料的结构和性能,还对其应用领域和使用效果产生重要影响。

聚合物基体在聚合物复合材料中具有增强材料的作用。

聚合物基体能够有效地包裹和固定填充物,使其分散均匀并增加复合材料的强度和刚性。

聚合物基体还能够通过与填充物之间的相互作用,增强复合材料的耐磨性、耐腐蚀性和耐高温性能。

同时,聚合物基体的选择还可以根据填充物的特性进行调整,以实现更好的增强效果。

聚合物基体在聚合物复合材料中具有增加材料韧性的作用。

聚合物基体的高分子链结构具有良好的延展性和变形能力,可以有效吸收和分散外部应力,降低复合材料的脆性,提高其韧性。

这使得聚合物复合材料在受到冲击或振动时能够更好地抵抗损伤和破坏,提高材料的可靠性和寿命。

聚合物基体还在聚合物复合材料中起到了粘合剂的作用。

由于聚合物基体具有良好的粘附性和可塑性,它能够将填充物与基体牢固地结合在一起,形成一个整体的复合材料。

这种粘合作用不仅可以提高复合材料的强度和刚度,还可以增加其抗剪切和抗拉伸的能力。

同时,聚合物基体还可以通过调整其粘附性和可塑性,实现与不同填充物的粘结和兼容性,从而改善复合材料的性能和使用效果。

聚合物基体还可以提供阻燃和耐候性能。

许多聚合物基体具有良好的耐高温和阻燃性能,能够有效阻止复合材料在高温下燃烧,提高材料的安全性。

聚合物基体还能够通过添加特殊的添加剂或进行表面处理,提高复合材料的耐候性,使其能够在恶劣的环境条件下长时间稳定使用。

聚合物基体在聚合物复合材料中起到了至关重要的作用。

它不仅增强了复合材料的强度和刚性,还增加了材料的韧性和粘结性,提供了阻燃和耐候性能。

因此,在设计和制备聚合物复合材料时,应该充分考虑聚合物基体的选择和特性,以实现最佳的材料性能和使用效果。

同时,对聚合物基体的研究和开发也是提高复合材料性能和推动材料科学发展的重要方向。

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用1.承载载荷:聚合物基体作为复合材料的主要载荷承载部分,负责吸收和传递来自外部环境的应力和载荷。

它能够在受力时承担拉伸、压缩、剪切等多种载荷,确保复合材料的强度和刚度。

2.分散增强:聚合物基体可以有效地分散和固定增强材料(如纤维、颗粒等)在复合材料中,提高增强材料的力学性能。

通过良好的分散,聚合物基体能够限制增强材料间的相互接触和滑移,提高复合材料的抗拉强度、屈服强度和韧性。

3.良好的界面粘结:聚合物基体能够与增强材料形成良好的界面粘结,增强复合材料的耐久性和力学性能。

在界面处,聚合物基体能够与增强材料发生物理化学作用,形成强大的界面粘结力,防止界面剥离、滑移和开裂等问题。

4.阻燃和耐腐蚀:聚合物基体可通过添加烟煤、红磷等阻燃剂和抗氧化剂、紫外线吸收剂等防腐剂,提高复合材料的耐燃性和耐腐蚀性。

这样可以保护增强材料不受热、化学物质和环境引起的损伤,延长复合材料的使用寿命。

5.调节热膨胀系数:聚合物基体的热膨胀系数可以通过选择不同的聚合物树脂以及添加填充剂进行调节,与增强材料的热膨胀系数匹配,减少由于温度变化引起的热应力和热变形。

这有助于提高复合材料的尺寸稳定性和精度。

6.加工性能:聚合物基体具有良好的加工性能,容易通过热成型、挤出、注塑等常规成型工艺进行加工。

这使得聚合物复合材料能够以不同形式的成型件,满足不同应用需求。

总的来说,聚合物基体在聚合物复合材料中起着关键的作用。

它不仅提供载荷承载能力,还能分散增强材料、形成良好的界面、阻燃耐腐蚀、调节热膨胀系数,并具有良好的加工性能。

这些功能使聚合物基体成为具有优异综合性能的聚合物复合材料的核心部分。

聚合物基复合材料

聚合物基复合材料
25
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚苯乙烯类塑料(FR-ABS)
基体树脂:丁二烯-苯乙烯共聚物(BS) 丙烯腈-苯乙烯共聚物(AS) 丙烯腈-丁二烯-苯乙烯共聚物(ABS)
性能改进:强度、弹性模量有成倍提高 耐高温、耐低温、尺寸稳定性等都有所改善
26
4、3 纤维增强聚合物复合材料
玻璃纤维增强聚碳酸酯(FR-PC)
Kevlar纤维增强树脂:良好压延性、耐冲击、 良好振动衰减性、优异得耐疲劳性
37
4、3 纤维增强聚合物复合材料
常见高性能纤维增强环氧树脂性能对比
增强纤维 相对密度 拉伸强度,MPa 弹性模量,GPa
碳纤维 1、6 1500 12
Kevl 2、0 1750 120
41
4、4 聚合物基复合材料得制备和加工
轮鼓缠绕法预浸料制备示意图
42
4、4 聚合物基复合材料得制备和加工
(2)预混料:
工艺对象:不连续纤维浸渍或混合树脂 制品特征:片状模塑料(Sheet molding pound,SMC)
块状模塑料( Bulk Molding pound,BMC) 注射模塑料(Injection molding pound,IMC)
高强度、高模量纤维增强塑料
基体树脂:环氧树脂 增强材料:碳、硼、芳香族纤维、晶须等高强、高模纤维
性能特点:密度小、强度模量高、热膨胀系数小; 制备工艺简单、成型方法多; 纤维价格昂贵,使用范围到限
36
4、3 纤维增强聚合物复合材料
碳纤维增强树脂: 强度、刚度、耐热性均好
硼纤维增强树脂: 刚性好(模量高于碳纤维增强)
聚合物基复合材料
4、1 概述
4、1 概述
4、1 概述

第四章聚合物基体复合材料

第四章聚合物基体复合材料

0.4 0.8
0.6 0.8 0.2 0.4 0.14 0.20 0.4 0.10 0.4 0.1 0.1 0.6
63 155
50 127 80 96 140 149 85 240 70 250 83 100
1.3~1.6 0.2~0.8
1.5~2.5 0.3~1.0 0.3~0.6 0.1~0.3 0.5~0.7 0.1~0.3 0.8~2.0 0.3~0.6 0.7~1.4 0.4~0.8 0.4~0.6 0.1~0.3
可以通过手糊、模压、缠绕、拉挤等各种工艺制备复合 材料。可根据制品性能要求和成型工艺方法来选择不同 牌号的树脂。 固化时收缩率较大,预浸料贮存期限短,含苯乙烯,有刺 激性气体,长期接触对身体健康不利。树脂的耐热性差。 但价格便宜、制备工艺性好。 广泛应用于电器、建筑、防腐、交通等诸多领域。
环氧树脂(EP)
聚酯
尼龙66
ABS树脂
高强度高模量纤维增强塑料
各种高强、高模纤维增强复合材料性能
常用的热固性树脂其它物理性能
热固性高聚物一直在连续纤维增强树脂基复合材
料中占统治地位。不饱合聚酯树脂、酚醛树脂主
要用于玻璃增强塑料,其中聚酯树脂用量最大,
约占总量的80%,而环氧树脂则一般用作耐腐蚀
性或先进复合材料基体。
传统的聚合物基体,固化前热固性树脂粘度很 低,宜于在常温常压下浸渍纤维,并在较低的 温度和压力下固化成型;固化后具有良好的耐 药品性和抗蠕变性。缺点是热固性树脂所用的 预浸料需要低温冷藏,且贮存期较短;成型周 期长,材料的韧性差。
35 85
21 90 70 110 95 200 130 200 110 260 67 130
45 60
20 35 100 130 88 150 130 150 34 170 80 100

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用

聚合物基体在聚合物复合材料中的作用聚合物复合材料是由聚合物基体和填充物组成的一种材料。

聚合物基体在复合材料中起着重要的作用,它不仅为材料提供了力学性能,还影响着材料的综合性能。

聚合物基体能够提供复合材料的力学性能。

聚合物基体具有较好的韧性和强度,能够承受外部载荷并分散到整个复合材料中。

聚合物基体的强度决定了复合材料的抗拉强度和抗压强度,而其韧性则决定了材料的断裂韧性和抗冲击性能。

因此,选择合适的聚合物基体可以使复合材料具有良好的力学性能,提高材料的强度和韧性。

聚合物基体能够增强复合材料的耐热性和耐腐蚀性。

聚合物基体通常具有较高的耐热性和耐腐蚀性,能够在高温环境和腐蚀介质中保持材料的性能稳定。

在一些特殊工作环境中,如航空航天领域和化学工业中,需要使用具有优异耐热性和耐腐蚀性的复合材料,而聚合物基体可以满足这些要求。

聚合物基体还能够影响复合材料的导热性和导电性。

一些聚合物基体具有较低的导热性和导电性,可以用于制备绝缘性能良好的复合材料。

而另一些聚合物基体具有较好的导热性和导电性,可以用于制备导热导电性能优异的复合材料。

根据不同的应用需求,可以选择合适的聚合物基体来调控复合材料的导热性和导电性。

聚合物基体还能够影响复合材料的加工性能和成本。

聚合物基体的加工性能决定了复合材料的成型工艺和成本。

一些聚合物基体具有良好的可塑性和可加工性,可以通过注塑、挤出等常规加工工艺进行成型。

而另一些聚合物基体则需要采用特殊的加工工艺,如层压、浸渍等工艺,增加了复合材料的制备难度和成本。

因此,在选择聚合物基体时需要考虑材料的加工性能和成本因素。

聚合物基体在聚合物复合材料中起着至关重要的作用。

它不仅为材料提供了力学性能,还影响着材料的耐热性、耐腐蚀性、导热性、导电性、加工性能和成本等方面。

选择合适的聚合物基体可以使复合材料具有优异的综合性能,满足不同领域的应用需求。

随着科学技术的不断进步,聚合物基体的研发和应用将进一步推动聚合物复合材料的发展与应用。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料班级:11050301学号;1105030111姓名:王雪一.聚合物基复合材料的基体聚合物基复合材料的基体是有机聚合物.二.聚合物基复合材料的增强材料(1)玻璃纤维增强树脂基复合材料;(2)天然纤维增强树脂基复合材料;(3)碳纤维增强树脂基复合材料;(4)芳纶纤维增强树脂基复合材料;(5)金属纤维增强树脂基复合材料;(6)特种纤维增强聚合物基复合材料;(7)陶瓷颗粒树脂基复合材料;(8)热塑性树脂基复合材料;(聚乙烯,聚丙烯,尼龙,聚苯硫醚(PPS),聚醚醚酮(PEEK),聚醚酮酮(PEKK))(9)热固性树脂基复合材料;(环氧树脂,聚酰亚胺,聚双马来酰亚胺(PBMI),不饱和聚酯等)(10)聚合物基纳米复合材料三.聚合物基复合材料的制备方法1、溶胶-凝胶法溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。

所谓的溶胶—凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶.溶胶—凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。

根据聚合物与无机组分的相互作用情况,可将其分为以下几类:(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。

(2)嵌入的聚合物与无机网络有共价键作用(3)有机—无机互穿网络2、层间插入法层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机—无机纳米复合材料。

层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范围1~100 nm内。

层状矿物原料来源极其丰富,而且价廉。

插入法大致可分为以下几种: (1)熔融插层聚合(2)溶液插层聚合(3)聚合物熔融插层 (4)聚合物溶液插层3、共混法共混法类似于聚合物的共混改性,是聚合物与无机纳米粒子的共混,该法是制备纳米复合材料最简单的方法,适合于各种形态的纳米粒子。

聚合物基复合材料(PMC)

聚合物基复合材料(PMC)

05
PMC的制造设备与工具
预处理设备
混合设备
用于将各种组分(如树脂、填料、增强材料等) 混合均匀,形成预浸料或浆料。
切割和裁剪设备
用于将纤维材料切割成所需的尺寸和形状,以便 与树脂进行混合。
清洁和干燥设备
用于确保所有原材料在使用前都已清洁并干燥。
复合设备
热压成型机
用于将预浸料或浆料在高温和压力下固化,形成复合材料部件。
切割与加工
根据需要,对复合材料进行切割、 打磨、钻孔等加工,以满足实际应 用需求。
质量检测
对复合材料进行外观、尺寸、性能 等方面的检测,确保其符合设计要 求。
03
PMC的性能与优化
力学性能
1 2 3
高强度和刚度
聚合物基复合材料具有较高的抗拉、抗压和抗弯 强度,以及良好的刚性,能够满足各种复杂应力 条件下的应用需求。
复合工艺
层叠铺放
根据设计要求,将预浸料 层叠铺放在模具或制件上。
热压成型
在一定温度和压力下,使 预浸料熔融流动并均匀填 充模具或制件,形成致密 的复合材料。
固化
使聚合物基体在一定温度 和压力下进行固化反应, 形成稳定的复合材料。
后处理工艺
冷却
将热压成型的复合材料缓慢冷却 至室温,防止材料内部产生应力。
聚合物基复合材料 (PMC)
• PMC的概述 • PMC的制造工艺 • PMC的性能与优化 • PMC的设计与选材 • PMC的制造设备与工具 • PMC的市场与发展前景
目录
01
PMC的概述
PMC的定义与特性
定义
聚合物基复合材料(PMC)是由两种或两种以上材料组成的一种复合 材料,其中一种材料为聚合物基体,其他材料为增强剂或填料。

聚合物复合材料的制备技术

聚合物复合材料的制备技术

聚合物复合材料的制备技术聚合物复合材料(polymer composite materials,PCM)是一种独特的新型材料,由两种或以上的物质组合而成,是一种在工业中更为广泛应用的新型结构材料。

聚合物复合材料由聚合材料和增强材料构成,聚合材料是基体,增强材料是填料,可使聚合物复合材料在力学性能、物理性能、热性能等方面得到了显著的提高,并且具有较高的强度、刚度、耐磨性和防腐蚀性等优点。

一、制备材料1.聚合材料的选择聚合材料是指制备聚合物复合材料的基体,它的选择直接影响到最终的性能。

常见的聚合材料包括塑料、树脂、橡胶和胶粘剂等。

其中,树脂是最常用的一种材料。

在树脂中,环氧树脂和不饱和聚酯树脂是应用最广泛的两种。

2.增强材料的选择增强材料是聚合物复合材料中的填料,决定了聚合物复合材料的物理性能和强度。

常用的增强材料有玻璃纤维、碳纤维、芳纶丝等。

其中,碳纤维是目前应用最广泛的一种。

在选择碳纤维材料时,需要结合具体的应用环境和要求进行选择,例如选择碳纤维长度、直径、分布和取向等。

二、制备工艺1.树脂基复合材料的制备工艺树脂基复合材料的制备工艺一般包括树脂注塑和模压两种。

树脂注塑是一种快速制备树脂基复合材料的方法。

首先,将固态增强材料放置于注塑机的注塑腔中,然后将树脂加热至液态状态,通过注塑机将树脂注入注塑腔中,再通过成型过程,形成树脂基复合材料。

模压是一种制备高强度树脂基复合材料的方法。

在模压过程中,将增强材料置于模具中,再将树脂加热至液态状态,然后通过压力和温度对其加固,成型成树脂基复合材料。

2.碳纤维基复合材料的制备方法碳纤维基复合材料的制备方法一般包括湿法和干法两种。

湿法是通过浸渍法制备碳纤维基复合材料的一种方法。

先将碳纤维浸泡在预浸涂层中,再将其从预浸涂层中取出,通过加热和固化,形成碳纤维基复合材料。

干法则是通过预浸涂料制备碳纤维基复合材料的一种方法。

首先,将干燥的碳纤维预处理涂上预浸涂层,然后通过烘干和固化获得碳纤维基复合材料。

聚合物基复合材料 基体材料

聚合物基复合材料  基体材料
16
17
3.2.5 其他性能
1)黏附性 树脂的表面张力、润湿能、 能否产生化学键; 能否产生化学键; 固化时体积收缩率, 断裂伸长ቤተ መጻሕፍቲ ባይዱ 环氧:含多种极性基团;固化收缩小; 环氧:含多种极性基团;固化收缩小; 酚醛、聚酯:有极性基团,固化时收缩大; 酚醛、聚酯:有极性基团,固化时收缩大; 2)固化收缩率
溶解/加热
UP固化收缩率降低
12
3.2.2 耐热性能
复合材料耐热性:温度升高,性能变化 物理变化:变形、软化、流动、熔融 化学变化:分子链断裂、交联、氧化、分解
聚合物受热变化
物理耐热性:在一定温度条件下,仍然保持 树脂耐热性 其作为基体材料的强度 化学耐热性:树脂发生热老化时的温度范围
13
提高树脂耐热性的途径 途径: 途径
8
9
3.2 基体材料的基本性能
3.2.1 力学性能 1)强度与模量 分子内和 的作用力。 决定主要因素:分子内 分子间的作用力 决定主要因素:分子内和分子间的作用力。 聚合物材料的破坏,是由主链上的化学键的断裂或是聚 合物分子链间相互作用力的破坏。 实际强度低于理论强度: 工艺,内应力(杂质、缺陷) 工艺,内应力(杂质、缺陷) 基体材料性能 复合材料性能
1)增加高分子链的刚性 增加分子链的刚性,高聚物的玻璃化温度相应提 高。在链上尽量减少单键,引入共轭双键、三键或环 状结构 2)进行结晶 在主链上引入 都能提高结晶高 聚物的熔融温度, 表 3-3
3)进行交联
14
3.2.3 耐腐蚀性
树脂的腐蚀 物理作用:溶胀或溶解,导致结构破坏,性能下降 化学作用:化学键破坏或新的化学键 影响因素: 树脂结构 树脂含量 树脂固化交联密度 环氧树脂的耐腐蚀性因所用的固化剂不同而不同: 用酸酐固化 胺类固化剂 不同的胺类固化剂,交联键类型不同,固化的树脂耐腐 蚀性也不同。 15 芳香族二胺 > 脂肪族类固化剂

聚合物基复合材料基体材料ppt课件

聚合物基复合材料基体材料ppt课件
影响树脂体积收缩的因素是固化前树脂系统密度、基体 固化后的网络结构的紧密程度、固化过程有无小分子析出等。
降低树脂固化收缩率主要原理是调节树脂大分子链充分 伸直,使其固化后有紧密的空间网络。
如在未固化的聚酯树脂体系中加入甲基丙烯酸甲酯,聚 苯乙烯、聚邻苯二甲酸二稀丙酯等,这个体系在固化前,由 于溶解或加热,其大分子链能充分地伸长,从而使聚酯树脂 在固化后形成紧密的空间网络结构,使固化收缩率只有1%。
这种改善不饱和聚酯树脂收缩率的办法,在大型复合 材料制件生产中得到了应用。
17
3.2.2 耐热性能(温度升高时,其性能的变化)
物理耐热性:指树脂在一定条件下仍然能保留其 作为基体材料的强度,包括模量、强度、变形等;
化学耐热性:是树脂在发生热老化时的温度范围, 包括失重、分解、氧化等。 提高树脂耐热性的途径有: 1)增加高分子链的刚性
2
基体的黏度、使用期直接影响增强材料 的浸渍、复合材料的铺层和预浸料的储存。
因此,研究和了解基体材料的构成、作 用和性能是十分重要的。
3
3.1.1基体材料的基本组分及其作用
1)聚合物基体 聚合物是基体的主要组分,它对复合材料的技术性能、成型工
艺及产品的价格都有直接影响。
作为复合材料树脂的要求
①力学性能
5、可用水和醇的混合溶剂,良
5、机械和电性能优良
操作方便
6、固化物无异味,能用于 6、可用于多种手段实现固化
6、价格低廉
食品行业
5
三大热固性树脂的特点
酚醛树脂
环氧树脂
不饱和聚酯树脂
缺 1.固化比不饱和聚酯树脂慢, 1.固化剂毒性太大,操作应 1.一般空气中氧的存在会防
到完全固化需较长时间
十分注意

复合材料聚合物基体

复合材料聚合物基体
具有多种结构和性能。
聚合物基体的分类
根据聚合物的来源和化学结构, 可分为天然聚合物和合成聚合物 两大类。常见的聚合物基体包括 聚乙烯、聚丙烯、聚苯乙烯等。
聚合物基体的性能
聚合物基体具有良好的加工性、 韧性、耐化学腐蚀性和电绝缘性 等。同时,聚合物的性能可通过 改变其化学结构、分子量、添加
剂等进行调控。
热导率
基体材料应具备较低的热导率,以减少热量在复 合材料中的传递,提高隔热性能。
热膨胀系数
与增强纤维相匹配的热膨胀系数有助于减少温度 变化引起的内应力。
环境因素影响
耐候性
聚合物基体应具有良好的耐候性,能抵抗紫外线、氧 化、酸碱等环境因素的侵蚀。
耐化学腐蚀性
基体材料应具备优异的耐化学腐蚀性,以在腐蚀性环 境中保持性能稳定。
热固性聚合物基体
1 2 3
不可逆的固化过程
热固性聚合物基体在加热时会发生交联反应,形 成三维网络结构,一旦固化就无法再次加工。
优异的耐热性和耐化学腐蚀性
热固性聚合物基体固化后具有较高的耐热性和耐 化学腐蚀性,适用于高温和腐蚀性环境下的复合 材料。
广泛的应用领域
热固性聚合物基体被广泛应用于建筑、船舶、化 工等领域。
聚合物基体的作用
聚合物作为复合材料的基体,对于复合材料的性能起着至关重要的 作用,如力学性能、热稳定性、耐腐蚀性等。
研究意义
深入研究聚合物基体的性能及其与增强材料之间的相互作用,有助 于优化复合材料的性能,推动复合材料领域的发展。
聚合物基体概述
聚合物的定义
聚合物是由大量重复单元通过共 价键连接而成的高分子化合物,
增强作用
提高力学性能
聚合物基体能够有效地增强复合材料 的力学性能,如拉伸强度、弯曲强度 和冲击韧性等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改善成型工艺,提高树脂含量
2.4.2 环氧树脂
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子 化合物,除个别外,它们的相对分子质量都不高。
E-44
E-31 相对分子质量都不高
★ 环氧树脂的性能和特性
a、 形式多样 各种树脂、固化剂、改性剂体系几乎可以适应各种 应用要求,其范围可以从极低的粘度到高熔点固体。
基体与增强材料的结合性,包括浸润性和粘合性,决定了复合材 料应力传递途径中最关键的界面层的特性,因此,对复合材料的力学 性能、断裂特性和疲劳性能起着关键的作用。
影响聚合物对增强材料粘结能力的主要因素是聚合物与填料的化 学结构、聚合物的粘度、填料的几何形状等。为了提高基体聚合物对 增强材料、填料的粘附能力: 有时须对增强材料、填料进行表面粘合活化处理 基体中需加增粘剂或偶联剂
(8)交联不饱和聚酯的网状分子结构
①为大致均匀的连续网状结构; ②为不均匀的连续网状结构,在密度 较大的连续网之间有密度较低的链型 分子互相联结; ③为不连续的网状结构,密度较大的 连续分散于未键合的组分中间。
交联不饱和聚酯主要形成 第二种网状结构的大分子
三维网!
(9)不饱和聚酯固化特征—三阶段
粘流态树脂 凝胶阶段
凝胶态
定型阶段
具有硬度的 固态
熟 化 阶 段
交联完全 固态树脂
① ②③
(10)不饱和聚酯固化体系
不饱和聚酯:1mol 交联剂:苯乙烯、氯化苯乙烯、乙烯基甲苯、α-甲基苯乙烯、
2,5-二溴苯乙烯等。用量1.5~3.0mol 引发剂:过氧化物或偶氮化合物,用量1~4% 促进剂:环烷酸钴 增粘剂:MgO,CaO,Ca(OH)2,Mg(OH)2 触变剂:气相法白碳黑(SiO2),用量2~6% 常温固化系统:过氧化甲乙酮+环烷酸钴
(3) 具有良好的工艺
粘度是树脂工艺性能的重要指标。聚合物应有恰当的粘度和流动性, 使复合材料易于加工成型。 粘度过大不易浸渍增强纤维及填料 粘度过小,在成型时易于流失
固化条件(温度、时间、压力)决定复合材料的成型工艺和生产效率。 成型时温度与固化温度应尽可能低,若是高温,不仅选择工装麻烦,
2,2’-二甲基丙二醇 取代基团多,刚性大
耐水性差
耐水性差
耐热、耐腐蚀、 表面硬度高
(4)苯酐/顺酐摩尔比对丙二醇树脂性能的影响
苯酐/顺酐摩尔比 不饱和度 分子链刚性
固化反应速度 交联密度 粘度 软化点
(5)通用型不饱和聚酯的技术指标
相对分子量:
1000~3000
粘度(Pa.s):
0.2~0.5
酸值(mgKOH/g): 28~36
凝胶时间(25℃,min):10~25
固含量(%):
60~66
(6)不饱和聚酯树脂的固化
粘流态树脂体系发生交联反应而转变成为不溶、不熔的具有体 型网络结构的固态树脂的全过程称为树脂的固化。也称为硬化
(7)交联不饱和聚酯的化学结构
苯乙烯重复 单元平均在 2.5个左右
2.2 基体材料的基本组分及选配原则
1 . 基体材料的基本组分 聚合物基体的组分、组分的作用及组分间的关系都是
很复杂的。一般来说,基体很少是单一的聚合物,往往还 包括其它辅助材料(助剂)。
聚合物是基体材料的主要成分。聚合物的种类很多, 经常应用的是不饱和聚酯树脂、环氧树脂、酚醛树脂(热 固性树脂)及各种热塑性聚合物。
常用的促进剂环烷酸钴,还有胺类化合物如二甲基苯胺、二乙基 苯胺等。
◆ 交联剂
常用苯乙烯 苯乙烯含量高,树脂粘度太低,收缩率大 苯乙烯太低,树脂不能充分固化 通用树脂采用苯乙烯含量为35%时效果最好。
◆ 增粘剂
在碱土金属氧化物或氢氧化物[例如:MgO,CaO,Ca(OH)2, Mg(OH)2等作用下,不饱和聚酯树脂很快稠化,形成凝胶物。 这种能使不饱和聚酯树脂粘度增加的物质,称为增粘剂。
2. 基体材料的选配原则
选择基体配方要考虑的因素有如下几方面: (1) 产品使用性能,良好的综合性能 (2) 对增强材料应有良好的浸润性和粘附力 (3) 具有良好的工艺 (4) 毒性要低,刺激性要小 (5) 来源方便,价格低廉
配方设计原则
(1)良好的综合性能
为使聚合物复合材料性能卓越,所使用的聚合物应具有良好的综 合性能。例如良好的电性能、热性能、力学性能、耐化学腐蚀性、耐 老化性能等。然而同时兼有上述性能往往是困难的,因此,应根据增 强材料的特性和复合材料的使用条件要求,合理地选择聚合物,以最 大限度地发挥聚合物所固有的特性。 树脂的力学性能
◆一般工业上常用顺酐(顺丁烯二酸酐)
顺酐:熔点低,反应时缩水少,价廉 还有顺丁烯二酸(简称顺酸)和反-丁烯二酸(简称反酸)。 衣康酸(亚甲基丁二酸 ),CH2=C(COOH)CH2COOH 及衣康酸的异构体
(2)饱和二元酸(酐)
作用:调节双键密度 增加树脂韧性,降低树脂结晶度 提高与乙烯基类交联单体的溶解性
b、 固化方便 选用各种不同的固化剂,环氧树脂体系几乎可以在0 ~180℃温度范围内固化。
c、 粘附力强 环氧树脂分子链中固有的极性羟基和醚键的存在,使
其对各种物质具有很高的粘附力。(有“万能胶”之称)
d、 收缩性低 环氧树脂和所用的固化剂的反应是通过直接加成反 应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性 副产物放出。因此,环氧树脂固化时的收缩性低,产生的内应力小,这 也有助于提高粘附强度。它们与不饱和聚酯树脂、酚醛树脂相比,在固 化过程中显示出很低的收缩性(小于2%)。
◆ 促进剂
促进剂实际是一种活化剂,是指不饱和聚酯树脂在固化过程中, 能降低引发剂引发温度,促使有机过氧化物在室温下产生游离基的物 质。
绝大多数的促进剂具有还原性,其作用原理是促使过氧化物形成 游离基,并形成反应链。
促进剂可以组合:一种促进剂与另一种促进剂组合将产生协同 效应,缩短凝胶时间及固化时间。
O
O
加入乙烯基单体稀释剂共聚交联,固化速率可提高30多倍。
(1 )不饱和二元酸(酐)
作用:提供形成聚酯的反应性官能团和聚酯树脂固化的不饱和键 ◆不饱和聚酯树脂中不饱和二元酸含量高,不饱和键含量大,树脂
凝胶时间、折射率和粘度下降,固化后树脂的耐热性、耐溶剂性和耐 腐蚀性提高;反之,固化不良,强度下降。
聚合物复合材料
Polymer Composite Materials
宋月贤 材料学院材料物理与化学系
第2章 基体材料
2.1 概述 2.2 基体材料的基本组分及选配原则 2.3 基体材料的种类及性能 2.4 热固性树脂基体 2.5 热塑性树脂基体 2.6 高性能树脂基体
2.1 概述
树脂基复合材料的原材料,包括基体相和增强相及添加剂(助剂)。 基体相材料指作为基体的各种聚合物,包括热固性树脂和热塑性树脂。 添加剂是复合材料产品在生产或加工过程中需要添加的辅助化学品,通 称为添加剂或"助剂"。 在复合材料的成型过程中,基体经过一系列物理的和化学的复杂变化过程, 与增强材料复合成具有一定形状的整体。基体的性能直接影响复合材料的性能, 而它的工艺性则直接影响复合材料的成型方法与工艺参数的选择。因此,研究 和了解基体材料的组成、作用和性能是十分重要的。
165
自熄性树脂
239
(3)二元醇
作用:提供形成聚酯的官能团 种类: 一元醇:用作分子量调节剂(封端剂)
多元醇:用作提高树脂分子支化度,分子量和熔点 二元醇:工业常用醇
二元醇名称 1,2-丙二醇
结构特性
与苯乙烯相容性 性能特点
结构不对称,结晶少 好
理化性能好
乙二醇 一缩二乙二醇 一缩二丙二醇
结构对称,结晶多 差 含醚键,无结晶 含醚键,无结晶
指树脂固化后的力学性能,决定了复合材料的基本性能。
树脂的挥发份
是指树脂中小分子量、易挥发的物质,一般包括单体和稀释剂, 挥发份的存在,使复合材料固化后在基体和界面形成空隙,成为材料受 力状态下的应力集中点和裂纹源,直接影响复合材料的力学性能。树脂 的挥发份尽可能小,使固化收缩率小。
复合材料的空隙率控制
※ 按化学组成及结构分类
引发剂:过氧化物 偶氮化合物 复合引发剂(氧化-还原引发体系)
※按成型温度分类
①常温固化系统 在常温条件下稳定的有机过氧化物和促进剂组成的氧 化-还原引发体系,如过氧化甲乙酮-环烷酸钴及过氧苯甲酰-叔胺类。 ②中温固化系统 成型温度在50~100℃。一类由过氧化酯和二酰基过 氧化物等分解温度较高的有机过氧化物和促进剂组成的氧化-还原系统, 另一类是分解温度较低的过氧化物。 ③高温固化系统 成型温度在100℃以上,用这类引发剂必须考虑适用期、 树脂体系在模具中的流动性、反应性及制品的物理-化学性能。
辅助材料(助剂)
在基体材料中,除聚合物外, 其它组分(助剂)还有固化剂、引发 剂、催化剂、增塑剂、增韧剂、稀释剂、填料、颜料、光及热稳定剂、 抗氧剂、阻燃剂等等。这些辅助材料是复合材料基体不可缺少的组分。 由于这些组分的加入,使复合材料具有各种各样的使用性能,改进了 工艺性,降低了成本,扩大了应用范围。在复合材料发展过程中,辅 助材料的研究是很重要的。可以说没有辅助材料的配合,就没有复合 材料工业的发展。
★ 环氧树脂的性能和特性
e、 力学性能 固化后的环氧树脂体系具有优良的力学性能。 f、 电绝缘性能 固化后的环氧树脂体系是一种具有高介电性能、 耐表面漏电、耐电弧的优良绝缘材料。 g、 化学稳定性 通常,固化后的环氧树脂体系具有优良的耐碱性 、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性 也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可 以使其具有特殊的化学稳定性能。 h、 尺寸稳定性 上述的许多性能的综合,使环氧树脂体系具有突 出的尺寸稳定性和耐久性。 i、耐霉菌 固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带 条件下使用。
相关文档
最新文档