初三下第一次月考试卷答案
2022-2023学年吉林省长春市朝阳区第二实验学校九年级(下)第一次月考语文试卷(附答案详解)
2022-2023学年吉林省长春市朝阳区第二实验学校九年级(下)第一次月考语文试卷1. 阅读下面文字,完成问题。
ㅤㅤ人生如逆旅..,苦难如山海。
在时代的洪流下,诗人与我们都是微尘..。
山河难安、壮志难酬、佳偶难成、恩义难全……纵然身处坎坷、际遇多舛..,诗人仍能走出心灵的(),收获旷达超脱的生命(),留下一篇篇绝世美文。
相隔千年,他们的面容依然鲜活可敬,他们的诗词给我们留下最宝贵的礼物【甲】当遭遇苦难、迷惘、焦虑、彷徨、不安时,它可以慰.籍.心灵,让我们笑看人生山海【乙】向阳而生。
这种诗文的力量于无形中点亮了我们的人生,渗透进我们的内心。
(1) 阅读文段,你发现加点字有一处书写错误,下列说法正确的一项是______A.因为表达的是“客舍、旅馆”的意思,所以“逆旅”中有错字。
B.因为表达的是“卑微不足道”的意思,所以“微尘”中有错字。
C.因为表达的是“迷惑失措,不得意”的意思,所以“迷惘”中有错字。
D.因为表达的是“愁苦之心,得到安慰”的意思,所以“慰籍”中有错字。
(2) 为选文【甲】【乙】两处依次填入标点符号,正确的一项是______A.。
、B.:、C.:,D.,。
(3) 选择恰当的词语填入括号中,正确的一项是______A.困顿/感受B.困境/感悟C.困顿/感悟D.困境/感受(4) 选文中画横线的句子有语病,请将改正好的句子写在下面。
2. 古诗文默写填空。
(1) 东临碣石,______ 。
水何澹澹,______ 。
(曹操《观沧海》)(2) 《木兰诗》中描写战地奇寒、艰苦卓绝的诗句是:“______ ,______ 。
”(3) 《望岳》中表达诗人杜甫要登顶峰,遂凌云志的句子是:“______ ,______ 。
”(4) “‘万籁此都寂’,轻轻再轻轻!”这条提醒保持安静的标语嵌入了古诗文,别有情趣。
请从《醉翁亭记》中选择句子,完成下面这条提醒护花的标语。
“______ ”,你怎么舍得她受伤?3. 阅读下面的文言文,完成问题。
九年级下册语文第一次月考试卷及答案
九年级下期语文第一次月考试卷(分数:120分时间:120分钟)姓名学号分数一、语言积累与运用(30分)1.下列词语中加点的字读音全对的一项是()(2分)A.蓬蒿.(hāo) 荇.藻(xíng) 蘸.着(zhàn) 亘.古(ɡèn)B.绽.出(zhàn) 间.或(jiān) 羼.水(chàn) 愤懑.(mân)C.戳.到(chuō) 休憩.(qì) 荫.庇(yìng) 枭.鸟(xiāo)D.绯.红(fēi) 踝.骨(huái) 黝.黑(yǒu) 慰藉.(jiâ)2.下列字形完全正确的一项是()(2分)A.走头无路海市蜃楼攫取阔绰B.漠不关心周道如砥阴霾默契C.猝不及防嗟来之食侧隐卑微D.舍生取义苦心孤旨荣膺虬须3.下列加点成语使用不正确的一项是【A】A.阳春三月,草长莺飞,同学们纷纷相约来到藉河畔,或戏水玩沙,或放风筝,在大自然中尽情享受着天伦之乐....。
B.黄晓明担任《中国梦之声》选手的导师,招来诸多质疑,韩红却劝大家不要吹毛求...疵.,因为艺术都是相通的。
C.莫言获得诺贝尔文学奖后,成为了家喻户晓....的人物。
D. 诵读经典对提升学生修养、陶冶学生性情的作用是不容置疑....的。
4.依次填入下面一段文字横线处的语句,衔接最恰当的一组是()蜜蜂可以搜索人为设埋的地雷。
蜜蜂为什么具有如此非凡本领呢?因为蜜蜂,。
加之。
因此在搜索同产面积的情况下,。
①它们的工作远远比狗有效②在长期生存竞争中形成的嗅觉十分敏锐③这种昆虫经常是群体动物④可以识别出狗无法分辨的许多种细微气体A.①②③④B.②①③④C.③①②④D.②④③①4.选择下列句子没有语病的一项。
()(2分)A.我们中学生如果缺乏创新精神,也不能适应知识经济时代的要求。
B.广深高速公路是广州和特区深圳的重要交通要道。
C.社会的发展需要具有综合能力的人才,所以,我们在日常的学习生活中应该注重培养自己解决问题、观察问题和分析问题的能力。
初三英语下第一次月考试卷有答案
初三英语下第一次月考试卷有答案月考对于学生来说是比较重要的,如果想要提高英语在考试中的成绩,多做一些测试卷是有帮助的。
小编为大家推荐了相关试卷,希望可以帮助到大家!初三英语下第一次月考试卷一、听力(共20小题,1-10小题每小题1分,11-20小题每小题2分,满分30分)(一)听对话回答问题。
本部分共有10道小题,每道小题你将听到一段对话,每段对话听两遍。
在听每段对话前,你将有5秒钟的时间阅读题目;听完后,你将有5秒钟的时间选择正确答案。
在听到嘀的信号后,进入下一小题。
( )5. What will the weather be like tomorrow?A. It will snow.B. It will be cloudy.C. It will be sunny.( )6. What does Raymond think about Nancy’s dress?A. It is too long for her.B. He likes the new style.C. He likes long dresses.( )7. What will Millie do first ?A. Ask her mother if she can go.B. Go to the zoo.C. Stay at home.( )8. What does Simon really need?A. Some water and food.B. Some clothes.C. Some medicine.( )9. Why did the man move into a new house?A. Because his old house isn’t big enough.B. Because there isn’t much fresh air around his old house.C. Because he doesn’t like to live far from his office.( )10. How many Chinese students are there in Mr. Smith’s class?A. 22.B. 11.C. 10(二)听对话和短文回答问题。
2023-2024学年宁夏银川十八中九年级(下)第一次月考数学试卷+答案解析
2023-2024学年宁夏银川十八中九年级(下)第一次月考数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是()A.3B.C.D.2.下列计算正确的是()A. B.C. D.3.在一次汉字听写大赛中,10名学生得分情况如表:人数3421分数8085909595那么这10名学生所得分数的中位数和众数分别是()A.85和B.和85C.85和85D.和804.已知关于x的一元二次方程有实数根,则m的取值范围是()A. B.且C. D.,且5.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.6.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A. B. C. D.7.同一坐标系中,一次函数与二次函数的图象可能是()A. B. C. D.8.如图:将一个长方形纸片ABCD,沿着BE折叠,使C、D点分别落在点,处.若,则的度数为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.用科学记数法表示为______10.因式分解:__________.11.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果,那么的度数是______.12.用一个圆心角为,半径为2的扇形一个圆锥的侧面,则这个圆锥底面的半径为______.13.如图,点E在正方形ABCD内,满足,,,则阴影部分的面积是______.14.如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角,塔底的仰角,点D距塔AB的距离DC为100米,则手机信号中转塔AB的高度______结果保留根号15.如图,过点,,,点B是x轴下方上的一点,连接BO,BD,则的度数是______.16.如图,在平面直角坐标系中,OB在x轴上,,点A的坐标为,将绕点A逆时针旋转得到,点O的对应点C恰好落在反比例函数的图象上,则k的值为______.三、计算题:本大题共2小题,共16分。
河北省唐山市路南区2024-2025学年初三下学期第一次阶段考试(月考)语文试题含解析
河北省唐山市路南区2024-2025学年初三下学期第一次阶段考试(月考)语文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、积累与运用1.下列两句话的横线上选择填入恰当的句子。
( ) ,我漫步于参天古木之中,发现一大丛新长的桉树,枝椏上翘,新芽竞长,欣欣向荣。
在学问的海洋中,有无数的蓬莱仙岛,。
A.(1)春夏初交,群峰碧绿(2)其乐融融,涉猎其中B.(1)群峰碧绿,春夏初交(2)涉猎其中,其乐融融C.(1)春夏初交,群峰碧绿(2)涉猎其中,其乐融融D.(1)群峰碧绿,春夏初交(2)其乐融融,涉猎其中2.(3分)对病句的修改不正确的一项是()A.我们在修改作文时要改正并找出文章中的错别字。
(将“改正并找出”改为“找出并改正”。
)B.地铁5号线的正式运营,极大地缓解了市内交通拥堵。
(在“交通拥堵”后加上“状况”。
)C.我们必须提高认真阅读的习惯。
(将“提高”改为“加强”。
)D.我国人工栽培牡丹的历史大约有三百年左右。
(删去“大约”或“左右”。
)3.下列词语中加点字注音全对..的一项是()A.奢侈.(chí)器皿.(mǐn)匿.笑(nì)苛.捐杂税(kē)B.尴尬.(gà)慰藉.(jí)寂寥.(liáo)爱憎.分明(zèng)C.瞭.望(liào)勾兑.(duì)气氛.(fèn)兢.兢业业(jīn)D.哀悼.(dào)誊.写(téng)字帖.(tiè)谆谆教诲.(huì)4.下列句子中加点的词语使用恰当的一项是()A.自古以来,凡成功之人,大多谦虚而圆滑..,能够随机应变:失败之人,大多自负又固执,往往刚愎自用。
九年级下册数学 第一次月考数学试卷含答案解析
九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。
九年级下第一次月考语文试题卷参考答案
九年级下第一次月考语文试卷一、知识及运用。
(30分)1、读下面一段文字:按要求答题。
(4分)阅读并不局限于有形的书体:你可以阅读魏峨的高山:阅读浩hàn的江海:阅读chì热的沙漠:阅读甜密的亲情:阅读沙沙的细雨:……只要学会观察:周围的世界是精彩的书。
(1)根据拼音写汉字。
(2分)浩hàn()chì()热(2)划线句中有两个错别字:请把他们圈出来:并将正确的字工整的写在下面的田字格里。
2、依次填入下列句子横线处的词语:最恰当的一项是(2分)①崇尚美、追求美:就是重视生活情趣:讲究生活质量:体现了一种现代的生活和消费时尚。
②西部是雄性的:戈壁滩是茫茫一片:一直到人的肉眼看不到的地方:着实令人生畏:但我们却能够领略到“大漠孤烟直:长河落日圆”的雄浑与壮阔。
③一段时间以来:“超级女生”选拔赛在全国范围内引起了前所未有的广泛。
A、理念漫延关注B、理想蔓延关心C、理想蔓延关注D、理念漫延关心3、古诗文默写。
(①——⑤选做三题:⑥⑦⑧必做。
)(8分)①少小离家老大回:(贺知长《回乡偶书》)②陶渊明《桃花源记》中描写桃花美景的句子是:夹岸数百步:中无杂树::。
③刘禹锡《酬乐天扬州初逢席上见赠》中被人们广泛引用:说明新事物必将代替旧事物的诗句是:。
④:各领风骚数百年。
(赵翼《论诗》)⑤请写出古诗文中描写浙江杭州西湖美景的句子。
(写出连续的两句):。
⑥《论语》中:阐述学习和思考都十分重要而不能偏废的语句是:。
⑦古往今来:人们身处困境、进退两难时:便自然而然地吟咏起陆游《游山西村》中的名句:。
⑧宴殊《浣溪沙》词上片“一曲新词酒一杯:去年天气旧亭台”两句构成“新”与“旧”的对比:下片构成“来”与“去”对比的词句是::。
4、下面是学生的作文片段:按要求修改三处划线的语句。
(3分)①每当站在祖国的地图前:使我油然而生无尽的遐想:祖国需要我们学好科学文化知识:②去开创那辽阔的大西北:③让塔克拉玛干沙漠改变模样:需要我们用勤劳的双手在大西南的横断山中:营造出一个个高峡平湖……(1)(2)(3)5、同学们:初中三年:你一定读过许多文学名著吧:下面请你做一个简要的读书札记。
九年级(下学期)第一次月考英语试卷(带答案)
九年级(下)第一次月考英语试卷基础知识运用(共两节;满分30分)第一节单项选择(共15小题;每小题1分,满分15分)从每小题所给的A、B、C、D四个选项中选出最佳答案。
( )21.My daughter is a good tennis player.I am very proud her.A.forB.atC.inD.of( )22.A recent shows that 80% of young people buy things online.A.surveyB.taskC.advantageD.instruction( )23.The old man is almost 80 years old,but he is still . .A.activeB.slowC.unhealthyD.uncomfortable( )24.—Oh!I came in a hurry and forgot to bring my camera.—It doesn't matter.You can use .A.yoursB.oursC.yourD.our( )25.His father asked him to behave at the party.A.angrilyB.politelyC.quicklyD.widely( )26.—Have you decided which senior high school to choose?—Not yet.I go to Minnesota State High School.A.mustn'tB.shouldn'tC.mustD.may( )27. delicious the food is in Chengdu!A.WhatB.What aC.HowD.How a( )28.A two-day visit to Hong Kong him 3,600 yuan , but he thinks it is worththe money.A.tookB.spentC.paidD.cost( )29.Tom had a cold the weather changed suddenly.A.ifB.thoughC.soD.because( )30.Every day,too much water in the world.People should save it.A.wastesB.wastedC.is wastedD.was wasted( )31.A new shopping mall in our town in 2014.A.builtB.buildsC.was builtD.is built( )32.—What are you looking for?—I am looking for the ring my husband bought for me last year.A.thatB.whoC.whoseD.when( )33.Mona told me to come to the party on time,but she herself didn't.A.grow upB.show upC.set outD.go out( )34.—I don't knownow.—She is much better.A.where is sheB.where she isC.how is sheD.how she is( )35.—Please don't throw paper on the ground.—,I won't.A.SorryB.That's all rightC.Excuse meD.It doesn't matter第二节完形填空(共15小题;每小题1分,满分15分)先通读短文,掌握其大意,然后从短文后面各题所给的A、B、C、D四个选项中选出最佳答案。
扬州市梅岭中学九年级下第一次月考数学试卷含答案解析
2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.42.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b43.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或85.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.106.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为米(科学记数法表示).11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是同学.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.16.若α为锐角,且,则m的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在组,中位数在组.(2)样本中,女生体重在E组的人数有人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=,P1Q1=.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD 交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.4【分析】根据开立方的方法,求出的值,即可判断出64的立方根是多少.【解答】解:∵=4,∴64的立方根是4.故选:D.2.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、应为a6÷a3=a3,故本选项错误;D、(ab2)2=a2b4,正确.故选D.3.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误.故选C.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或8【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣6x+8=0得,x1=2,x2=4;当底为2,腰为4时,4﹣2<4<4+2,能构成三角形,等腰三角形的周长为10;当底为4,腰为2时,2+2=4,不能构成三角形.故此等腰三角形的周长为10.故选B.5.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.6.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°【分析】首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5的度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.【解答】解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,故∠3的度数是70°.故选:A.7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【分析】由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.【解答】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是: =.故选:A8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n【分析】过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.【解答】解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是﹣2π.【分析】根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为 1.2×105米(科学记数法表示).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n是整数数位减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:设实际距离约为x厘米,∵比例尺为1:300 0000,∴4:x=1:3000000,∴x=12000000厘米=120000米=1.2×105米.故答案为:1.2×105.11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【解答】解:如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是乙同学.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2>s丙2>s乙2,∴成绩相对稳定的是乙.故答案为:乙.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3.【分析】过O作OM⊥AB于M,此时线段OM的长最短,连接OA,根据垂径定理求出AM,根据勾股定理求出OM即可.【解答】解:过O作OM⊥AB于M,此时线段OM的长最短,连接OA,∵OM过O,OM⊥AB,∴AM=AB=×8=4,在Rt△AMO中,由勾股定理得:OM===3,故答案为:3.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为6cm.【分析】利用底面周长=展开图的弧长可得.【解答】解:,解得r=6.16.若α为锐角,且,则m的取值范围是.【分析】根据余弦值的取值范围,列不等式求解.【解答】解:∵0<cosα<1,∴0<<1,解得,故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.【解答】解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即: =×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(3,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=9+2+1﹣3=9;(2)去分母得:2+x2+2x=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.【分析】(1)根据题意画出图形即可;(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.就可以表示出整个挂画的面积,由风景画的面积是整个挂图面积的72%建立方程求出其解即可.【解答】解:(1)如图所示:(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.由题意得(90+2x)×(40+2x)72%=90×40,解得:x1=﹣70(舍去),x2=5.答:画框四周的宽度为5cm.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【分析】过点A,C作出21°,45°所在的直角三角形,设出河宽,利用相应的三角函数表示出SE,BT的长,利用等量关系SC=AT,把相关数值代入即可求得河宽.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.【分析】(1)连接AC,根据菱形的性质可得AC平分∠DAE,再根据角平分线的性质可得CE=FC;(2)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°﹣30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°;连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=2且∠BAC=30°,得到AC=ABcos∠BAC=.最后在等边△PAC中,可得PA=AC=.【解答】证明:(1)连接AC,∵四边形ABCD为菱形,∴AC平分∠DAC,又∵CE⊥AB,CF⊥AD,∴CE=CF;解:(2)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,即∠PAB=90°.∵∠BAC=30°,∴∠PAC=90°﹣30°=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,可得△PAC是等边三角形,得∠P=60°.如图,连结BC.∵AB是直径,∠ACB=90°,∴在Rt△ACB中,AB=2,∠BAC=30°,可得AC=ABcos∠BAC=2×cos30°=.又∵△PAC是等边三角形,∴PA=AC=.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.【分析】(1)把m=200,p甲=0.5代入中求得得k甲=100,然后根据p乙始终为0.4,得到,从而求得k乙的值即可;(2)当购买总金额都为m元,且在200≤m<400的条件下时,代入可得甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)根据当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.然后据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.从而确定哪家更优惠.【解答】解:(1)把m=200,p甲=0.5代入中,得k甲=100.由于p乙始终为0.4,即,∴k乙=0.4m.(2)由(1)及优惠率p的含义可知:当购买总金额都为m元,且在200≤m<400的条件下时,甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)由上可知,当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.再由图象易知,当200≤m<250时,甲商场更优惠;当250<m<400时,乙商场更优惠.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在B组,中位数在C组.(2)样本中,女生体重在E组的人数有2人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)×1600+(15%+5%)×1500=540(人).答:估计该校体重超重的学生约有540人.26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是0≤x≤4;(2)d=3,m=2,n=25;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【分析】(1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间.【解答】解:(1)∵BC=AD=4,4÷1=4,∴0≤x≤4;故答案为:0≤x≤4;(2)根据题意,当点E、F分别运动到AD、BC的中点时,EF=AB最小,所以正方形EFGH的面积最小,此时,d2=9,m=4÷2=2,所以,d=3,根据勾股定理,n=BD2=AD2+AB2=42+32=25,故答案为:3,2,25;(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,∴EI=DC=3,CI=DE=x,∵BF=x,∴IF=4﹣2x,在Rt△EFI中,EF2=EI2+IF2=32+(4﹣2x)2,∵y是以EF为边长的正方形EFGH的面积,∴y=32+(4﹣2x)2,当y=16时,32+(4﹣2x)2=16,整理得,4x2﹣16x+9=0,解得,x1=,x2=,∵点F的速度是1cm/s,∴F出发或秒时,正方形EFGH的面积为16cm2.27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.【分析】(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△PNE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.【解答】解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△PNE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=a,P1Q1= a.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)【分析】(1)根据矩形的对角线互相平分且相等可得BP=PD,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理列式求解即可得到PQ,同理求出P1Q1∥CD,然后求出的值,再求出的值,然后根据平行线分线段成比例定理可得=,再代入数据进行计算即可求出P1Q1;(2)先根据AB∥CD求出,然后求出,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理可得=,代入数据进行计算即可得解;(3)根据(2)的结论依次表示出PQ、P1Q1、P2Q2…P n Q n,再根据两直线平行,同位角相等求出∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,然后利用60°角的正弦值列式计算即可得解.【解答】解:(1)∵四边形ABCD是矩形,∴BP=PD,∵PQ⊥BC,∴PQ∥CD,∴==,∴PQ=CD=a,∵P1Q1⊥BC,∴P1Q1∥CD,∴==,∴==,又∵=,∴P1Q1=a;(2)∵AB∥CD,∴==,∴=,∵AB∥CD,∠ABC=90°,PQ⊥BC,∴PQ∥CD,∴==,∴PQ=•CD=;(3)根据(2)的结论,PQ=,P1Q1==,P2Q2==,P3Q3==,…,依此类推,P n Q n=,∵AB∥CD,PQ∥CD,P1Q1∥CD,P2Q2∥CD,…,∴AB∥PQ∥P1Q1∥P2Q2∥…∥P n Q n∥CD,∴∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,∴点P1的纵坐标为:P1Q1•sin60°=×=,点P n的纵坐标为为P n Q n•sin60°=×=.故答案为:(1)a, a;(2);(3),.。
2023-2024学年第一学期第一次月考九年级语文试卷附答案
2023——2024学年第一学期第一次月考试卷九年级语文时间:120分钟总分:120分一、基础(28分)1.根据课文默写古诗文。
(10分)(1)我欲乘风归去,□□□□□□,高处不胜寒。
(苏轼《水调歌头》)(1分)(2)欲为圣明除弊事,□□□□□□□!□□□□□□□?雪拥蓝关马不前。
(韩愈《左迁至蓝关示侄孙湘》)(2分)(3)李白的《行路难》(其一)中以“□□□□□□□,□□□□□□□。
”两句正面写“行路难”。
此两句用比喻手法写人生道路上的艰难险阻,表现出诗人壮志难酬的苦闷。
(2分)(4)登斯楼也,则有去国怀乡,□□□□,满目萧然,感极而悲者矣。
(范仲淹《岳阳楼记》)(1分)(5)把刘长卿的《长沙过贾谊宅》默写完整。
(4分)三年谪宦此栖迟,万古惟留楚客悲。
□□□□□□□,□□□□□□□。
□□□□□□□,□□□□□□□?寂寂江山摇落处,怜君何事到天涯!2.根据拼音写出相应的词语。
(4分)(1)须晴日,看红装素裹,分外 yāo ráo()。
(2)假如我是一只鸟,我也应该用sī yǎ()的喉咙歌唱。
(3)百花的 guān miǎn()你戴着,你是天真,庄严,你是夜夜的月圆。
(4)我看流云慢慢地红晕,无意 chén zuì()了凝望它的大地。
3.下列句子中加点成语使用不恰当的一项是(2分) ()A.“水光潋滟晴方好”,从游船上纵目四望,西子湖春风送暖,碧波荡漾,长堤缀绿,群山围翠,真是赏心悦目....。
B.进入九年级以来,我们班好多同学都比以前更加苦心孤诣....地学习,很多同学的成绩都有不同程度的提高。
C.比起贝壳里的生命,我在这世间停留的时间也算长的了,应该用我的能力来把我所能做到的事情做得更精致、更仔细、更加的一丝不苟....。
D.历观战史,水战用火攻,是颠扑不破的不二法门....。
4.对下列病句的修改,不正确的一项是(2分)()A.小明变化了早晨睡懒觉的习惯。
(把“变化”改为“改变”)B.当我走进农贸市场时,看到一片热热闹闹的景象。
部编版2023-2024学年九年级语文第一次月考试卷【含答案】
部编版2023-2024学年九年级语文第一次月考试卷(完卷时间:120分钟;满分:150分)友情提示:所有答案都必须填在答题卡相应的位置上。
一、积累与运用(23分)1.根据语境,补写出古代诗文名句。
(8分)(1)诗歌中有“月”的牵挂,杜甫《月夜忆舍弟》中“,”两句在写景中融入了主观的情绪。
(2)学习古诗文,我们感受到文人志士的真挚情怀。
从“,在乎山水之间也。
山水之乐,”(《醉翁亭记》)中,我们感受到欧阳修寄情山水的旷达洒脱。
(3)刘禹锡《酬乐天扬州初逢席上见赠》中“,到乡翻似烂柯人”两句,运用典故,表达了诗人久贬归来,人事已非,恍如隔世之感。
(4)李商隐《无题》中“,”两句,用比喻和双关手法表达爱情的坚贞不渝。
(5)《商山早行》中触景生情,把景物描写与梦境自然地联系起来,以抒发思乡怀亲之情的诗句是:“,凫雁满回塘。
”2.阅读下面的文字,按要求作答。
(9分)我国科技事业跨越发展,我们的生活日新月异。
微信、微博、快手、抖音等移动社交软件层出不穷。
这些社交软件,不仅丰满了我们生活的方方面面,更给我们的沟通方式提供了新的选择。
微信群里抢红包,短视频里观世界,这样的现象①(lǚ)见不鲜。
这也是我国移动社交飞速发展的体现。
移动社交给社会带来了许多积极的改变,但也有一些问题需要我们反思和警②(tì)。
一方面网络购物的狂潮,让许多人陷入③(máng)目消费的陷阱而();另一方面,移动社交在打破空间距离的同时,未必会()人和人之间的关系,也有可能让许多人()了身边人的感受。
如何让移动社交更好地促进人与人之间的感情交流,需要我们用心去体会感受。
(1)根据拼音,依次写出相应的汉字(正楷字或行楷字)。
(3分)(2)依次填入文中括号内的词语,全都恰当的一项是()(3分)A.不能自已拉进忽略B.不能自已拉近疏忽C.不能自拔拉近忽略D.不能自拔拉进疏忽(3)文中画横线的句子有语病,下列修改最恰当...的一项是()(3分)A.这些社交软件,不仅给我们的沟通方式提供了新的选择,更丰富了我们生活的方方面面。
2023届初三下半年第一次月考物理试卷带参考答案和解析(山东省潍坊市诸城市树一中学)
选择题如图是某物体做直线运动时的路程随时间变化的图象,由图象判断下列说法错误的是A. 5s内,物体通过的路程为B. 整个20s时间内,物体的平均速度为C. 物体在内的速度比内的速度大D. 时间内物体做匀速直线运动【答案】D【解析】A、由图象知,物体运动5s时对应的路程是2.5m,所以5s通过的路程是2.5m,故A正确;B、整个20s时间内,物体通过的路程为4m,则物体的平均速度为v===0.2m/s,故B正确;C、前5s内物体通过的路程s1=2.5m,则速度为:v1===0.5m/s,物体在10~20s内通过的路程s2=4m-2.5m=1.5m,则速度为:v2===0.15m/s,所以物体在0-5s内的速度比10-20s内的速度大,故C正确。
D、由图象可知,物体在5~10s处于静止状态,不是都做匀速直线运动,故D错误;故选:D。
选择题我国“辽宁舰”航母编队已形成体系作战能力。
航母编队在航行过程中,下列哪个物体相对于“辽宁舰”是静止A. 海岛B. 弹射出去的战斗机C. 远离中的护卫舰D. 站立在甲板上的水兵【答案】D【解析】A、航母编队在航行过程中,相对于海岛位置不断发生变化,所以是运动的。
故A错误;B、航母编队在航行过程中,相对于弹射出去的战斗机位置不断发生变化,所以是运动的。
故B错误;C、航母编队在航行过程中,相对于远离中的护卫舰位置不断发生变化,所以是运动的。
故C错误;D、航母编队在航行过程中,相对于站立在甲板上的水兵位置没有发生变化,所以是静止的。
故D正确。
故选:D。
选择题智能语音门禁系统通过“辨音识人”开门,是根据声音的哪一个特征来工作的A. 响度B. 音色C. 音调D. 频率【答案】B【解析】声音的特征有:音调、响度、音色;音调指声音的高低,响度指声音的大小(或强弱),音色是由发声体本身决定的,不同的发声体,其音调和响度可能相同,但音色一般不同;“辨音识人”,判断的主要依据就是声根据不同人声带振动产生的音色不同。
九年级下学期第一次月考数学试卷(附参考答案与解析)
九年级下学期第一次月考数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是.足为M,连接BM,若S△ABM11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.参考答案与解析一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解【考点】一元二次方程的解.【分析】利用因式分解法求出方程的解,即可作出判断.【解答】解:方程分解得:(x﹣2)(x﹣4)=0可得x﹣2=0或x﹣4=0解得:x=2或x=4故选C3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右下角有阴影,故选C.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角为30°,BD=30米,在Rt△BDE中,可求得ED的长度,根据题意恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,可得AB=2ED.【解答】解:在Rt△BDE中∵∠EBD=30°,BD=30米∴=tan30°解得:ED=10(米)∵当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像∴AB=2DE=20(米).故选:B.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【考点】垂径定理;勾股定理.【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:由垂线段最短可知当OM⊥AB时最短,即OM===3;当OM是半径时最长,OM=5.所以OM长的取值范围是3≤OM≤5.故选A.二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【分析】连接BC,根据勾股定理,可求得AB,BC,AC,再根据勾股定理的逆定理,可得△ABC 为直角三角形,即可求得sin∠BAD的值.【解答】解:连接BC根据勾股定理,可求得AB=,BC=,AC=根据勾股定理的逆定理,可得∠ABC=90°∴sin∠BAD===.故答案为:.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=5.【考点】垂径定理;勾股定理.【分析】根据垂径定理得出AD=BD,即可求出答案.【解答】解:∵OC⊥AB,垂足为点D,OC过0∴AD=BD∵AB=10∴AD=5故答案为:5.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3.【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集∴﹣1<x<3故填:﹣1<x<310.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是3.足为M,连接BM,若S△ABM【考点】反比例函数系数k的几何意义;反比例函数图象的对称性.【分析】由反比例函数图象的对称性和反比例函数系数k的几何意义可得:△ABM的面积为=2S△AOM=|k|.△AOM面积的2倍,S△ABM=2S△AOM=3,S△AOM=|k|=,则k=3.【解答】解:由题意得:S△ABM故答案为:3.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看两张图案一样的情况数占总情况数的多少即可.【解答】解:设粽子用A表示,龙舟用B表示.共有12种情况,两张图案一样的有4种所以所求的概率为.故答案为.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2).【考点】位似变换;坐标与图形性质.【分析】由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.【解答】解:当位似中心在两正方形之间连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴CH=2HO,即OH=OC又C(﹣3,0),∴OC=3∴OH=1所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长两延长线交于M,过M作MN⊥x轴∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴EF=DC,即EF为△MDC的中位线∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°∴△DCE≌△MNE∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2则M坐标为(5,﹣2)综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2).三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.【考点】中心投影.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段GM是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,GM处于视点的盲区.【解答】解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,GM处于视点的盲区.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负指数幂、绝对值的化简、特殊角的锐角三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×1+9﹣2+=8+2.15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【考点】列表法与树状图法;中心对称图形.【分析】(1)列举出所有情况即可;(2)中心对称图形是绕某点旋转180°后能够和原来的图形完全重合,那么B,D是中心对称图形,看所求的情况占总情况的多少即可.【解答】解:(1)树状图:或列表法A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D);(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数解析式为y=,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.【解答】解:(1)设反比例函数的解析式为y=(k≠0)∵反比例函数图象经过点A(﹣4,﹣2)∴﹣2=∴k=8∴反比例函数的解析式为y=∵B(a,4)在y=的图象上∴4=∴a=2∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)本题可通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN 的度数,又已知了AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出了.(2)本题可先计算出最小安全距离是多少,然后于大灯的照明范围进行比较,然后得出是否合格的结论.【解答】解:(1)过A作AD⊥MN于点D在Rt△ACD中,tan∠ACD==,CD=5.6(m)在Rt△ABD中,tan∠ABD==,BD=7(m)∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶∴速度还可以化为:m/s最小安全距离为:×0.2+=8(m)大灯能照到的最远距离是BD=7m∴该车大灯的设计不能满足最小安全距离的要求.19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10﹣2t①当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)②当∠AQP=∠AOB时,△AQP∽△AOB.所以=解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣tS△APQ=AP•QE=t•(8﹣t)=﹣t2+4t=解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【考点】切线的判定;圆心角、弧、弦的关系;圆周角定理.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC∴∠DAO=∠COB,∠ADO=∠DOC又∵OA=OD∴∠DAO=∠ADO∴∠COB=∠COD∴=;(2)由(1)知∠DOE=∠BOE在△COD和△COB中CO=CO∠DOC=∠BOCOD=OB∴△COD≌△COB∴∠CDO=∠B.又∵BC⊥AB∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为(10+0.1x)元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据等量关系蘑菇的市场价格每天每千克上涨0.1元则可求出则x天后这批蘑菇的销售单价,再根据平均每天有10千克的蘑菇损坏则可求出这批蘑菇的销售量;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)因为蘑菇的市场价格每天每千克上涨0.1元,所以x天后这批蘑菇的销售单价为(10+0.1x)元;因为均每天有10千克的蘑菇损坏,所以x天后这批蘑菇的销售量是千克;故答案为:(10+0.1x),.(2)由题意得:(10+0.1x)=100000整理得:x2﹣500x+40000=0解方程得:x1=100,x2=400(不合题意,舍去)所以胡经理将这批蘑菇存放100天后,一次性出售所得的销售总金额为100000元;((3)设利润为w,由题意得w=(10+0.1x)﹣240x﹣6000×10=﹣x2+260x=﹣(x﹣130)2+16900∵a=﹣1<0∴抛物线开口方向向下∴x=110时,w最大=16500∴存放110天后出售这批香菇可获得最大利润16500元.22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE ≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】(1)证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°∵△CEF是等腰直角三角形,∠C=90°∴CE=CF∴BC﹣CE=CD﹣CF即BE=DF∴△ABE≌△ADF∴AE=AF∴△AEF是等腰三角形;(2)解:相等,垂直;证明:∵在Rt△ADF中DM是斜边AF的中线∴AF=2DM∵MN是△AEF的中位线∴AE=2MN∵AE=AF∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD∵∠FMN=∠FAE,∠DAF=∠BAE∴∠ADM=∠DAF=∠BAE∴∠DMN=∠BAD=90°∴DM⊥MN;(3)(2)中的两个结论还成立证明:连接AE,交MD于点G∵点M为AF的中点,点N为EF的中点∴MN∥AE,MN=AE由(1)同理可证AB=AD=BC=CD,∠B=∠ADF,CE=CF又∵BC+CE=CD+CF,即BE=DF∴△ABE≌△ADF∴AE=AF在Rt△ADF中∵点M为AF的中点∴DM=AF∴DM=MN∵△ABE≌△ADF∴∠1=∠2∵AB∥DF∴∠1=∠3同理可证:∠2=∠4∴∠3=∠4∵DM=AM∴∠MAD=∠5∴∠DGE=∠5+∠4=∠MAD+∠3=90°∵MN∥AE∴∠DMN=∠DGE=90°∴DM⊥MN.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.②本题需分三种情况:以PB为对角线,当点R在BQ的左边,且在PB下方时;以PQ为对角线,当点R在BQ的左边,且在PB上方时;以BQ为对角线,当点R在BQ的右边,且在PB 上方时,然后分别代入抛物线的解析式中,即可求出结果.【解答】解:(1)∵抛物线的解析式为y=ax2+bx+c由题意知点A(0,﹣12)∴c=﹣12又∵18a+c=0∵AB∥OC,且AB=6cm∴抛物线的对称轴是∴b=﹣4所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9(cm2)这时点P的坐标(3,﹣12)点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)以PB为对角线,当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18)(Ⅰ)以PQ为对角线,当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅰ)以BQ为对角线,当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).。
2023年重庆市九年级英语下学期第一次月考试卷(附答案)
重庆市九年级英语下学期第一次月考试卷(全卷共九个大题满分:150分考试时间:120分钟)注意:试题的答案写在答题卡(卷)上,不得在试卷上作答。
学校__________ 班级_________ 姓名__________第Ⅰ卷(共100分)I.听力测试。
(共30分)第一节:情景反应。
(每小题1.5分,共9分)听一遍。
根据你所听到的句子,从A、B、C三个选项中选出最恰当的答语,并把答题卡上对应题目的答案标号涂黑。
1. A. You’re welcome. B. You’re so kind. C. You’re so lucky.2. A. It’s easy. B. Yes, I know. C. It’s next to the post office.3. A. No, I don’t. B. No, I won’t. C. I think so.4. A. I’m glad to hear that. B. Thanks a lot. C. It’s my pleasure.5. A. Yes, it is. B. Big and beautiful. C. I like big and beautiful cities.6. A. Working hard. B. Have a good time. C. Good luck to you.第二节:对话理解。
(每小题1.5分。
共9分)听一遍。
根据你所听到的对话和问题,从A、B、C三个选项中选出正确答案,并把答题卡上对应题目的答案标号涂黑。
7. A. By train. B. By bus. C. By subway.8. A. Yellow. B. Green. C. Black.9. A. Every day. B. Hardly ever. C. Twice a week.10. A. At 7:00. B. At 7:20. C. At 6:40.11. A. Pretty good. B. Busy. C. Happy.12. A. Mozart. B. Strauss. C. Beethoven.第三节:材料理解。
2023届初三下半期第一次月考物理题免费试卷(江苏省徐州市沛县龙固中学)
选择题能源、信息和材料是现代社会的三大支柱,关于它们的下列说法中,不正确的是A. 条形码扫描器中的光敏元件是由半导体材料制成的B. 太阳能、风能、潮汐能都是可再生能源C. “北斗导航”系统是利用电磁波进行定位和导航D. 大亚湾核电站利用的是核聚变释放的能量【答案】D【解析】A、光敏二极管的主要材料是半导体材料.当光照发生变化时,由半导体材料做成的光敏电阻的阻值可发生变化,则可以感知条形码,故A正确;B、太阳能、风能、潮汐能是可再生能源,故B正确;C、卫星通信依靠的是电磁波来传递信息,故C正确;D、核电站是利用铀核裂变发生链式反应释放出大量的核能来发电的,故D错误.故选D.选择题标准化考场内的电波钟可以远距离自动校时,是因为它能接收到A. 超声波B. 次声波C. 电磁波D. 紫外线【答案】C【解析】电波钟是在石英电子钟表内增加了接收无线电长波信号的特殊元件,它接收天文台地面发射站发送的标准授时信号,无线电长波是电磁波,所以它接收天文台地面发射站发送的标准授时信号是电磁波.故选:C。
选择题声音与我们的生活密切相关,以下有关声现象的说法正确的是()A. 雨滴落在地面上会发出声音,说明物体不振动也可以发声B. 用超声波可击碎人体内“结石”,说明声波能传递能量C. 市区内“禁鸣喇叭”是在声音传播的过程中减弱噪声D. 用声呐探测海底深度,是因为超声波比次声波在水中的传播速度大【答案】B【解析】试题A、雨滴落在地面会发出声音,是因为地面的振动发出的声音,此选项错误;B、声音可以传递能量,所以利用超声波可击碎人体内“结石”,此选项正确;C、市区内某些路段“禁鸣喇叭”,这是在声音的声源处减弱噪声,此选项错误;D、超声波和次声波在水中的传播速度相同,此选项错误;故应选B。
选择题下列是探究声现象的四种实验情景,下列说法正确的是A. 图中,当空气被不断抽出后,铃声逐渐减弱,说明只有空气才能传声B. 图中,当钢尺振动的频率越高时,其响度一定越大C. 图中,当小球接触到音叉时被弹开越高,则音叉的音调越高D. 图中,靠近正在发声的物体的蜡焰不停摆动,甚至熄灭。
九年级数学下册第一次月考试卷(附答案)
九年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。
大面中学九年级化学下学期第一次月考试题附答案
九年级化学试卷可能用到的相对原子质量:H -1 O -16 C -12 Fe -56第I 卷(选择题)一、(每小题均只有一个选项符合题意。
共36分,每小题3分。
)1.生活中废弃的铁锅、铝质易拉罐、铜线等可以归为一类加以回收, 它们属于A .化合物B .金属或合金C .氧化物D .纯净物 2.小强在家庭小实验中把下列物质分别放人适量水中充分搅拌,其中不能..得到溶液的是 A .酒精 B .味精 C .食盐 D .植物油 3.收藏家收藏的清末铝制品,至今保持十分完好,该艺术品不易..生锈的主要原因是 A .铝不易发生化学反应 B .铝的氧化物容易发生还原反应C .铝不易氧化D .铝很活泼,表面易生成致密的氧化膜阻止铝进一步氧化 4.下列常见的医用溶液中,溶质、溶剂都是..氧化物的是 A .葡萄糖注射液 B .生理盐水 C .过氧化氢溶液 D .碘酒5.以下四种金属中,有一种金属的盐溶液与其它三种金属都能发生置换反应,这种金属是A .FeB .CuC .ZnD .Ag6.含有蔗糖晶体的溶液A ,从冰箱里取出 ,放置一段时间后,晶体慢慢消失,形成溶液B 。
下列说法不正确的是A .溶液A 一定是饱和溶液B .溶液B 可能是不饱和溶液C .溶解蔗糖时用热水溶得更快D .无法比较A 、B 溶液的浓稀7.下列四位同学对溶液的理解不正确的是A .溶液都是混合物B .溶液都无色透明C .溶液具有稳定性D .溶液中各部分密度相同8.只用一种溶液分别放入锌、铜、银,即可以验证这三种金属活动性顺序,这种溶液的是 A .硫酸铜溶液 B .硫酸锌溶液 C .硝酸银溶液 D .稀盐酸 9.在20℃时,将饱和的氯化钠溶液蒸发掉一部分水,发生改变的是A .溶液中粒子的种类B .氯化钠的溶解度C .溶质的种类D .溶质的质量题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案10.下列有关铁的叙述中,正确的是 A .铁在氧气中燃烧生成黑色的氧化铁 B .铁在地壳中的含量仅次于铝C .用盐酸与铁反应可得浅绿色的氯化亚铁溶液D .经常用水冲洗铁器表面,可以防止铁生锈11.若金属锰(Mn )在金属活动性顺序中位于铝和锌之间,则下列反应不正确...的是 A .Mn + H 2SO 4 = MnSO 4 + H 2↑ B .Mg + MnSO 4 = MgSO 4 + Mn C .Fe + MnSO 4 = FeSO 4 + Mn D .Mn + CuSO 4 = MnSO 4 + Cu12.自来水中含有Ca 2+、Mg 2+、Na +、HCO 32-、Cl -、Fe 3+等多种离子或由它们组成的可溶性盐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三月考语文答案一、积累与运用(24分)1.下列词语中加点的字读音完全正确的一项是( C )(2分)A.攥.紧(zhuàn)扶掖.(yè)嗔怒(chēn)沉湎.(miǎn)B.骸.骨(hái)贮.蓄(chǔ)睥睨.(nì)臆.测(yì)C.虬.须(qiú)一霎.间(shà)乌桕.(jiù)菡萏.(dàn)D.吮.吸(shǔn)箱箧.(qiè)嫉.妒(jì)拮据(jǖ)2.下列词语没有错别字的一项是( A )A.藻饰歇斯底里谮害遍稽群籍B.啜泣呼朋引伴芦蓬格物致知C.恣睢吹毛求疵残损通霄达旦D.云翳顶礼摩拜蹂躏鳞次栉比3.下列句子中加点的成语运用恰当的一项是( C )A.“两会”召开前夕,各媒体400名记者严阵以待....,准备对这次会议进行全方位的报道。
B.某大学副教授认为朱自清《背影》中父亲的行为有违交通法规,应将《背影》清出中学教材,一时间人们议论纷纷,闪烁其词....。
C.林纾是一位有“创作精神”的文学翻译家,他的翻译连原作中的幽默风味也能惟妙惟肖....的表达出来,有时甚至比原作更胜一筹。
D.近来,一些不法分子漠不关心....孩子的生命,残忍的制造了一系列惨案,引起了全社会的无比愤慨和理性反思。
4.下列对病句的修改不正确的一项是( D )A.这幅图片再现了身穿节日盛装的姑娘们围绕在熊熊篝火旁一起歌舞狂欢。
(“狂欢”后加上“情景”)B.为杜绝以讨要工资为由的闹事事件不再发生,黄石市信访局在及时解决问题后,促成相关部门出台了一条保障农民工权益的新政策。
(将“不再”改为“再次”)C.马航客机MH370航班已经失联超过100小时,这不能不说是让人担忧焦虑的一件事。
(将“一件”移至“不能不说是”后面)D.有的学生在考试前会出现失眠、烦躁等现象,这往往是因为他们太在乎考试成绩,心理负担过重所造成的。
(“现象”换成“情况”)5.提取下面句子的主要信息,正确的一项是( C )我的读书旨趣有三个特点。
第一,虽然我的专业是哲学,但我的阅读范围不限于哲学,始终喜欢看“课外书”,而我从文学作品和各类人文书籍中同样学到了哲学。
第二,虽然我的阅读范围很宽,但对书籍的选择却很挑剔,以读经典名“乘机安全小贴士”安全出行要重视著为主,其他的书只是随便翻翻,对媒体宣传的畅销书完全不予理睬。
第三,虽然读的是经典名著,但我喜欢把它们当作闲书来读,不端做学问的架子,而我确实在读经典名著中得到了最好的消遣。
(周国平语)A.读书旨趣是:阅读范围不限于哲学,读书很挑剔,当作闲书来读。
B.读书旨趣是:喜欢看“课外书”,阅读范围很宽,读是为了消遣。
C.读书旨趣是:喜欢看“课外书”,主要读经典名著,不端做学问的架子读。
D.读书旨趣是:从各类书籍中学哲学,不理睬畅销书,读中得到消遣。
6.与原句衔接最好的的一项是( B )她年纪大约二十六七,_____________________,两颊却还是红的。
卫婆子叫她祥林嫂。
A.青黄脸色B.脸色青黄C.青黄着脸色D.现出青黄脸色7.下列选项中有错误的一项是(B )A.散文是与诗歌、小说、戏剧并列的一种文学体裁,其特点是“形散神聚”。
B.李白,字太白,号青莲居士,是唐代伟大的现实主义诗人,著有《李太白全集》。
我们学过他的诗歌《峨眉山月歌》《春夜洛城闻笛》等C.中国的戏曲和西方戏剧不同,它有自己独特的表演体系,戏曲的角色分为生旦净丑四大行当。
D.《望岳》《春望》《茅屋为秋风所破歌》都是唐朝诗人杜甫写的诗。
8.略9.补写出下列名篇名句中的空缺部分。
(10分)(1)杨花落尽子规啼,闻道龙标过五溪。
(李白《闻王昌龄左迁龙标遥有此寄》)(2)薄雾浓云愁永昼,瑞脑销金兽。
(李清照《醉花阴》)(3)文天祥的《过零丁洋》中表现诗人崇高的爱国情怀与坚贞的民族气节的名句是:“人生自古谁无死?留取丹心照汗青。
”(4)岑参的《白雪歌送武判官归京》中以春花写冬雪的千古名句是:“忽如一夜春风来,千树万树梨花开。
”(5)白居易的《钱塘湖春行》中从鸟类活动的角度描写春光的诗句是:“几处早莺争暖树,谁家新燕啄春泥。
”(6)范仲淹在《渔家傲•秋思》中表达自己和征人们想家却又不甘无功而返的矛盾心理的句子是:浊酒一杯家万里,燕然未勒归无计”二、阅读与鉴赏(36分)阅读下面两篇短文,按要求回答问题。
【甲】秦王使人谓安陵君日:“寡人欲以五百里之地易安陵,安陵君其许寡人!”安陵君日:“大王加惠,以大易小,甚善;虽然,受地于先王,愿终守之,弗敢易!”秦王不悦安陵君因使唐雎使于秦。
秦王谓唐雎日:“寡人以五百里之地易安陵,安陵君不听寡人,何也?且秦灭韩亡魏,而君以五十里之地存者,以君为长者,故不错意也。
今吾以十倍之地,请广于君,而君逆寡人者,轻寡人与?”唐雎对日:“否,非若是也安陵君受地于先王而守之,虽千里不敢易也,岂直五百里哉?”秦王怫然怒,谓唐雎日:“公亦尝闻天子之怒乎?”唐雎对日:“臣未尝闻也”秦王日:“天子之怒,伏尸百万,流血千里”唐雎日:“大王尝闻布衣之怒乎?”秦王日:“布衣之怒,亦免冠徒跣,以头抢地耳”唐雎日:“此庸夫之怒也,非士之怒也夫专诸之刺王僚也,彗星袭月;聂政之刺韩傀也,白虹贯日;要离之刺庆忌也,仓鹰击于殿上.此三子者,皆布衣之士也,怀怒未发,休衩降于天,与臣而将四矣若士必怒,伏尸二人,流血五步,天下缟素,今日是也”挺剑而起秦王色挠,长跪而谢之曰:“先生坐!何至于此!寡人谕矣:夫韩、魏灭亡,而安陵以五十里之地存者,徒以有先生也”【乙】晏子使楚。
楚人以晏子短,为小门于大门之侧而延晏子。
晏子不入,曰:“使狗国者,从狗门入。
今臣使楚,不当从此门入。
”傧者①更道,从大门入。
见楚王。
王曰:“齐无人耶,使子为使?”晏子对曰:“齐之临淄②三百闾,张袂③成阴,挥汗成雨,比肩继踵而在,何为无人!”王曰:“然则何为使子?”晏子对曰:“齐命使,各有所主。
其贤者使贤主,不肖者使不肖主。
婴最不肖,故宜使楚矣。
”【注】傧者①:就是专门办理迎接招待宾客的人。
临淄②:地名,古代齐国的都城,在现今山东省。
袂③:就是衣裳的袖子。
10.给下列加点字注音(2分)(1)以头抢地尔(qiāng)(2)休祲降于天(jìn )(3)比肩继踵而在(zhǒng)(4)不肖者使不肖主(xiào)11解释下列加点词语(2分)(1)以君为长者,故不错.意也。
(通“措”放置)(2)长跪而谢.之曰(道歉)(3)傧者更.道(改)(4)婴最不肖,故宜.使楚矣(适宜)12.译句(4分)(1)若士必怒,伏尸二人,流血五步,天下缟素,今日是也。
假若有胆识有能力的人(被逼得)一定要发怒,那么就让两个人的尸体倒下,五步之内淌满鲜血,天下百姓(将要)穿丧服,今天就是这个时候。
(2)齐命使各有所主,其贤者使使贤主,不肖者使使不肖主。
齐国派遣使臣,根据使臣的不同素质派到不同君主(的国家),贤明的人就派他出使贤明君主(的国家),无能的人就派他出使无能君主(的国家)。
13.晏子和唐雎同为外交使者,同样不辱使命,他们各靠什么维护了国家的利益?(2分)唐雎主要靠勇敢、靠威武不屈的拼命精神,晏子主要靠幽默机智的外交辞令。
14.读了这两篇短文,你有些什么感想,请简单谈一谈。
(2分)略(一)阅读下面这首唐诗,按要求回答问题。
(4分)次北固山下客路青山外,行舟绿水前。
潮平两岸阔,风正一帆悬。
海日生残夜,江春入旧年。
乡书何处达?归雁洛阳边。
15.1、对这首诗语句的理解有误的一项是(A)(2分)A 题目中的“次”本是“停驻”之意,这里指“停宿”在北固山下的旅馆之内。
B 首联中的“客路”指的是诗人要去的路,“青山”指的是题目中的北固山。
C 颔联中“两岸阔”的“阔”是表现潮平之后的景象,随着春潮的起涨,放眼望去,江面似与岸平,舟中人的视野也因此而开阔。
D 颈联透露出诗人是于岁暮腊残,连夜行舟的。
此联表现了江上行舟即将天亮的情景。
16、对这首诗的赏析不恰当的一项是(C)(2分)A、诗歌以对偶句开头,既显工丽,又觉跳脱,先写“客路”后写“行舟”,那种人在江南、神驰故里的漂泊羇旅之情已流露于字里行间。
B、第二联的“风正一帆悬”写得尤为精彩。
诗正是通过这一小景,呈现了平野开阔、大江泛舟、波平浪静等大景。
C、第三联写得妙绝。
当残夜还未消退之时,一轮红日已从海上升起;当旧年尚未逝去,江上已显露春意。
两句表达了诗人内心的无比喜悦之情,令人想像到诗人已被江南的美景所陶醉。
D、尾联写诗人正放舟于绿水之上,正向着青山之外的绿水进发,看到北归的大雁正掠过晴空,想托雁儿捎信给在洛阳的家人,诉说自己内心深处的乡愁。
(二)阅读下面的文章,回答17——20题。
(8分)露,秋天的颜色①习惯早起的人们对露和霜肯定不陌生,在清晨,我们在草地上、花瓣上都可以见到它们的踪迹。
清晨大梦初醒,便见得草丛中霜露正浓,待到日出之后,它们便迅速隐退,因此留恋枕头的人永远看不到布满霜露的清晨画卷。
②露来自何处?雨水来自天上的云,露水就来自我们身边的空气。
当太阳落山后,地面温度开始逐渐下降,此时一个气象学参数开始发威—“露点温度”,也就是空气中的水凝结成露的温度。
这个温度并不固定,与当时的湿度相关,如果遇到夏天的“桑拿天”,温度高湿度大,露点温度也就高。
比如气温在30℃,相对湿度100%,那露点温度也是30℃。
若到干燥的冬天,露点温度便非常低,甚至低到零下。
当环境温度接近“露点温度”后,大气中的水汽就开始凝结,附着在草叶上、树叶上、花瓣上。
③是晶莹剔透的,然而在《本草纲目》中却记载:“汉武帝时,有吉云国,出吉草,食之不死。
日照之,露皆五色,东方朔得玄、青、黄三色露,各盛五盒献于帝。
”这可够邪乎的,露水的形成过程类似一次天然的蒸馏,本应纯净无色,可这颜色从何而来呢?④露水颜色来路有二,其一为混浊之色,或曰,丁达尔现象。
丁达尔现象是指当光线穿过悬浊、乳浊或者溶液时,发生散射,而不同物质散射光线的光谱又不同,因此浑浊之色也多种多样。
虽然露水类似天然蒸馏的过程,但凝结之处并不可能没有纤尘沾染,尘混于露水中,便让露有了颜色,但混浊之水轻易便可辨别,东方朔不会连这个都看不出来吧。
其二,露水若凝结在一些表层具有细毛、蜡质的植物上,便可在阳光下映出七彩光辉,实为光学干涉的作用,《本草纲目》中的叙述与此颇为类似。
⑤其实,我们在生活中也能见到“五色露”,露水再哪里凝结,就透射出那里的色彩。
露水凝于栎树落叶,便呈棕褐之色;露水凝于黄栌,则显火红之色;露水凝于草间,或绿或黄,由此看来,露水呈五色,正是因为露本无色。
⑥或许正因为露水无色且纯净,才被古人奉为圣洁之水,扬州人对烹茶之水的咸甜、甘苦、清浊和浓淡分辨得非常精细,将其等级分为:一等天水,二等泉水,三等江水,四等河水。