由系统阶跃响应辨识传递函数的Matlab实现方法
利用matlab由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应.docx
利用matlab 由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应并绘制输出阶跃响应曲线和脉冲响应曲线 解:编程(见:\work\CT_tch\resp_2_20110522)clear all;close all;%%%%%%%%%%%%%%a0 = [00000.8];bl = [10];b2 = [0.3 1 ];b3 = [0.5 0.7 1];bO = conv(bl,conv(b2,b3)); % bO:开环传递函数分母多项式系数 %%%%闭环传递函数aa = a0;% aa :闭环传递函数分了多项式系数 bb = bO + aO; % bb :闭环传递函数分了多项式系数 disp ('System Closed Loop Transfer Function is :*)aabb%%%%计算:阶跃响应t = 0:0.1 :20y = step (aa, bb, t);% 阶跃响应%%%%绘制:阶跃响应figure(l)plot(t ,y);title 。
阶跃响应); xlabelC时间 /s');ylabel(1S 值);grid ; %%%%计算:figure(2)yy = impulse (aa, bb, t);% 标题:脉冲响应plot(t, yy); titlcC 脉冲响应); xlabelC 时间/s); ylabel(1S 值);grid; %网格%%%%绘制:脉冲响应wt = logspace (-1,1); % 对数空间「0.1, 10)例:设有一个系统的开环传递函数如下函数, 01 %aO:开环传递函数分子多项式系数 % s % % (0.5 s2 + 0.7s+ 1) %标题:阶跃响应 %横坐标 %纵坐标 % io,!! 脉冲响应[mag,phase] = bode (a0 ,b0 ,wt); % 计算:Bode111的幅值和相位[Gm,Pm,Wcg,Wcm] = margin(aO,bO); % 计算:稳定裕度disp ('System Gain Margin and its associated frequency areGm %模值稳定裕度Wcg %幅值穿越频率,剪切频率,1/sdisp ('System Phase Margin and its associated frequency are : Pm %相位稳定裕度Wcm % ■兀相位穿越频率,1/s%%%%绘制:Bode图figure(3)Subplot (211); %对数幅值■频率图amp = 20*logl0(mag); % 20*log(mag), dBsemilogx(wt,amp);title C对数幅值■频率图);xlabel C频率 / rad*); ylabel f 幅值 / dB);grid;subplot (212); %相位-频率图semilogx(wt,phase);title C相位-频率图);xlabel ('频率/ rad*); ylabel('相位/ degree*);grid;运行该程序可得系统的单位阶跃和脉冲响应曲线如下,W 15图1系统的单位阶跃响应曲线系统的Bode图如F,图2 系统的脉冲响应曲线系统怕篦图幅频系统伯律图相麹:-300•■»、1—10图3 系统的Bode图。
matlab闭环传递函数阶跃响应曲线
一、概述Matlab是一款功能强大的科学计算软件,广泛应用于工程、数学和科学领域。
在控制系统工程中,闭环传递函数是一项重要的概念,它描述了控制系统中输入和输出之间的关系。
而阶跃响应曲线则是闭环传递函数的一种重要性能指标,能够帮助工程师评估控制系统的稳定性和性能。
本文将通过Matlab来分析闭环传递函数的阶跃响应曲线,以期对控制系统工程师有所启发和帮助。
二、闭环传递函数闭环传递函数描述了一个控制系统的输入和输出之间的关系。
在Matlab中,可以使用tf函数来创建闭环传递函数,例如:G = tf([1],[1, 2, 1]);这个例子中,创建了一个一阶系统的传递函数,分子多项式为1,分母多项式为1s^2+2s+1。
通过显示传递函数的输出,可以使用命令: disp(G);这样就可以得到闭环传递函数的具体形式。
三、阶跃响应曲线阶跃响应曲线是控制系统的一个重要性能指标,它描述了当输入信号为一个阶跃函数时,系统的输出是如何随时间变化的。
在Matlab 中,可以使用step函数来绘制阶跃响应曲线,例如:step(G);这样就可以得到闭环传递函数的阶跃响应曲线。
四、示例分析为了更好地理解闭环传递函数的阶跃响应曲线,在这里我们通过一个具体的示例来进行分析。
假设有一个二阶系统的闭环传递函数为: G = tf([1],[1, 2, 1]);则可以使用step函数来绘制其阶跃响应曲线:step(G);绘制出的曲线将显示系统的阶跃响应性能,包括上升时间、调节时间、峰值值和稳定状态误差等指标,通过这些指标可以评估出系统的稳定性和性能。
五、结论通过Matlab分析闭环传递函数的阶跃响应曲线是控制系统工程中的重要内容,它能够帮助工程师更好地理解控制系统的性能,并且为系统的设计和优化提供了重要依据。
在实际工程中,掌握Matlab对闭环传递函数的分析方法,将有助于工程师更好地完成控制系统的设计和调试工作,为现代工程技术的发展做出更大的贡献。
用MATLAB进行控制系统的动态性能的分析
用MATLAB进行控制系统的动态性能的分析MATLAB是一款功能强大的工具,可用于控制系统的动态性能分析。
本文将介绍使用MATLAB进行动态性能分析的常用方法和技巧,并提供实例来说明如何使用MATLAB来评估和改进控制系统的性能。
控制系统的动态性能是指系统对输入信号的响应速度、稳定性和精度。
评估控制系统的动态性能往往需要分析系统的阶跃响应、频率响应和稳态误差等指标。
一、阶跃响应分析在MATLAB中,可以使用step函数来绘制控制系统的阶跃响应曲线。
假设我们有一个系统的传递函数为:G(s)=(s+1)/(s^2+s+1)要绘制阶跃响应曲线,可以按照以下步骤操作:1.自动生成传递函数:num = [1 1];den = [1 1 1];G = tf(num,den);2.绘制阶跃响应曲线:step(G);二、频率响应分析频率响应分析用于研究控制系统对不同频率输入信号的响应特性。
在MATLAB中,可以使用bode函数来绘制控制系统的频率响应曲线。
假设我们有一个传递函数为:G(s)=1/(s+1)要绘制频率响应曲线,可以按照以下步骤操作:1.自动生成传递函数:num = [1];den = [1 1];G = tf(num,den);2.绘制频率响应曲线:bode(G);运行以上代码,MATLAB将生成一个包含系统幅频特性和相频特性的图形窗口。
通过观察频率响应曲线,可以评估系统的增益裕度(gain margin)和相位裕度(phase margin)等指标。
三、稳态误差分析稳态误差分析用于研究控制系统在稳态下对输入信号的误差。
在MATLAB中,可以使用step函数结合stepinfo函数来计算控制系统的稳态误差。
假设我们有一个传递函数为:G(s)=1/s要计算稳态误差,可以按照以下步骤操作:1.自动生成传递函数:num = [1];den = [1 0];G = tf(num,den);2.计算稳态误差:step(G);info = stepinfo(G);运行以上代码,MATLAB将生成一个阶跃响应曲线的图形窗口,并输出稳态误差等信息。
自动控制原理实验二阶系统的阶跃响应
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
matlab计算传递函数
matlab计算传递函数传递函数是用来描述线性时不变系统输入信号和输出信号之间关系的数学模型。
在MATLAB中,可以通过使用Transfer Function Toolbo某和Control System Toolbo某来计算传递函数。
首先,使用Transfer Function Toolbo某来计算传递函数非常简单。
以下是一个简单的例子,计算一个一阶惯性系统的传递函数:```matlabs = tf('s'); % 定义传递函数变量snum = 1; % 定义传递函数的分子系数den = [1 1]; % 定义传递函数的分母系数G = num/den; % 构建传递函数对象```在这个例子中,我们首先定义了传递函数变量s。
然后我们指定了传递函数的分子和分母多项式系数,并使用这些系数构建传递函数对象G。
接下来,可以使用Control System Toolbo某中的函数来计算传递函数的频率响应、阶跃响应、脉冲响应等等。
以下是一些常用的函数:- `bode(`:计算传递函数的频率响应。
- `step(`:计算传递函数的阶跃响应。
- `impulse(`:计算传递函数的脉冲响应。
- `freqresp(`:计算传递函数在指定频率点的频率响应。
- `pzmap(`:绘制传递函数的零极点图。
例如,我们可以使用下面的代码绘制传递函数的频率响应曲线:```matlabbode(G);```这将绘制传递函数G的幅频曲线和相频曲线。
除了使用Transfer Function Toolbo某和Control System Toolbo 某外,还可以使用MATLAB的Symbolic Math Toolbo某计算和操作传递函数的符号表达式。
Symbolic Math Toolbo某提供了一组用于创建、操作和简化数学表达式的函数,可以进行符号级别上的计算。
总之,MATLAB提供了多种方法来计算传递函数,并进行各种系统分析和设计。
利用matlab由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应.docx
利用matlab 由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应并绘制输出阶跃响应曲线和脉冲响应曲线 解:编程(见:\work\CT_tch\resp_2_20110522)clear all;close all;%%%%%%%%%%%%%%a0 = [00000.8];bl = [10];b2 = [0.3 1 ];b3 = [0.5 0.7 1];bO = conv(bl,conv(b2,b3)); % bO:开环传递函数分母多项式系数 %%%%闭环传递函数aa = a0;% aa :闭环传递函数分了多项式系数 bb = bO + aO; % bb :闭环传递函数分了多项式系数 disp ('System Closed Loop Transfer Function is :*)aabb%%%%计算:阶跃响应t = 0:0.1 :20y = step (aa, bb, t);% 阶跃响应%%%%绘制:阶跃响应figure(l)plot(t ,y);title 。
阶跃响应); xlabelC时间 /s');ylabel(1S 值);grid ; %%%%计算:figure(2)yy = impulse (aa, bb, t);% 标题:脉冲响应plot(t, yy); titlcC 脉冲响应); xlabelC 时间/s); ylabel(1S 值);grid; %网格%%%%绘制:脉冲响应wt = logspace (-1,1); % 对数空间「0.1, 10)例:设有一个系统的开环传递函数如下函数, 01 %aO:开环传递函数分子多项式系数 % s % % (0.5 s2 + 0.7s+ 1) %标题:阶跃响应 %横坐标 %纵坐标 % io,!! 脉冲响应[mag,phase] = bode (a0 ,b0 ,wt); % 计算:Bode111的幅值和相位[Gm,Pm,Wcg,Wcm] = margin(aO,bO); % 计算:稳定裕度disp ('System Gain Margin and its associated frequency areGm %模值稳定裕度Wcg %幅值穿越频率,剪切频率,1/sdisp ('System Phase Margin and its associated frequency are : Pm %相位稳定裕度Wcm % ■兀相位穿越频率,1/s%%%%绘制:Bode图figure(3)Subplot (211); %对数幅值■频率图amp = 20*logl0(mag); % 20*log(mag), dBsemilogx(wt,amp);title C对数幅值■频率图);xlabel C频率 / rad*); ylabel f 幅值 / dB);grid;subplot (212); %相位-频率图semilogx(wt,phase);title C相位-频率图);xlabel ('频率/ rad*); ylabel('相位/ degree*);grid;运行该程序可得系统的单位阶跃和脉冲响应曲线如下,W 15图1系统的单位阶跃响应曲线系统的Bode图如F,图2 系统的脉冲响应曲线系统怕篦图幅频系统伯律图相麹:-300•■»、1—10图3 系统的Bode图。
使用 matlab 语句表达微分环节的传递函数
使用 Matlab 语句表达微分环节的传递函数1. 介绍微分环节的传递函数在控制系统中,微分环节是一种常见的控制元件,其传递函数通常用来描述输入信号经过微分环节后的输出信号与输入信号之间的关系。
微分环节的传递函数通常具有形式为G(s)=Ks的特点,其中K为增益,s为复变量。
微分环节在控制系统中具有重要的作用,常用于提高系统的动态性能和抑制振荡。
2. 使用 Matlab 表达微分环节传递函数的基本语法在Matlab 中,可以使用一些简单的语句来表达微分环节的传递函数。
要表示一个简单的微分环节传递函数G(s)=Ks,可以使用以下语法:```matlabK = 1; 定义增益值s = tf('s'); 定义复变量 sG = K*s; 表示传递函数```在这个语法中,首先定义了微分环节的增益K,然后使用tf函数定义了复变量s,最后将传递函数G(s)表示为K*s。
3. 使用 Matlab 表达一般形式的微分环节传递函数除了简单的Ks形式外,微分环节的传递函数还可以具有一般形式G(s)=K(s-a),其中a为常数。
在 Matlab 中,可以使用以下语句表达微分环节传递函数的一般形式:```matlabK = 2; 定义增益值a = 3; 定义常数as = tf('s'); 定义复变量 sG = K*(s-a); 表示传递函数```在这个语法中,除了定义增益K和常数a外,其余部分与简单形式的传递函数表达相似。
4. 使用 Matlab 表达多个微分环节的传递函数在实际控制系统中,经常会遇到多个微分环节组成的复杂系统。
在Matlab 中,可以使用一些复杂的语句来表达多个微分环节的传递函数。
一个由两个微分环节组成的传递函数G(s)=Ks^2可以使用以下语句表示:```matlabK = 4; 定义增益值s = tf('s'); 定义复变量 sG = K*s^2; 表示传递函数```在这个语法中,使用s^2表示两个微分环节的乘积。
MATLAB下二阶系统的单位阶跃响应
MATLAB下二阶系统的单位阶跃响应二阶系统在不同参数下对单位阶跃信号的响应一、二阶系统所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。
比如常见的RLC 电路(图a )、单自由度振动系统等。
图a 图b二阶系统传递函数的标准形式为222()2n n n H s s s ωξωω=++二、二阶系统的Bode 图(n ω=1)MATLAB 程序为>> clear>> num=[1];>> den=[1 0.2 1];>> bode(num,den);grid onhold onden=[1 0.4 1];bode(num,den);>> den=[1 0.6 1];>> bode(num,den);>> den=[1 0.8 1];>> bode(num,den);>> den=[1 1.4 1];>> bode(num,den);>> den=[1 2 1];>> bode(num,den);>> legend('0.1','0.2','0.3','0.4','0.7','1.0') 运行结果为三、二阶系统对单位阶跃信号的响应(=1)n MATLAB程序为>> clear>> num=[1];>> den=[1 0 1];>> t=0:0.01:25;>> step(num,den,t)>> grid on>> hold on>> den=[1 0.2 1];>> step(num,den,t)>> den=[1 0.4 1];>> step(num,den,t)>> den=[1 0.6 1];>> step(num,den,t)>> den=[1 0.8 1];>> step(num,den,t)>> den=[1 1.0 1];>> step(num,den,t)>> den=[1 1.2 1];>> step(num,den,t)>> den=[1 1.4 1];>> step(num,den,t)>> den=[1 1.6 1];>> step(num,den,t)>> den=[1 1.8 1];>> step(num,den,t)>> den=[1 2.0 1];>> step(num,den,t)>>legend('0','0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8' ,'0.9','1.0',-1)执行结果为由上面2图可得结论:1、 =0(无阻尼)时,系统处于等幅振荡,超调量最大,为100%,并且系统发生不衰减的振荡,永远达不到稳态。
Matlab实验报告
自动控制技术与其应用实验报告系别:班级:XX:学号:实验二典型环节与其阶跃响应(▲)一、实验目的1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
3. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验设备和仪器1.计算机;2. MA TLAB软件三、实验结果分析与结论1.比例环节 G1(S)=1和G2(S)=2(二选一)比例环节仿真仿真结构图单位阶跃响应波形图比例环节特点:成比例,无失真和延迟2.惯性环节 G1(S)=1/(S+1)和G2(S)=1/(0.5S+1) (二选一)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)惯性环节仿真仿真结构图单位阶跃响应波形图惯性环节特点:输出量不能立即随输入量的变化而变化,存在时间上延迟,输出无振荡3.积分环节G1(S)=(1/S)和G2(S)=(1/(0.5S))绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)积分环节仿真仿真结构图单位阶跃响应波形图积分环节仿真仿真结构图单位阶跃响应波形图积分环节特点:输出量反应输入量的时间积累4.微分环节G1(S)=0.5S和G2(S)=2S绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)微分环节仿真仿真结构图单位阶跃响应波形图微分环节仿真仿真结构图单位阶跃响应波形图微分环节特点:输出能够预示输入信号的变化趋势5.比例微分环节G1(S)=(2+S)和G2(S)=(1+2S)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)比例微分环节仿真仿真结构图单位阶跃响应波形图比例微分环节仿真仿真结构图单位阶跃响应波形图比例微分环节特点:调节与时,偏差小,当输出稳定时的幅值与比例环节的比例系数成正比6.比例积分环节G1(S)=(1+1/S)和G2(S)=2(1+1/2S)绘制:仿真结构图、单位阶跃响应波形图(需要注明必要的特殊点)比例积分环节仿真仿真结构图单位阶跃响应波形图比例积分环节仿真仿真结构图单位阶跃响应波形图比例积分环节特点:应速度变快,其输出与积分时间常数有关四、实验心得与体会通过实验可以更加形象生动、清晰、一目了然,让我们更容易掌握各个环节的特点,同时掌握了MATLAB 的一些基本绘图仿真知识。
由系统阶跃响应辨识传递函数的Matlab实现方法
由系统阶跃响应辨识传递函数的Matlab 实现方法典型二阶系统传递函数为:121)(22++=Ts s T s G ξ工业生产过程中,大多数系统的阶跃响应曲线是临界阻尼或过阻尼的,即ξ≥1。
只要求出T 和ξ就能确定系统的传递函数。
G(s)可以分解为:))((1)(212ωω++=s s T s G其中,[][]11112221--=-+=ξξωξξωTT1ω、2ω都是实数且均大于零。
则有:211ωω=T ,21212ωωωωξ+= 传递函数进一步化为:))(()(2121ωωωω++=s s s G因此,辨识传递函数就转化为求解1ω、2ω。
当输入为单位阶跃函数时,对上式进行拉普拉斯反变换,得系统时域下的单位阶跃响应为:t te et y 212111221)(ωωωωωωωω---+--=, 即 tteet y 21211122)(1ωωωωωωωω-----=-令1ω=2ωk )1(>k,得tk t ek e k k t y 22111)(1ωω-----=-⎥⎦⎤⎢⎣⎡--=---t k t e k e k k 2)1(2111ωω对上式两边取以e 为底的对数得[]⎥⎦⎤⎢⎣⎡-+--=---t k e k t k k t y 2)1(211ln 1ln )(1ln ωω 当∞→t 时,⎥⎦⎤⎢⎣⎡---t k e k 2)1(11ln ω0→,则上式化简为 []t k k t y 21ln )(1ln ω--=-,该式的形式满足直线方程b at t y +=)(*其中,)(*t y =[])(1ln t y -,1ln,2-=-=k kb a ω)1(>k 通过最小二乘算法实现直线的拟合,得到a ,b 的值,即可得到1ω、2ω的值,进而可得系统的传递函数。
Matlab 程序代码 %identification.mclcclose allt=[1 3 5 7 9 11 13 15 17 19];y=[0.149086 0.5890067 0.830617 0.933990 0.973980 0.991095 0.995868 0.998680 0.999490 0.999850]; %实验数据,数据来源:《系统辨识方法及应用》.国防工业出版社 y2=log(1-y); plot(t,y2,'*'); grid onpm=polyfit(t,y2,1) value=polyval(pm,t); hold onplot(t,value,'r')title('\fontname{黑体}\fontsize{20}y(t)=at+b') w2=-pm(1)w1=w2/(1-exp(-pm(2))) T=1/sqrt(w1*w2)theta=(w1+w2)/(2*sqrt(w1*w2)) z=[];p=[-w1 -w2]; k=w1*w2; sys=zpk(z,p,k) figure(2)step(sys,[0:0.5:20]); axis([0 20 0 1.2]) hold on plot(t,y,'r*')运行结果:系统的传递函数为)4797.0)(126.1(54034.0)(++=S S S G 阻尼比为0925.1=ξ自然振荡周期为T=1.3604 s。
MATLAB在求二阶系统中阶跃响应的分析及应用
摘要二阶系统控制系统按数学模型分类时的一种形式,是用数学模型可表示为二阶线性常微分方程的系统。
二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分,P(s)的一般形式为变换算子s的二次三项代数式。
代数方程P(s)=0的根,可能出现四种情况。
1.两个实根的情况,对应于两个串联的一阶系统。
如果两个根都是负值,就为非周期性收敛的稳定情况。
2.当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现。
3.当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现。
4.当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响。
一般以阻尼系数ζ来表征,取在0.4~0.8之间为宜。
当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢。
而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的。
当激励为单位阶跃函数时,电路的零状态响应称为单位阶跃响应,简称阶跃响应。
阶跃响应g(t)定义为:系统在单位阶跃信号u(t)的激励下产生的零状态响应。
关键词:二阶系统阶跃响应 MATLAB/SimulinkMATLAB 在求二阶系统中阶跃响应的分析及应用1 训练目的和要求通过对MATLAB 仿真软件的语言的学习,学会在MATLAB 中解决《电路原理》、《模拟电子技术基础》、《数字电子技术基础》等所学课本上的问题,进一步熟悉并掌握MATLAB 在电路、信号与系统、自动控制原理、数字信号处理等中的应用。
通过对软件的应用,巩固已学知识。
以求达到通过训练能熟练掌握MATLAB 的应用,能够深入到实际问题中。
要求通过理论分析所要求题目并通过MATLAB 仿真比较实验结果。
2 理论分析计算已知系统的传递函数为2121s s ζ++,求其阶跃响应。
matlab 阶跃响应 传递函数估算
matlab 阶跃响应传递函数估算
假设给定一个传递函数:
H(s)=k/(s+a)。
其中k和a是参数,s是Laplace变换的复变量。
我们使用matlab 来估算其阶跃响应。
步骤1:定义传递函数。
我们首先需要使用matlab中的tf函数来定义传递函数:
k=1;。
a=2;。
H = tf(k, [1 a]);。
这将创建一个传递函数对象H,其分子为1,分母为s+2。
步骤2:画出阶跃响应曲线。
我们接下来使用step函数来画出传递函数的阶跃响应曲线:
step(H);。
执行此命令将绘制传递函数的阶跃响应曲线。
步骤3:分析阶跃响应曲线。
传递函数的阶跃响应曲线可以告诉我们关于系统的许多信息,例如:-响应的稳定性:如果响应是有限的,系统是稳定的。
如果响应是无限的,系统是不稳定的。
-响应的振荡性:如果响应是以振荡的形式变化,系统是不稳定的。
如果响应是平稳的,系统是稳定的。
-响应的慢或快:如果响应越快,系统就越灵敏。
在我们的例子中,由于传递函数的分母具有实根,因此响应是稳定的且不会振荡。
此外,响应看起来相对较慢,因为它需要一段时间才能达到稳定状态。
因此,我们现在可以使用matlab来估算传递函数的阶跃响应。
matlab计算传递函数
matlab计算传递函数传递函数(Transfer Function)是描述线性时不变系统输入和输出之间关系的数学模型。
在MATLAB中,我们可以使用Transfer Function Toolbox来计算传递函数。
传递函数通常表示为H(s),其中s是复数变量,表示频域的复平面变量。
本文将介绍如何在MATLAB中使用Transfer Function T oolbox来计算传递函数。
我们需要在MATLAB中导入Transfer Function Toolbox。
在命令窗口中输入以下命令:```import control.*```接下来,我们可以使用tf函数来创建传递函数。
tf函数的输入参数是一个包含系统的分子和分母多项式系数的向量。
例如,对于一个传递函数H(s) = (s+1)/(s^2+2s+1),我们可以使用以下命令来创建传递函数对象:```num = [1 1];den = [1 2 1];H = tf(num, den);```这样,我们就创建了一个传递函数对象H,其中num是分子多项式系数向量,den是分母多项式系数向量。
我们可以使用step函数来计算传递函数的阶跃响应。
阶跃响应是指系统对单位阶跃输入的响应。
以下命令将显示传递函数的阶跃响应图形:```step(H);```我们也可以使用impulse函数来计算传递函数的冲激响应。
冲激响应是指系统对单位冲激输入的响应。
以下命令将显示传递函数的冲激响应图形:```impulse(H);```除了阶跃响应和冲激响应,我们还可以使用bode函数来计算传递函数的频率响应。
频率响应是指系统对不同频率输入的响应。
以下命令将显示传递函数的幅频响应和相频响应图形:```bode(H);```我们还可以使用pzmap函数来计算传递函数的零极点图。
零极点图是指传递函数在复平面上的零点和极点的分布情况。
以下命令将显示传递函数的零极点图:```pzmap(H);```除了以上基本的计算功能,Transfer Function Toolbox还提供了许多其他的函数,用于进行传递函数的运算和分析。
基于MATLAB的控制系统单位阶跃响应分析
基于MATLAB的控制系统单位阶跃响应分析控制系统单位阶跃响应分析是一种用于评估控制系统性能和稳定性的重要方法。
在MATLAB中,可以使用系统传递函数或状态空间模型来分析控制系统的单位阶跃响应。
首先,我们需要定义一个控制系统的传递函数或状态空间模型。
传递函数模型可以表示为:G(s) = num(s) / den(s)其中num(s)和den(s)是分别表示系统的分子和分母多项式的向量。
状态空间模型可以表示为:dx/dt = Ax + Buy=Cx+Du其中A、B、C和D是系统状态空间矩阵。
然后,我们可以使用`step`函数来计算单位阶跃响应。
该函数返回系统的时间响应数据和时间向量。
例如,对于传递函数模型,我们可以使用以下代码来计算单位阶跃响应:```matlabnum = [1];den = [1 2 1];sys = tf(num, den);[y, t] = step(sys);```这将计算系统的单位阶跃响应`y`和对应的时间向量`t`。
单位阶跃响应包含了关于系统稳态响应、最大超调量、调整时间和振荡频率等重要信息。
可以通过观察单位阶跃响应曲线来初步判断控制系统的性能和稳定性。
稳态响应是指系统在无限远的时间内的响应。
可以通过观察单位阶跃响应的最终值来判断系统是否具有稳态误差。
理想情况下,单位阶跃响应的最终值应该等于阶跃输入的幅值。
超调量描述了单位阶跃响应中的最大超调程度。
可以通过观察单位阶跃响应的峰值来计算超调量。
超调量越小,系统的性能越好。
调整时间是指系统从初始态到达其稳态的时间。
可以通过观察单位阶跃响应的时间范围来确定调整时间。
理想情况下,调整时间越短,系统的性能越好。
振荡频率是指单位阶跃响应中的振荡频率。
可以通过观察单位阶跃响应的振荡频率来确定系统的稳定性。
理想情况下,单位阶跃响应应该是无振荡、平稳的。
除了使用`step`函数外,还可以使用`stepinfo`函数来直接计算单位阶跃响应的性能指标。
自动控制原理实验1-6
⾃动控制原理实验1-6实验⼀MATLAB 仿真基础⼀、实验⽬的:(1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗⼝的基本操作。
(2)掌握MATLAB 建⽴控制系统数学模型的命令及模型相互转换的⽅法。
(3)掌握使⽤MATLAB 命令化简模型基本连接的⽅法。
(4)学会使⽤Simulink 模型结构图化简复杂控制系统模型的⽅法。
⼆、实验设备和仪器 1.计算机;2. MATLAB 软件三、实验原理函数tf ( ) 来建⽴控制系统的传递函数模型,⽤函数printsys ( ) 来输出控制系统的函数,⽤函数命令zpk ( ) 来建⽴系统的零极点增益模型,其函数调⽤格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den )两个环节反馈连接后,其等效传递函数可⽤feedback ( ) 函数求得。
则feedback ()函数调⽤格式为: sys = feedback(sys1, sys2, sign )其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。
四、实验内容:1.已知系统传递函数,建⽴传递函数模型2.已知系统传递函数,建⽴零极点增益模型3.将多项式模型转化为零极点模型12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G 12s 2s s 3s (s)23++++=G )12()1()76()2(5)(3322++++++=s s s s s s s s G4. 已知系统前向通道的传递函数反馈通道的传递函数求负反馈闭环传递函数5、⽤系统Simulink 模型结构图化简控制系统模型已知系统结构图,求系统闭环传递函数。
系统辨识的Matlab实现方法(手把手)
系统辨识的Matlab实现方法(手把手)最近在做一个项目的方案设计,应各位老总的要求,只有系统框图和器件选型可不行,为了凸显方案设计的高大上,必须上理论分析,炫一下“技术富”,至于具体有多大实际指导意义,那就不得而知了!本人也是网上一顿百度,再加几日探索,现在对用matlab 实现系统辨识有了一些初步的浅薄的经验,在此略做一小节。
必须要指出的是,本文研究对象是经典控制论理最简单最常用的线性时不变的siso 系统,而且是2阶的哦,也就是具有如下形式的传递函数:121)(22++=Ts s T s G ξ 本文要做的就是,对于有这样传递函数的一个系统,要辨识得到其中的未知数T , ξ!!这可是控制系统设计分析的基础哦,没有系统模型,啥理论、算法都是白扯,在实际工程中非常重要哦!经过总结研究,在得到系统阶跃响应实验数据之后(当然如果是其他响应,也有办法可以辨识,在此还是只讨论最简单的阶跃响应实验曲线,谁让你我是菜鸟呢),利用matlab 至少可以有两种方法实现实现(目前我只会两种,呵呵)!一、函数法二、GUI 系统辨识工具箱下面分别作详细介绍!一、 函数法看官别着急,先来做一段分析(请看下面两排红*之间部分),这段分析是网上找来的,看看活跃一下脑细胞吧,如果不研读一下,对于下面matlab 程序,恐怕真的就是一头雾水咯!******************************************************************************* G(s)可以分解为:))((1)(212ωω++=s s T s G其中, [][]11112221--=-+=ξξωξξωTT1ω、2ω都是实数且均大于零。
则有:211ωω=T ,21212ωωωωξ+=传递函数进一步化为:))(()(2121ωωωω++=s s s G 因此,辨识传递函数就转化为求解1ω、2ω。
当输入为单位阶跃函数时,对上式进行拉普拉斯反变换,得系统时域下的单位阶跃响应为:tteet y 212111221)(ωωωωωωωω---+--=即 t te et y 21211122)(1ωωωωωωωω-----=-令1ω=2ωk )1(>k,得tk t ek e k k t y 22111)(1ωω-----=-⎥⎦⎤⎢⎣⎡--=---t k t e k e k k 2)1(2111ωω 对上式两边取以e 为底的对数得[]⎥⎦⎤⎢⎣⎡-+--=---t k e k t k k t y 2)1(211ln 1ln )(1ln ωω 当∞→t 时,⎥⎦⎤⎢⎣⎡---t k e k 2)1(11ln ω0→,则上式化简为[]t k k t y 21ln )(1ln ω--=-该式的形式满足直线方程b at t y +=)(*其中,)(*t y =[])(1ln t y -,1ln ,2-=-=k kb a ω)1(>k通过最小二乘算法实现直线的拟合,得到a,b的值,即可得到1ω、ω的值,进而可得系统的传递函数。
matlab 阶跃响应
Matlab阶跃响应引言阶跃响应是信号处理和控制系统中一个重要的概念。
在Matlab中,我们可以使用不同的方法来计算和绘制阶跃响应。
本文将介绍阶跃响应的概念、计算方法以及在Matlab中的实现。
什么是阶跃响应阶跃响应是指系统对单位阶跃信号(即从0到1的跳变信号)的响应。
它是评估系统稳定性和动态特性的重要指标之一。
通过分析系统对单位阶跃信号的响应,我们可以获得关于系统的信息,如系统的稳态响应、稳定性、超调量、响应时间等。
阶跃响应的计算方法1. 差分方程法差分方程法是一种常用的计算阶跃响应的方法。
对于线性时不变系统,我们可以通过求解系统的差分方程来计算阶跃响应。
差分方程的形式通常为:y(n) = a1*y(n-1) + a2*y(n-2) + ... + am*y(n-m) + b0*u(n) + b1*u(n-1) + ... + b n*u(n-n)其中,y(n)为输出信号,u(n)为输入信号,a1, a2, …, am为系统的反馈系数,b0, b1, …, bn为系统的前馈系数。
2. 拉普拉斯变换法拉普拉斯变换法是另一种常用的计算阶跃响应的方法。
通过将系统的差分方程转化为拉普拉斯域表达式,可以直接得到系统的传递函数。
然后,我们可以通过拉普拉斯变换的性质和逆变换的方法来计算阶跃响应。
3. 矩阵法矩阵法是一种更为高级的计算阶跃响应的方法。
通过将系统的差分方程表示为矩阵形式,我们可以使用矩阵运算的方法来计算系统的阶跃响应。
这种方法适用于复杂的系统和多输入多输出系统。
Matlab中的阶跃响应计算在Matlab中,我们可以使用各种函数和工具箱来计算和绘制阶跃响应。
以下是一些常用的函数和工具箱:1. step函数step函数是Matlab中计算阶跃响应的基本函数之一。
它可以接受系统的传递函数、状态空间模型或差分方程作为输入,并返回系统的阶跃响应。
使用step函数可以方便地计算和绘制阶跃响应曲线。
2. impulse函数impulse函数是另一个常用的计算响应的函数。
MATLAB在求二阶系统中阶跃响应的分析及应用
MATLAB在求二阶系统中阶跃响应的分析及应用首先,在MATLAB中求解二阶系统的阶跃响应,需要确定系统的传递函数或差分方程。
一般而言,传递函数和差分方程的形式如下:传递函数:G(s) = K / ((s^2) + (2ξω_ns) + (ω_n^2))差分方程:y(n)=K*(x(n)+2ξω_n*x(n-1)+(ω_n^2)*x(n-2))其中,s是拉普拉斯变量,n表示离散时间,K是系统的增益,ξ是阻尼比,ω_n是系统的自然频率。
然后,可以使用MATLAB的Control System Toolbox包来求解二阶系统的阶跃响应。
具体而言,有两种方法可以实现:1. 使用tf函数或zpk函数创建系统对象,然后使用step函数来计算阶跃响应。
例如,可以使用以下代码创建传递函数并计算阶跃响应:num = [K];den = [1 (2*ξ*ω_n) (ω_n^2)];sys = tf(num, den);step(sys);2. 使用dlsim函数基于差分方程计算阶跃响应。
例如,可以使用以下代码创建差分方程并计算阶跃响应:a=[1-2*ξ*ω_n(ω_n^2)];b=[K00];x = ones(1, 100); % 创建一个长度为100的阶跃输入信号y = dlsim(b, a, x);plot(y);通过上述方法,可以得到二阶系统的阶跃响应图形,分析系统的动态特性。
对于阻尼比ξ和自然频率ω_n的不同取值,可以观察到不同的阶跃响应曲线,如过阻尼、临界阻尼和欠阻尼等。
此外,还可以通过调整增益K的大小来观察系统的响应速度和稳定性。
在工程领域中,二阶系统的阶跃响应分析具有广泛的应用。
以下列举几个典型的应用场景:1.控制系统设计:阶跃响应是评估控制系统性能的重要指标之一、通过分析阶跃响应曲线的超调量、调节时间和稳态误差等参数,可以评估和优化控制系统的性能。
2.电路设计:阶跃响应分析可以用来评估电路的开关速度、稳定性和输出波形质量。
matlab求开环传递函数的单位阶跃响应
文章标题:深度解析MATLAB中求解开环传递函数单位阶跃响应的方法一、引言在控制系统的设计和分析中,开环传递函数的单位阶跃响应是一个重要的指标。
通过MATLAB可以很方便地求解开环传递函数的单位阶跃响应,本文将对该方法进行深入分析,以帮助读者更好地理解和运用这一技术。
二、MATLAB中求解开环传递函数单位阶跃响应的基本步骤在MATLAB中,求解开环传递函数的单位阶跃响应的基本步骤如下:1. 定义传递函数:我们需要使用MATLAB中的tf函数来定义传递函数,例如:G = tf([1],[1 2 1]),其中分子为1,分母为1 2 1。
2. 求解开环传递函数的单位阶跃响应:接下来,使用MATLAB中的step函数来求解开环传递函数的单位阶跃响应,例如:[Y,T] = step(G),其中Y为单位阶跃响应的输出值,T为对应的时间向量。
3. 绘制响应曲线:利用MATLAB中的plot函数可以将单位阶跃响应的输出值Y和对应的时间向量T进行绘制,得到单位阶跃响应曲线。
通过上述步骤,我们可以很方便地在MATLAB中求解开环传递函数的单位阶跃响应,从而对系统的动态特性有一个直观的认识。
三、深度分析在实际工程中,我们可能会遇到复杂的控制系统,传递函数可能包含多个零点和极点,这时候如何用MATLAB求解单位阶跃响应呢?这就需要对MATLAB中的工具箱有更深入的了解和掌握。
1. 复杂系统的传递函数表示:对于包含多个零点和极点的复杂传递函数,我们可以使用MATLAB中的tf函数进行定义,例如:G = tf([1 2],[1 3 2]),其中分子为1 2,分母为1 3 2。
2. 使用额外参数进行求解:在求解单位阶跃响应时,我们可以设置额外的参数,例如设置时间范围或采样时间间隔,以获得更加精确和全面的响应曲线,例如:[Y,T] = step(G, 0:0.01:10),其中时间范围设置为0到10,并且采样时间间隔为0.01。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由系统阶跃响应辨识传递函数的Matlab 实现方法
典型二阶系统传递函数为:
1
21
)(2
2++=Ts s T s G ξ
工业生产过程中,大多数系统的阶跃响应曲线是临界阻尼或过阻尼的,即ξ≥1。
只要求出T 和ξ就能确定系统的传递函数。
G(s)可以分解为:))((1
)(212ωω++=s s T s G
其中,
[]
[]
1
1
1
1
2221--=-+=ξξωξξωT
T
1ω、2ω都是实数且均大于零。
则有:
211
ωω=
T ,2
12
12ωωωωξ+= 传递函数进一步化为:)
)(()(212
1ωωωω++=s s s G
因此,辨识传递函数就转化为求解1ω、2ω。
当输入为单位阶跃函数时,对上式进行拉普拉斯反变换,得
系统时域下的单位阶跃响应为:
t t
e e
t y 21
2111
221)(ωωωωωωωω---+
--
=, 即 t
t
e
e
t y 21
2111
22
)(1ωωωωωωωω----
-=
-
令1ω=2ωk )1(>k
,得
t
k t e
k e k k t y 221
11)(1ωω-----=-
⎥⎦
⎤⎢⎣⎡--=---t k t e k e k k 2)1(2111ωω
对上式两边取以e 为底的对数得
[]⎥⎦⎤
⎢⎣⎡-+--=---t k e k t k k t y 2)1(211ln 1ln )(1ln ωω 当∞→t 时,⎥⎦
⎤
⎢⎣⎡---t k e k 2)1(11ln ω0→,则上式化简为 []t k k t y 21
ln )(1ln ω--=-,该式的形式满足直线方程
b at t y +=)(*
其中,)(*
t y =[])(1ln t y -,1
ln
,2-=-=k k
b a ω)1(>k 通过最小二乘算法实现直线的拟合,得到a ,b 的值,即可得
到1ω、2ω的值,进而可得系统的传递函数。
Matlab 程序代码 %identification.m
clc
close all
t=[1 3 5 7 9 11 13 15 17 19];
y=[0.149086 0.5890067 0.830617 0.933990 0.973980 0.991095 0.995868 0.998680 0.999490 0.999850]; %实验数据,数据来源:《系统辨识方法及应用》.国防工业出版社 y2=log(1-y); plot(t,y2,'*'); grid on
pm=polyfit(t,y2,1) value=polyval(pm,t); hold on
plot(t,value,'r')
title('\fontname{黑体}\fontsize{20}y(t)=at+b') w2=-pm(1)
w1=w2/(1-exp(-pm(2))) T=1/sqrt(w1*w2)
theta=(w1+w2)/(2*sqrt(w1*w2)) z=[];
p=[-w1 -w2]; k=w1*w2; sys=zpk(z,p,k) figure(2)
step(sys,[0:0.5:20]); axis([0 20 0 1.2]) hold on plot(t,y,'r*')
运行结果:
系统的传递函数为
)
4797.0)(126.1(54034
.0)(++=
S S S G 阻尼比为0925.1=ξ
自然振荡周期为T=1.3604 s。