压力容器ansys分析
压力容器及管道有限元分析(ANSYS,ABAQUS)
压力容器及管道有限元分析(ANSYS,ABAQUS)随着工业水平不断提高,各行业对创新的要求也不断提高,然而常规的设计手段已经严重制约了工程师的创新能力。
为了解决设计中的各种难题、满足工具师对力学工具的需求,特推出有限元分析服务。
使用软件:Abaqus Ansys Hypermesh具体算例:一,异形换热器管板及水室强度分析(Abaqus)通常冷凝器管板联接水侧和汽侧的壳体及换热管。
规则的管板可按ASME或GB150来设计,其计算方法比较复杂。
有限元模型如图1所示。
(为了看清内部结构,隐去了壳体)大型冷凝汽由于要保留单侧工作的能力,在水室中有一块分隔板将水室分成两半,这样,原来具有的轴对称性条件不存在了,计算需用有限元方法。
管板上支有几千根换热管,这些换热管对管板有加强作用,同时由于大量的开孔也破坏了管板的刚性,管板材料按ASME VIII-2处理。
管板两侧承受两种压力载荷;由于换热管与汽侧壳体材料及温度的差异,换热管上要加上热位移差。
如细仔点还要考虑管子由于内外压引起的泊松效应载荷。
管板/盖板/螺栓采用体单元C3D8/C3D6,管子用梁单元B32,壳体用S4R,每根管二,接管开口强度分析经常碰到容器上开口过大的问题,也常碰到奇形怪状的开口,或者其它一些附着物联接到容器上。
这类问题主要是建模的复杂。
图2,接管1三,异形的换热器壳体内压或外压分析通常换热器的壳子是很规则的,无论是管侧还是壳侧,都具有良好的轴对称性,即所谓的回转壳体。
回转壳体受压问题,可以用板壳理论来解,一般是有解的,这个解也正是ASMEVIII或GB150、 GB151这类规范的设计计算基础。
当壳体的轴对称性受到严重的破坏时,严格意义上来讲,原来的解是不适用了。
这时可采用数值方法来计算。
四,方形排汽管道(容器)的强度/刚性设计方形容的设计不及关心其强度,有时也要考虑其刚性,如图4所示,图4为一段排汽管道,上面还带有两组波纹管。
在工作过程,整过管道受内压或者外压,壳体会变形,有时会出现强度可以接受,但变形太大,太难看的情况,即刚度不太好。
基于ANSYS的压力容器疲劳分析与寿命预测
基于ANSYS的压力容器疲劳分析与寿命预测压力容器是工业生产中常见的设备之一,用于贮存和运输气体、液体或固体,承受着巨大的压力。
然而,由于长期的工作环境和作用力的影响,压力容器会出现疲劳现象,而疲劳失效可能导致严重事故甚至生命危险。
为了确保安全运行和提高使用寿命,进行压力容器疲劳分析与寿命预测是至关重要的。
压力容器的疲劳分析与寿命预测是一个复杂的工程问题,涉及多学科的知识。
在传统的方法中,工程师们通常依赖经验公式和试验数据进行分析,但这种方法存在一些不足之处。
首先,准确度受限于实验条件和试验数据的局限性。
其次,由于压力容器结构的复杂性,传统的方法难以考虑到各种工况变化以及应力分布的不均匀性。
因此,利用计算机辅助工程(CAE)软件进行压力容器的疲劳分析与寿命预测具有重要意义。
ANSYS作为一种强大的CAE软件,在压力容器疲劳分析的应用上已经被广泛认可。
它提供了多种分析模块,如有限元分析(FEA)、疲劳分析和寿命预测等,能够模拟复杂的结构和加载条件。
通过ANSYS的建模和分析工具,工程师们可以更加全面地了解压力容器的应力状态,并准确评估疲劳寿命。
在使用ANSYS进行压力容器疲劳分析时,首先需要进行几何建模和网格划分。
通过建模软件,可以创建一个精确的三维几何模型,并对其进行网格划分以获取一个合适的离散化模型。
然后,根据实际情况设置边界条件、加载条件和材料参数等。
在设定完成后,进行有限元分析,求解得到压力容器的应力分布。
接下来,进行疲劳分析和寿命预测。
ANSYS提供了多种疲劳分析模块,如低周疲劳、高周疲劳和疲劳寿命预测等。
根据所需分析的类型选择相应的模块,并输入相应的参数,如材料的SN曲线、载荷历程等。
通过对应力历程和SN曲线的相互作用进行计算,可以预测压力容器的疲劳寿命。
此外,还可以基于不同的疲劳损伤准则,如线性累积损伤准则、短模拟疲劳准则等,对容器的疲劳寿命进行评估和预测。
除了以上提到的分析方法,ANSYS还提供了一些辅助工具来进行压力容器的疲劳分析与寿命预测。
压力容器分析设计分析
1 问题描述利用ANSYS软件对压力容器用标准椭圆形封头和半球形封头进行应力分析,并沿着压力容器轴向方向绘制笛卡尔坐标系下X、Y、Z方向应力曲线,三个主应力曲线以及第一强度理论,第三强度理论、第四强度理论计算方法下的应力理论值和应力曲线。
相关参数:筒体内径:400mm,筒体长度为1000mm,筒体、封头厚度均为5mm,材料弹性模量为206GPa,泊松比为0.3,内压P=1MPa。
2 建模过程:单元选取:本题研究的是薄壁压力容器,对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
材料特性:ANSYS 结构分析材料属性有线性 (Linear)、非线性 (Nolinear)、密度(Density)、热膨胀 (Thermal Expansion)、阻尼 (Damping)、摩擦系数 ( Friction Coefficient)、特殊材料 (Specialized Materials) 等七种。
本题选取材料模型为线弹性材料,材料参数E=206GPa,μ=0.3。
几何建模:本题采用实体建模,该方法适合于复杂模型,尤其适合于3D实体建模,需人工处理的数据量小,效率高。
允许对节点和单元实施不同的几何操作,支持布尔操作(相加、相减、相交等),支持ANSYS优化设计功能,可以进行自适应网格划分,可以进行局部网格划分,便于修正与改进。
本题采用的是从下往上的建模方式。
先建立点,再连线画圆,然后将线沿轴线旋转,得到压力容器模型,上封头为标准椭圆形封头,下封头为球形封头。
网格划分:对有限元分析,ANSYS有四种网格划分方法,自由网格划分、映射网格划分,延伸网格划分和自适应网格划分。
本题采用自由网格划分,自由网格划分功能十分强大,没有单元形状的限制,网格也不遵循任何的模式,因此适用于对复杂形状的面和体网格划分。
压力容器ansys有限元分析设计实例
ANSYS应力分析报告Stress Analysis Report学生姓名学号任课教师导师目录一. 设计分析依据 (2)1.1 设计参数 (2)1.2 计算及评定条件 (2)二. 结构壁厚计算 (3)三. 结构有限元分析 (4)3.1 有限元模型 (5)3.2 单元选择 (5)3.3 边界条件 (6)四. 应力分析及评定 (7)4.1 应力分析 (7)4.2 应力强度校核 (8)4.3疲劳分析校核 (11)五. 分析结论 (11)附录1设计载荷作用下结构应力沿路径线性化结果(A) (12)附录2设计载荷作用下结构应力沿路径线性化结果(B) (13)附录3设计载荷作用下结构应力沿路径线性化结果(C) (14)附录4设计载荷作用下结构应力沿路径线性化结果(D) (16)附录5设计载荷作用下结构应力沿路径线性化结果(E) (17)附录6设计载荷作用下结构应力沿路径线性化结果(F) (19)附录7设计载荷作用下结构应力沿路径线性化结果(G) (20)附录8设计载荷作用下结构应力沿路径线性化结果(H) (21)一. 设计分析依据(1)《压力容器安全技术监察规程》(2)JB4732-1995《钢制压力容器——分析设计标准》(2005确认版)1.1 设计参数表1 设备基本设计参数1.2 计算及评定条件(1) 静强度计算条件表2 设备载荷参数注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行进行计算,故采用设计载荷进行强度分析结果是偏安全的。
(2) 材料性能参数材料性能参数见表3,其中弹性模量取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2和表6-6确定。
表3 材料性能参数性能(3) 疲劳计算条件此设备接管a 、c 上存在弯矩,接管载荷数据如表4所示。
表4 接管载荷数据表二. 结构壁厚计算按照静载荷条件,根据JB4732-95第七章(公式与图号均为标准中的编号)确定设备各元件壁厚,因介质密度较小,不考虑介质静压,同时忽略设备自重。
实例分析—运用有限元分析软件ANSYS对轴对称压力容器
ANSYS Example: Axisymmetric Analysis of a Pressure VesselThe pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) andcontains an internal pressure of p = 1700 psi. The cylindrical vessel has an inner diameter of 8 in with spherical end caps. The end caps have a wall thickness of 0.25 in, while the cylinder walls are 0.5 in thick. In addition, there are two small circumferential grooves of 1/8 in radius along the inner surface, and a 2 in wide by 0.25 in deep circumferential groove at the center of the cylinder along the outer surface.In this example, ANSYS will be used to analyze the stresses and deflections in the vessel walls due to the internal pressure. Since the vessel is axially symmetric about its central axis, an axisymmetric analysis will be performed using two-dimensional, 8-node quadrilateral elements (Plane 82) with the axisymmetric option activated. In addition, the vessel is symmetric about a plane through the center of the cylinder. Thus, only a quarter section of the vessel needs to be modeled.In ANSYS, an axisymmetric model must always be created such that the global Y-axis is the axis of symmetry, and the entire model should appear on the right side of the Y-axis (along the positive X-axis); i.e., no part of the model (elements, nodes, etc.) may be defined withnegative X coordinates. Once the axisymmetric option is invoked, ANSYS will automatically apply axisymmetric boundary conditions along the Y-axis.R = 1/16 inR = 1/8 inR = 1/4 in 0.5 in0.25 inR = 4 in2 in 2 in 15.5 inFor model validation purposes, the stresses in the vessel walls away from any notches can be estimated using the thin-walled pressure vessel equations. Although the model does notspecifically meet the criteria for the “thin-walled” assumption, these equations will still provide reasonably accurate values for model validation purposes. For a pressure vessel subjected to internal pressure only, the radial stress (σr ) should vary from –p (−1.7 ksi) on the inner surface to zero on the outer surface. The hoop and longitudinal stresses are calculated as (p = 1700 psi, r = 4 in, t = 0.5 or 0.25 in):section)(thick ksi 13.6or section)(thin ksi 27.2tpr h =≈σ section)(thick ksi 6.8or section)(thin ksi 6.31t2pr =≈σlANSYS Analysis:Start ANSYS Product Launcher, set the Working Directory to C:\temp, define Job Name as‘Pressure Vessel’, and click Run. Then define Title and Preferences.Utility MenuÆFileÆChange Jobname…Æ Enter ‘Pressure_Vessel’ Æ OKUtility MenuÆFileÆChange Title…Æ Enter ‘Stress Analysis of an Axisymmetric Pressure Vessel’ Æ OKANSYS Main MenuÆPreferencesÆ Preferences for GUI Filtering Æ Select ‘Structural’ and ‘h-method’ Æ OKEnter the Preprocessor to define the model geometry:Define Element Type (Axisymmetric Option) and Material Properties.ANSYS Main MenuÆPreprocessor ÆElement Type Æ Add/Edit/Delete Æ Add… ÆStructural Solid Quad 8 node 82 (PLANE82) (define ‘Element type reference number’ as 1) ÆOK Æ Click Options… Æ Select ‘Axisymmetric’ for K3 (Element behavior) Æ OK Æ Close ANSYS Main MenuÆPreprocessorÆMaterial PropsÆ Material Models Æ Double Click Structural Æ Linear Æ Elastic Æ Isotropic Æ Enter 14.5e6 for EX and 0.21 for PRXY Æ Click OK Æ Click Exit (under ‘Material’)Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆCircleÆ Solid Circle Æ Enter 0 for WP X, 0 for WP Y, and 4 for Radius Æ Apply Æ Enter 0 for WP X, 0 for WP Y, and 4.25 for Radius Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆSubtractÆAreas Æ Select (with the mouse) Area 2 (bigger circle) Æ OK Æ Select Area 1 (smaller circle) Æ OKCreate Lines through the center of the Circles and Divide the Areas along these Lines.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆLinesÆLinesÆ Straight line Æ Click on the Keypoints on the outer circle which are on the X-axis to create a Line parallel to the X-axis (Circles are divided into four arcs by Ansys, with a Keypoint placed at the end of each arc). Similarly, click on the Keypoints on the outer circle which are on the Y-axis to create a Line parallel to the Y-axis Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆDivideÆArea by Line Æ Select (with the mouse) the remaining Area (annulus)Æ OK Æ Select the two Lines that we have created Æ OKANSYS Main MenuÆPreprocessorÆModelingÆDeleteÆ Area and Below Æ Select the three Areas in the first, second, and third quadrants Æ OKDefine two Rectangles to create the walls of the cylindrical portion of the vessel (thick and thin sections). Define a Circle to create the circumferential groove on the inside of the vessel. ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆRectangleÆ By Dimensions Æ Enter 4 and 4.5 for X-coordinates and 0 and 7.75 for Y-coordinates Æ Click Apply Æ Enter 4.25 and 4.5 for X-coordinates and 6.75 and 7.75 for Y-coordinates Æ OK ANSYS Main MenuÆPreprocessorÆModeling ÆCreateÆAreasÆCircleÆ Solid Circle Æ Enter 4 for WP X, 2 for WP Y, and 1/8 for Radius Æ OKSubtract Areas to eliminate unused segments, and then Add all Areas to create a single Area for meshing.ANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆSubtractÆAreas Æ Select (with the mouse) the bigger rectangle Æ OK Æ Select the small rectangle and circle Æ OKANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆAddÆ Areas Æ Select ‘Pick All’ Æ OKCreate Line Fillets at the two transitions between the thick and thin sections.Utility Menu Æ Plot ÆLinesUtility Menu Æ Plot CtrlsÆNumbering…Æ Click ‘Line numbers’ On Æ OKANSYS Main MenuÆPreprocessorÆModelingÆCreateÆLinesÆ Line Fillet Æ Select (with the mouse) the two Lines near the lower Fillet Æ OK Æ Enter 1/16 for Fillet radius ÆApply Æ Select the two Lines near the upper Fillet Æ OK Æ Enter 1/4 for Fillet radius Æ OK Create Areas within the two Fillets and add these Areas to the main Area. First zoom in on the area of interest using the plot controls.ANSYS Main MenuÆPreprocessorÆModelingÆCreateÆAreasÆArbitraryÆ By Lines Æ Select (with the mouse) the Fillet and adjacent two Lines Æ OKRepeat for the other Fillet.ANSYS Main MenuÆPreprocessorÆModelingÆOperateÆBooleansÆAddÆ Areas Æ Select ‘Pick All’ Æ OKUtility Menu Æ Plot ÆLinesThe geometry should appear as shown below in the figure on the left.In this example, the irregular geometry will be Free Meshed with Quad Elements. Better control of Element sizing and distribution can be obtained with Mapped Meshing, but this would require that additional sub-Areas be defined within the main Area that have a regular (four-sided) geometry. Using Free Meshing, all Elements in the model will be approximately the same size. In the first run, we will choose a Global Size (approximate Element edge length) of 0.1 in. ANSYS Main MenuÆPreprocessorÆMeshingÆ MeshTool Æ Under ‘Size Controls: Global’ click Set Æ Enter 0.1 for ‘Element edge length’ ÆOK Æ Under ‘Mesh:’ select Areas, Quad and Free Æ Click Mesh Æ Select (with the mouse) the Area Æ OKEnter the Solution Menu to define boundary conditions and loads and run the analysis: ANSYS Main MenuÆSolutionÆAnalysis TypeÆ New Analysis Æ Select Static Æ OK The Boundary Conditions and Loads can now be applied. ANSYS will automatically apply the Axisymmetric Boundary Conditions along the Y-axis. However, we must apply the Symmetry Boundary Conditions along the upper edge of the model. Finally, the Pressure can be applied on all lines that make up the inner surface of the vessel. The magnitude should be input as the actual value – no reduction is needed to account for axisymmetry (ANSYS automatically makes the necessary adjustment of Loads in an Axisymmetric model).ANSYS Main MenuÆSolutionÆDefine LoadsÆApplyÆStructuralÆDisplacement ÆSymmetry B.C.Æ On Lines Æ Select the Line on top of the model (19) Æ OKANSYS Main MenuÆSolutionÆDefine LoadsÆApplyÆStructuralÆPressureÆ On Lines Æ Select (with the mouse) all the Lines on the inside of the vessel (20,12,16,17 and 2) ÆOK Æ Enter 1700 for ‘Load PRES value’ Æ OKThe pressure will be indicated by arrows, as shown above in the figure on the right.Save the Database and initiate the Solution using the current Load Step (LS).ANSYS Toolbar Æ SAVE_DBANSYS Main MenuÆSolutionÆSolveÆ Current LS Æ OK Æ Close the information window when solution is done Æ Close the /STATUS Command windowEnter the General Postprocessor to examine the results:First, plot the Deformed Shape.ANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆ Deformed Shape Æ Select Def + undeformed Æ OKA Contour Plot of any stress component can be created. The radial, hoop (tangential), and longitudinal stresses should be checked to verify the model. Also, stress values at any particular node can be checked by using the “Query Results” command, selecting the desired component, and then picking the appropriate node. For this model, along the cylindrical portion of the vessel, x represents the radial direction, y represents the longitudinal direction, and z represents the hoop (tangential) direction. Powergraphics must be disabled to query results at nodes. ANSYS Toolbar Æ POWRGRPH Æ Select OFF Æ OKANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘X-Component of stress’ (or Y or Z) Æ OKANSYS Main MenuÆGeneral PostprocÆQuery ResultsÆ Nodal Solution Æ Select‘Stress’ and ‘X-direction SX’ (or SY or SZ) Æ OK Æ Select Nodes in the region of interest (may be helpful to zoom in on region)Compare the finite element stresses to the values calculated using the thin-wall equations. If the values are within reason (away from notches, etc.), proceed. For the purposes of failure analysis, we must select an appropriate failure theory. A plot of the von Mises stress is useful for identifying critical locations in the vessel. However, since the vessel is made of cast iron (brittle material), the “Maximum-Normal-Stress” failure criterion may be more appropriate (or Coulomb-Mohr or other similar failure theories). Create Contour Plots of the von Mises and 1st Principal stresses.ANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘von Mises stress’ Æ OKANSYS Main MenuÆGeneral PostprocÆPlot ResultsÆContour PlotÆ Nodal Solu ÆSelect ‘Stress’ and ‘1st Principal stress’ Æ OKThe plot of the model can be expanded around the axisymmetric axis to get a better view of the full model. For this plot, Powergraphics must be enabled.ANSYS Toolbar Æ POWRGRPH Æ Select ON Æ OKUtility Menu Æ PlotCtrlsÆStyleÆ Symmetry Expansion Æ 2-D Axi-Symmetric… Æ Select ‘Full expansion’ Æ OKNote the locations of the maximum stresses in the vessel. Are the critical locations where you would expect them to be? If not, why? Do you think the current model is accurate, or might there be some discretization error? Record the magnitudes and locations of the maximum stresses, and then refine the mesh and re-run the analysis to check for possible discretization error.。
压力容器管板的ANSYS有限元分析
用ANSYS软件进行压力容器管板的有限元分析序言压力容器管板是压力容器重要部件,根据管板结构的特点,它直接影响着管箱的承压能力。
它的变形情况及应力分析对整个箱管结构的应力分析起着决定性的作用。
然而J摺佣解析法对压力容器管板所受的应力和应变情况分析,解析误差太大。
采用ANSYS有限元分析软件建立压力容器管板的有限元模型,加载求解进行应力场分析对算出压力容器管板的最大应力泣变,利用ANSYS的有限元分析和计算机图形学功能显示三维应力等值面应移等值面,从而为压力容器管板机构的优化分析提供了充分的理论依据。
1基本分过程1.1创建有限元模型本文选用一种U型管式的压力容器来建模,管板材料选用20MuMo 锻件。
球形封头材料16MnR,材料的弹性模量E=20E+05MPa.泊松比为03,密度为7.8t/m3,设计压力P=31.4MPa,许用应力为196MPa。
在压力容器的应力的分析中,压力容器部件设计关心的是应力沿壁厚的分布规律及其大小,可采用沿壁厚方向的校核线代替校核面。
另外由于压力容器是轴对称结构,所以可选其一半结构来建模。
为了节省时间和存储空间,而又不影响分析结果,根据其结构,略去一些细节。
其中管孔对于管板强度的削弱,可以采用有效弹性模量E1和有效泊松比V1的概念将管板折算为同厚度的当量无孔圆平板,因此管板区域分为两大部分,1区按等效圆板来处理,而2区按实际悄况处理。
根据相关文献得到E1=054F,V1=0360综上所述,所得简化后有限元分析模型如图1所示:图1有限元分析模型1.2网格划分通常ANSYS的网格划分有两种方法,即自由划分和映射划分。
自由划分网格主要用于划分边界形状不规则的区域,分析稍度不够高,但要求划分的区域满足一定的拓补条件。
奕淞」分网格主要适合与敖钡臼形体,分析精度高。
鉴于压力容器管板的结构特点,本文同时采用了这两种方法。
在非边界区域采用醉编寸网格划分,在边界区域及梢度要求不是很高的区域采用自由网格划分。
压力容器ansys分析.
高压空气储气罐ANSYS 应力分析
压力容器是在冶金、化工、炼油、气体等工业生产中频繁使用,常常用来存储各类不同压力、温度、介质的气体,或被使用为干燥罐,蒸压釜、反应釜、缓冲罐、医用氧气瓶等等。
同时大部分罐都属于特种设备—压力容器,其制造和使用国家都有严格规范标准,特别是压力容器的疲劳强度和形体薄弱环节的研究对于特种设备的安全使用很重要,这里借助于ansys软件很直观精确地将其中一种压力容器—高压空气储气罐进行了疲劳分析之一—压力应力分析。
一、高压储气罐的设计条件:
①
建立几何模型
② 由于该容器形体的对称性,选择1/4 来分析:
三、加载求解
四、结果分析。
基于ANSYS的压力容器有限元分析及优化设计
317压力容器是一种能够承受压力的密闭容器,广泛应用于煤化工生产领域。
煤化工生产作业环境苛刻,需要其外壳具备较高的强度,保护内部电子元器件不被损坏。
为验证压力容器的耐压性能,需根据其工作条件设计压力容器,将机器人安装在压力容器内部,对压力容器进行加压以模拟其高压工作环境,检测外壳的耐压性能是否符合要求。
本文基于国标 GB150-2011中关于压力容器的规定,完成压力容器的各项参数的计算取值。
利用 ANSYS 有限元仿真软件对其进行校核,对该压力容器工作状态下的应力及变形情况进行分析,判断其结构强度及 O 形圈的密封效果是否符合要求[1]。
1 压力容器参数化设计 对实际工况进行分析,根据要求完成压力容器的初步设计,结构如图 1 所示。
图1 压力容器三维模型该压力容器主要由两部分组成:压力舱和平盖,两个部件通过螺栓连接,平盖挤压压力舱端面上的 O 形圈完成密封。
由于采用水作为介质进行加压维持压力舱内压力处于预定值,压力容器需经常浸泡在水环境中,容易腐蚀生锈,会对密封结构造成破坏,且存在安全隐患,因此采用不锈钢完成该压力容器的设计和制造。
平盖所承受的应力较大,工作时容易产生较大变形导致 O 形圈密封失效,因此平盖需采用高强度不锈钢材料。
20Cr13是一种常用的高强度马氏体不锈钢材料,具有高抗蚀性、高强度、高韧性和较强抗氧化性,被广泛应用于制造各种承受高应力的零件。
基于20Cr13的优良性能,选用该材料用于平盖的设计和制造[2]。
与平盖相比较,压力舱承受应力相对较小,选用 304 不锈钢用于压力舱的设计和制造。
基于国标 GB150-2011 关于压力容器的规定,对压力容器各部分的参数进行计算如下:(1)壳体厚度计算: 圆筒厚度计算公式如下:[]c ii c P D −=φσδ2P(1)式中,σ为圆筒壳体计算厚度(mm);p c 为计算压力(MPa);D i 为圆筒内直径(mm),[σ]i 为壳体材料的许用应力(MPa),φ为焊接接头系数。
基于ANSYS的压力容器应力分析
沿压力容器内壁施加压力P(P=12.0Mpa), 在压力容器的封头处,法兰对压力容器的作用力 可以当做一个集中力F处理,(其中F=-81000 N 方 向向下)。施加载荷后的压力容器有限元模型如 图4所示。
图4 施加载荷
4 查看分析结果
压力容器受内部压力与外部机械载荷的综合 作用,这两类载荷在较长时间段内可以是固定不 变化的或者变化很小的,所以仅需要对压力容
5 沿内外壁的应力分布
在压力容器的应力分析中,通常所关心的是应 力沿壁厚的分布规律以及大小。从应力云图不能详 细的获得沿压力容器壁厚各个关键点的具体应力 值,也不容易直观的获得沿压力容器壁厚的各个关 键点的应力变化情况。所以需要沿压力容器壁定义 相应路径。为了具体比较和分析沿压力容器内壁和 外壁的应力分布情况,本文中分别沿压力容器内壁 创建路径Path-1,沿压力容器外壁创建路径Path-2。 应力沿压力容器壁厚分布如图7和图8所示。
从沿压力容器内壁(Path-1)应力分布图可以
【下转第5页】
图9 模具三维虚拟拆装单机版执行情况
3 结论
基于Solidworks软件进行了模具的三维建模,
利用Eon Studio软件实现了模具的虚拟拆装,并 通过Visual Basic6.0软件进行开发,实现了模块集 成,建立了模具虚拟拆装系统。该系统的实现为 设计的更改和优化提供了制造依据,也为实验教 学提供了分析工具和辅助手段。在一定程度上实 现了模具立体化教学,为学生自主学习能力的开 发提供了理论平台。
参考文献:
[1] 王岚.虚拟现实EONStudio应用教程[M].天津:南开大学 出版社,2007.
[2] 罗陆峰,文领,徐超辉.基于Eon Studio模具虚拟拆装系统 开发[J].煤矿机械,2012,33(6):263-265.
基于ANSYS软件的压力容器屈曲分析
关于分析类型 3 之所以可以采用 ASMEⅧ-2[7-9]5.2.4 节的弹-塑性应力分析来完成,原 因是薄壁结构的非线性屈曲分析实际上是几何非线性理论在工程应用中的衍生。非线性稳 定性问题和几何非线性问题的求解方程是完全一样的。因此,从非线性角度来看,结构刚 强、度和稳定性是紧密联系在一起的。当前,有限元软件和计算机迅猛发展,以非线性理 论为基础的有限元法已成为求解板壳结构屈曲、 后屈曲及破坏的最精确最有效的途径之一。 2.3.2 欧盟直接法中的稳定性校核方法 欧 盟 新 一 代 压 力 容 器 规 范 EN13445[12,13] 在 其 附 录 B 直 接 法 中 也 给 出 屈 曲 设 计 (EN13445[12,13]中称为稳定性校核)方法。与 ASMEⅧ-2[7-9]中分析类型 3 所述方法接近, 如都考虑几何非线性的影响。该法基于下列假设: 非线性运动关系和大变形理论; 弹性理想塑性本构关系 Von Mises 屈服条件和与之相关的流动准则 无初始应力状态 给定初始几何缺陷
2.3
基于数值计算的设计方法
上述两种方法都属于规则设计(Design by rules)范畴,都有一定的适用范围,如 2.1 节所述方法要求直径厚度比 D0 / t 1000 ,2.2 节所述方法直径厚度比扩大至
D0 / t 2000 。对那些结构超出规则设计适用范围,承受局部压缩载荷的情况可采用基于
得到精确的结果。方法之一是屈曲载荷系数归一化,即不断调整变载荷,直到屈曲载荷系 数等 1.0 或接近 1.0,此时的变载荷就是结构的屈曲载荷。
3.2
避免屈曲模式丢失
进行数值分析时,应计及所有可能的失稳模式。要注意保证模型的简化不会造成屈曲 模式的丢失。尽量不要使用对称建模,以免遗漏非对称屈曲模式。例如,对经环向加强的 圆筒,在确定其最小屈曲载荷时,应考虑轴对称和非轴对称屈曲模式。
压力容器ANSYS分析与强度计算一书和同类书的比较
《压力容器ANSYS分析与强度计算》一书和同类的ANSYS分析丛书的比较1 关于AN SYS分析ANSYS软件是由1970年创办的美国ANSYS公司研制的,大型通用有限元分析软件,30多年来,ANSYS公司不断吸取新的计算方法和计算技术,改进和开发ANSYS软件,功能日益强大,用户遍及全世界。
ANSYS软件包含有下列主要功能:◆结构分析(静力分析、模态分析、谐响应分析、瞬态动力分析、屈曲分析和疲劳分析等);◆热分析(热传导、热对流、热辐射和热应力分析等);◆电磁分析(静磁场分析、交变磁场分析、瞬态磁场分析和电场分析等);◆流体分析(流体动力学分析、声学分析等);◆耦合分析-多物理场(可将两个物理场组合进行分析,热应力和压力耦合分析等)。
因此,通常说,ANSYS软件是融结构、热、流体(声学)和多物理场分析于一体的大型有限元软件。
90年代初期,ANSYS软件进入我国后,很快在航天航空、石油化工、机械压力容器、铁道交通、土木工程、水利等众多领域获得普及和应用。
我国压力容器的设计标准分常规设计(GB150钢制压力容器)和分析设计(JB4732钢制压力容器-分析设计标)两种规范。
简单地说,如某压力容器设计单位设计一台加氢反应器,按常规设计,壁厚180mm,按分析设计,壁厚150mm,分析设计的压力容器产品比常规设计要经济,因为常规设计,使用统一的许用应力进行控制。
而分析设计,对不同部位产生的不同应力采用不同倍数的许用应力进行控制,体现了不同的失效准则。
JB4732标准1995年发布,该标准允许采用有限元法进行应力分析设计。
当采用ANSYS软件后,清华大学等单位编制的应力分析有限元软件自动退出市场。
没有单位和人员再用了,因为软件功能不强大,技术落后。
我国最早的ANSYS版本为ANSYS5.6,后来有ANSYS5.7,ANSYS7.0,ANSYS8.0,ANSYS9.0 和ANSYS10.0。
对于压力容器用ANSYS分析,上述各版本的功能均可使用。
许京荆ANSYS_12.0_Workbench-压力容器分析
图 1-3 采用几何清除工具前后的飞机模型
自动网格划分解决方案在流体动力学中取得了很好的结果。应用 GAMBIT 和 TGrid 的网 格附加功能,可以在最少输入情况下,自动生成合适的进行计算流体动力学分析的四面体网 格。另外,它融合了高级尺寸函数(与 GAMBIT 相似)、棱柱及四面体网格(来自 TGRID) 及其他网格划分技术,改进了网格平滑度、网格质量、划分速度、曲率近似功能捕捉、边界 分层捕捉等功能。尽管许多功能是出于流体动力学的应用而改进的,但是它们仍然可以用于 其他数值模拟分析应用。如结构分析的用户可以应用这些功能,得到自动化和高质量的网格。 新增多区域网格划分方法使用户在不进行几何分割的情况下,可以对复杂的几何模型划分纯 六面体网格,图 1-4 为对制动器转子执行一次操作所得到的六面体网格。
ANSYS 软件华东区培训中心 延长路 149 号 13817609887 1
2.3
第3章 3.1
上海大学机电学院安全断器分析
第4章 4.1 4.2 4.3
4.4 4.5 第5章 5.1 5.2 5.3 第6章 6.1
6.2
3.1.7 高级工具及案例 3.1.7.1 冰冻【Freeze】及案例 3.1.7.2 解冻【Unfreeze】 3.1.7.3 命名选择【Named Selection】 3.1.7.4 接合【Joint】 3.1.7.5 抽取中面【Mid- surface】与表面延伸【Surface Extension】及案例 3.1.7.6 切片【Slice】 3.1.8 压力容器建模实例—3D 梁壳储罐模型 ANSYS12.0 压力容器网格划分技术 ANSYS12.0 Meshing 网格划分概述 ANSYS12.0 Meshing 网格划分方法 ANSYS12.0 Meshing 网格划分控制 4.3.1 网格划分用户界面 4.3.2 网格划分方法 4.3.3 网格局部尺寸控制【Sizing】 4.3.4 接触区域网格控制【Contact Sizing】 4.3.5 网格局部单元细化【Refinement】 4.3.6 映射面网格划分【Mapped Face meshing】 网格划分控制案例—装配体模型 薄层扫掠网格划分及案例—3D 实体储罐模型 ANSYS12.0 结构分析技术 结构分析概述 结构分析方法 结构运动方程 ANSYS12.0 压力容器静力分析 ANSYS12.0 Static Structural 结构静力分析方法 6.1.1 结构静力分析用户界面 6.1.2 工程数据中定义材料属性 6.1.3 几何模型 6.1.4 定义零件行为 6.1.5 联接关系 6.1.6 模型网格划分 6.1.7 分析设置 6.1.8 载荷及支撑 6.1.9 求解选项 6.1.10 结果后处理 压力容器分析求解策略 6.2.1 提取分析模型 6.2.2 对称性 6.2.3 处理重点关心位置 6.2.4 细节结构的考虑 6.2.5 工况分析 6.2.6 单元选择 6.2.7 网格划分
压力容器ANSYS教程
压力容器ANSYS教程在本教程中,我们将使用ANSYS软件来模拟压力容器的行为。
压力容器是一种用于存储液体或气体的设备,它需要承受内部压力的作用。
正确的设计和优化可以确保容器在使用过程中能够安全可靠地工作。
1. 创建几何模型:打开ANSYS软件并选择适当的工作区。
使用几何建模工具来创建压力容器的几何形状。
可以使用各种几何建模操作,如拉伸、变换和旋转来构建容器的形状。
确保容器的几何形状符合设计要求。
完成后,保存几何模型。
2. 定义材料属性:选择适当的材料并为其定义相关的力学和弹性特性。
根据容器的材料选择合适的材料模型,并提供材料的弹性模量、泊松比和密度等参数。
这些参数将用于模拟压力容器的行为。
3. 设置边界条件:为了准确模拟压力容器的行为,我们需要设置适当的边界条件。
首先,选择容器的底部作为固定边界条件,并将其锚定在原点上。
然后,选择容器的顶部作为压力加载的边界条件。
根据设计要求,输入适当的压力值。
这将模拟容器内部的压力作用在容器壁上。
4. 生成网格:在模拟之前,需要生成适当的网格。
使用ANSYS的网格生成工具来生成具有适当网格密度的网格。
确保网格能够更好地表示容器的几何形状,并且在需要的区域具有更高的网格密度。
完成网格生成后,检查网格的质量并进行必要的调整。
5. 定义分析类型:选择适当的分析类型来模拟压力容器的行为。
常见的分析类型包括静力分析和动态分析。
在这个例子中,我们将进行静力分析,因为压力容器的行为可以看作是一个稳定的状态。
6. 进行分析:在进行分析之前,确保所有设置和边界条件都正确配置。
然后运行分析以模拟压力容器的行为。
分析结果将包括应力和应变分布、变形情况和位移等。
根据这些结果来评估容器的安全性和设计。
7. 结果分析和优化:根据分析结果进行结果分析和容器的优化。
如果分析结果显示容器的应力超过材料的极限或设计要求,则需要调整容器的几何形状或材料属性。
这个过程需要反复进行,直到满足设计要求。
基于ANSYS软件对压力容器开孔接管区的应力与疲劳分析
第2 9卷 第 2期 2 1 年 4月 01
轻工 机 械
Li htI d s r g n u tyM a h/ e y e ur
V0 . 9 No 2 12 .
Ap . 01 r2 1
[ 环保 ・ 安全 ]
D I 036/ in1 5 8521.201 O : . 9j s . 0- 9. 1 . 1 9 .s 0 2 0 0 3
最大应力发生在简体最高位置与接管的连接处 , 最大应 力强度值 为 27 4 8M a 4 .7 P 。然后利用 A S S进行疲劳寿命分 析, NY 将有限元方法与疲劳寿命分析理论相结合 , 得到累积使用 系数 均小于 1 即开孔接 管部位 满足 疲 劳强度 的要 求 , , 因此该
容器是安 全的。通过 此次分析再 次证 明了 A S S软件 为压力容 器实际工程应用 中提 供 了可靠的 、 NY 高效的理论依 据。图
a d t e r s l o n t — lme ta ay i r v d t a S ot a e i a c p a l n f c e t n h e ut f i e e n n lss i p o e tAN YS s f r s c e t b e a d e in .At h a i t f e i s h w i e s me t t me i
压力容器ansys有限元分析设计实例
ANSYS应力分析报告Stress Analysis Report学生姓名学号任课教师导师目录一. 设计分析依据 (2)1.1 设计参数 (2)1.2 计算及评定条件 (2)二. 结构壁厚计算 (3)三. 结构有限元分析 (4)3.1 有限元模型 (5)3.2 单元选择 (5)3.3 边界条件 (6)四. 应力分析及评定 (7)4.1 应力分析 (7)4.2 应力强度校核 (8)4.3疲劳分析校核 (11)五. 分析结论 (11)附录1设计载荷作用下结构应力沿路径线性化结果(A) (12)附录2设计载荷作用下结构应力沿路径线性化结果(B) (13)附录3设计载荷作用下结构应力沿路径线性化结果(C) (14)附录4设计载荷作用下结构应力沿路径线性化结果(D) (16)附录5设计载荷作用下结构应力沿路径线性化结果(E) (17)附录6设计载荷作用下结构应力沿路径线性化结果(F) (19)附录7设计载荷作用下结构应力沿路径线性化结果(G) (20)附录8设计载荷作用下结构应力沿路径线性化结果(H) (21)一. 设计分析依据(1)《压力容器安全技术监察规程》(2)JB4732-1995《钢制压力容器——分析设计标准》(2005确认版)1.1 设计参数表1 设备基本设计参数1.2 计算及评定条件(1) 静强度计算条件表2 设备载荷参数注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行进行计算,故采用设计载荷进行强度分析结果是偏安全的。
(2) 材料性能参数材料性能参数见表3,其中弹性模量取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2和表6-6确定。
表3 材料性能参数性能(3) 疲劳计算条件此设备接管a 、c 上存在弯矩,接管载荷数据如表4所示。
表4 接管载荷数据表二. 结构壁厚计算按照静载荷条件,根据JB4732-95第七章(公式与图号均为标准中的编号)确定设备各元件壁厚,因介质密度较小,不考虑介质静压,同时忽略设备自重。
ansys 在压力容器分析中的应用实例.
ANSYS 14.0 软件培训–压力容器第二部分实例操作中益 CAE 工作室2012.12实例一接管的应力分析1. 本例主要分析封头上接管应力强度,同时还要查看封头上人孔大开口对接管的强度影响。
2. 按照图纸一,建立几何模型。
3.划分网格:3.1 讲模型分割成上图所示的几何模型,以方便网格的划分。
3.2 做简单的几何边网格划分。
设置如下:3.3 划分最后的网格如下: 封头采用六面体划分4. 施加载荷及边界条件:5. 分析结果:6.定义线性路径及应力评定:由于我们在做分析报告时需要线性化评定,虽然在 WORKBECH 与经典中线性化结果相同,但是大家都习惯了经典分析数据的显示。
我们将 WORKBECH 分析结果导入经典中如下:PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= A-A DSYS= 0***** POST1 LINEARIZED STRESS LISTING *****INSIDE NODE = 101466 OUTSIDE NODE = 101468LOAD STEP 1 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.** MEMBRANE **SX SY SZ SXY SYZ SXZ 7.604 23.44 61.44 -6.459 -0.8720E-01 0.4231 S1 S2 S3 SINT SEQV61.45 25.73 5.301 56.15 49.22** BENDING ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI 90.83 33.10 39.88 -8.484 -0.2168致力于 CAE 解决方案与培训 0.2947 C 0.000 0.000 O -90.83 0.2947 S1 I 92.06 C 0.000 O -31.88 0.000 -33.10 S2 39.89 0.000 -39.89 0.000 -39.88 S3 31.88 0.000 -92.06 0.000 8.484 SINT 60.18 0.000 60.18 0.000 0.2168 SEQV 56.60 0.000 56.60 - ** MEMBRANE PLUS BENDING ** O=OUTSIDE SX I 98.44 0.7178 C 7.604 0.4231 O -83.23 0.1285 S1 I 103.5 C 61.45 O 21.56 SY 56.54 23.44 -9.668 S2 101.0 25.73 -9.613 ** PEAK ** SY 6.108 -3.046 6.074 S2 5.724 -1.987 2.223 ** TOTAL ** SY 62.65 20.39 -3.594 SZ 101.3 61.44 21.56 S3 51.76 5.301 -83.29 I=INSIDE C=CENTER SYZ -0.3040 -0.8720E-01 0.1296 SEQV 50.56 49.22 93.25 SXZ SXY -14.94 -6.459 2.025 SINT 51.74 56.15 104.8 SX I 16.79 0.7242E-01 C -5.157 0.3260E-01 O 3.831 0.5797E-01 S1 I 30.90 C 4.472 O 20.33 I=INSIDE C=CENTER O=OUTSIDE SZ SXY SYZ5.724 -18.69 -0.1654 -1.987 2.224 S3 -7.992 -12.67 -10.42 8.507 -15.34 SINT 38.89 17.15 30.75 0.6424E-01 -0.9160E-01 SEQV 34.16 15.00 26.77 SXZ SX I 115.2 0.7902 C 2.447 0.3905 O -79.40 I=INSIDE C=CENTER O=OUTSIDE SZ SXY SYZ 107.1 -33.64 -0.4693 59.46 23.78 2.049 -13.31 -0.2296E-01 0.3795E-01 SXZ 中益 CAE 工作室 13646276 687致力于 CAE 解决方案与培训 0.1864 I 22.00 C 59.46 O 23.7822.00 S1 131.7 S2 107.0 20.62 -1.325 S3 46.25 2.214 -81.67 SINT 85.42 57.25 105.5 SEQV 76.15 50.62 95.41 TEMP 实例二带有螺栓预紧力的非标法兰应力分析中益 CAE 工作室 13646276 687。
基于Ansys软件对压力容器的应力及疲劳分析_刘旭
基于 Ansys 软件对压力容器的应力及疲劳分析 刘旭
(沈阳鼓风机集团有限公司 110869) 摘 要:在往复压缩机配套的压力容器中,有很大一部分容器具有工作压力高,同时承受气体脉动
载荷的特点。文章选取出口缓冲罐,对于主要开孔区进行了应力分析、评定和疲劳分析。通过此次分析为 实际工程应用中压力容器的设计,提供了部分可靠、有效的理论依据。
2. 应力分析 2.1. 参数化建模
根据缓冲罐的结构,支撑部分采用可调节的楔形支座,不属于刚性支撑,所以只针对 筒体、封头及开孔区域建模。分别建立两个模型,由于结构的对称性,筒体开孔部分选取 1/4接管及1/2筒体及封头建立模型;由于轴对称特性,封头开孔部分建立平面模型。
筒体开孔部分,选用solid45号单元建模,对于筒体、封头及接管的截面施加对称面位 移约束,筒体及接管的内表面施加20.1Mpa的内压载荷,同时在接管端面施加轴向位移约
压力容器中ansys分析支座反力的命令流
FINISH/CLEAR/FILN, E43/TITLE, FEA OF CONNECTING ZONE OF SUPPORT OF EVAPERATOR ! ********* 参数设定*********DCI=5000 !筒体内径TC=40 !筒体壁厚TCON=40 !锥形封头壁厚ALFA=30 !锥形封头半锥角LC=2500 !筒体长度*AFUN,DEG !角度单位设定LCON=DCI/2/TAN(ALFA) !锥形封头全锥长度LRAT=0.5 !模型中锥形封头经线方向长度系数LCON=LCON*LRAT !模型中锥形封头经线方向长度NS=4 !支座个数H0=1500 !支座垂直方向安装位置DIS=DCI+TC !支座水平方向安装位置TS=20 !支座筋板、腹板厚度WS=500 !筋板宽度HS=1300 !筋板高度BB=800 !底板长度W1=250 !腹板位置PI=0.1 !内压值GRA=9.81 !重力加速度,M/S2DENSTELL=7850 !钢材密度,KG/M3DENWATER=1000 !水的密度,KG/M3M1=58.1E3 !容器自重,KGHY1MAX=13 !锥形封头部分平均液面高度HY0MAX=15.0 !最大液面高度PY1=HY1MAX*DENWATER*GRA/1E6 !锥形封头部分平均液柱静压力PY0=HY0MAX*DENWATER*GRA/1E6 !容器最大液柱静压力SCON=(DCI/2*LRAT*2+TCON*COS(ALFA))*TCON !模型中锥形封头端面面积/?PCON=(PI+PY0)*(DCI/2*LRAT)**2/SCON/COS(ALFA) !模型中锥形封头端面平衡面载荷PCM1=M1*GRA/(3.1415927*((DCI+2*TCON)**2-DCI**2)) !自重在筒体端面引起的面载荷PC=PI*DCI**2/((DCI+2*TCON)**2-DCI**2)-PCM1 !筒体端面平衡面载荷!****************前处理***************************/PREP7ET,1,45 !定义单元类型MP,EX,1,2E5 !定义材料的弹性模量MP,NUXY,1,0.3 !定义材料的泊松比!****************建立模型***************************K,1,0,0,0 !定义回转轴中心关键点K,2,0,LC,0 !定义回转轴中心关键点BLC4,DCI/2,0,TCON,-LCON !生成锥形封头子午面母体LOCAL,11,1,DCI/2 !定义局部坐标系AGEN,2,1,,,,-ALFA,,,,1 !旋转母体得到旋转锥形封头子午面BLC4,DCI/2,0,TCON,LC !生成筒体子午面NUMMRG,ALL, , , ,LOW !合并相同项KSEL,S,LOC,Y,-TCON,0 !选择筒体与封头焊接区关键点*GET,K1,KP,,NUM,MIN !提取焊接区关键点KSEL,U,,,K1*GET,K2,KP,,NUM,MIN*GET,K3,KP,,NUM,MAXKSEL,A,,,K1A,K1,K2,K3 !生成焊接区子午面ALLS !全选VROTA T,ALL,,,,,,1,2,360/2/NS !生成筒体、封头及焊缝区1/8回转体WPOFF,0,0,-BB/2 !移动工作面BLC4,,-H0,DIS/2,HS,TS !生成筋板母体BLC4,DIS/2-W1,-H0,-TS,HS,BB/2 !生成腹板母体BLC4,,-H0,DIS/2,TS,BB/2 !生成底板母体VSEL,S,,,4,6 !选择筋板、腹板及底板母体VSBA,ALL,5 !用锥形封头外表面切割筋板、腹板及底板VDELE,7,,,1 !删除筋板母体多余部分VDELE,10,,,1 !删除腹板母体多余部分VDELE,11,,,1 !删除底板母体多余部分WPOFF,DIS/2-WS !移动工作面WPROT,,,90 !旋转工作面VSBW,ALL !再次切割筋板与底板VDELE,4,,,1 !再次删除筋板多余部分VDELE,6,,,1 !再次删除底板多余部分VPTN,ALL !筋板、腹板及底板互分ALLS!***********划分网格****************************** KWPAVE,23 !将坐标平面移至关键点23 WPROT,,,90 !旋转工作平面VSBW,ALL !采用工作平面剖分体KWPAVE,19 !将坐标平面移至关键点19VSBW,ALL !采用工作平面剖分体WPROT,,90, !旋转工作平面VSBW,ALL !采用工作平面剖分体VPTN,ALL !体互分ALLS !全选择LGLUE,ALL !粘合各线LESIZE,36,,,3,,,,, !设定线分段数LESIZE,55,,,3,,,,, !设定线分段数LESIZE,45,,,3,,,,, !设定线分段数ESIZE,40 !设定单元大小VSWEEP,ALL !映射划分NUMMRG,ALL !合并所有项NUMCMP,ALL !压缩编号FINISH!****************求解*************************** /SOLUWPCSYS,-1,0 !转换到原始坐标系ASEL,S,LOC,Z,0 !选择在Z=0的面DA,ALL,SYMM !施加对称约束LOCAL,12,1,,,,,-90 !定义局部柱坐标系ASEL,S,LOC,Y,360/NS/2 !选择1/8位置截面DA,ALL,SYMM !施加对称约束CSYS,0 !激活整体直角坐标系ASEL,S,LOC,Y,-H0 !选择支座底面ASEL,R,LOC,X,DIS/2-WS,DIS/2DA,ALL,ALL !约束底面各项位移ASEL,S,LOC,Y,LC !选择筒体端面SFA,ALL,1,PRES,-PC !施加平衡面载荷ASEL,S,LOC,Y,-LCON*COS(ALFA)-TCON,-LCON*COS(ALFA) !选择锥形封头端面SFA,ALL,1,PRES,-PCON !施加平衡面载荷ASEL,S,AREA,,83,87,4 !选择筒体内表面ASEL,A,AREA,,42,SFA,ALL,1,PRES,PI !在筒体内表面施加内压ASEL,S,AREA,,44,46,2,1 !选择封头内表面ASEL,A,AREA,,93,95,1ASEL,A,AREA,,91SFA,ALL,1,PRES,PI+PY1 !在锥形封头内表面施加内压及液柱静压力ALLS SOLVE !求解!****************后处理***************************/POST1PLNSOL,S,INT,0,1 !显示应力云图FINI。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器是在冶金、化工、炼油、气体等工业生产中频繁使用,常常用来存储各类不同压力、温度、介质的气体,或被使用为干燥罐,蒸压釜、反应釜、缓冲罐、医用氧气瓶等等。同时大部分罐都属于特种设备—压力容器,其制造和使用国家都有严格规范标准,特别是压力容器的疲劳强度和形体薄弱环节的研究对于特种设备的安全使用很重要,这里借助于ansys软件很直观精确地将其中一种压力容器—高压空气储气罐进行了疲劳分析之一—压力应力分析。
一、高压储气罐的设计条件:
①
②设计数据:
二、有限元模型建立:
1定义设计变量:
建立几何模型
2由于该容器形体的对称性,选择1/4来分析:
三、加