高分子物理PPT结晶形态.
高分子物理实验聚丙烯的结晶形态与性能
• 聚丙烯的聚集态结构由晶区和非晶区两 部分组成,球晶的尺寸一般在~100μm 之间。
• 由于晶区和非晶区的密度和折光率不同, 而且晶区的尺寸通常大于可见光的波长 (400~780nm),所以光线通过聚丙烯 时在两相的界面上发生折射和反射,导 致聚丙烯制品呈现半透明性。
• 由于结晶部分的存在,结晶聚合物较相 应结构的非晶聚合物有更好的机械强度 和耐热性。
• 近年来,聚丙烯透明化成为新产品开发 的一个亮点,聚丙烯透明化产品在包装 容器、注射器、家庭用品等领域的用量 急剧增加。
• 加入结晶成核剂是聚丙烯透明化的主要 改性技术。
• 使用成核剂改进聚丙烯透明性的关键是 减少球晶或晶片的尺寸,让它小于可见 光的波长。
实验部分
实验目的
• 学会分析和理解成核剂与结晶速度 和结晶形态的关系,结晶形态与光 学性能之间的关系
• 熟悉并掌握聚合物结晶形态观察和 晶体尺寸的测定方法
• 学会调试和使用偏光显微镜
Hale Waihona Puke 实验原理• 物质发出的光波具有一切可能的振动方 向,且各方向振动矢量的大小相等,称 为自然光。
• 当矢量固定在一个固定平面内只沿一个 固定方向作振动时,这种光称为偏振光。
用偏光显微镜研究高分子(聚合物)的结晶形态是目前较为简便而直观的方法。 利用偏光原理,可对某些物质具有的偏光性进行观察的显微镜,就称为偏振光显微镜。 然后在120℃的热台上等温结晶30分钟,即可制得观察聚丙烯球晶的样品。 将聚丙烯树脂与成核剂母料接照一定配比均匀混合,在塑料注塑机上制成供测试和表征用的样品。 制备样品——使用盖玻片和载玻片分别将加入成核剂前后的聚丙烯树脂在230℃下熔融,压制成薄膜; 用偏光显微镜研究高分子(聚合物)的结晶形态是目前较为简便而直观的方法。 聚合物结晶总速率决定于成核速率和晶片生长速率 由于结晶部分的存在,结晶聚合物较相应结构的非晶聚合物有更好的机械强度和耐热性。 聚丙烯球晶的有无及其大小对聚合物的力学性能有何影响? 按照是否能够结晶,聚合物可分为结晶型和非晶型两种 一个在载物台下方,称为下偏光镜,用来产生偏光,故又称起偏镜; 物质发出的光波具有一切可能的振动方向,且各方向振动矢量的大小相等,称为自然光。 本实验采取在PP中加入成核剂的方法,通过成核剂的异相成核作用,改善结晶形态,提高PP的相关性能。 描述加入成核剂前后聚丙烯的结晶形态及其变化,测量聚丙烯晶体的大小; 按照是否能够结晶,聚合物可分为结晶型和非晶型两种 物质发出的光波具有一切可能的振动方向,且各方向振动矢量的大小相等,称为自然光。 偏光显微镜的成像原理与常规金相显微镜基本相似,所不同的是在光路中插入两个偏光镜。 加入结晶成核剂是聚丙烯透明化的主要改性技术。 分子运动是联系聚合物结构、性能的纽带 结晶过程中的成核又可以分为均相成核和异相成核两种 利用偏光原理,可对某些物质具有的偏光性进行观察的显微镜,就称为偏振光显微镜。 描述加入成核剂前后聚丙烯的结晶形态及其变化,测量聚丙烯晶体的大小; 讨论成核剂对结晶形态和结晶度的影响,并分析原因; 由于结晶部分的存在,结晶聚合物较相应结构的非晶聚合物有更好的机械强度和耐热性。 将制备好的试样放在偏光显微镜的载物台上,选择适当的放大倍数,观察并比较加入成核剂前后聚丙烯试样的球晶形态和球晶尺寸。 另一方面可以增加聚合物的结晶度,从而提高聚丙烯的刚性和耐热性; 聚丙烯球晶的有无及其大小对聚合物的力学性能有何影响? 聚合物结晶总速率决定于成核速率和晶片生长速率 起偏镜的作用使入射光分解成振动方向互相垂直的两条线偏振光,其中一条被全反射,另一条则入射。
高分子的液晶态结构.pptx
2. 液晶的发展简史
美国物理学家L. Onsager和化学家P. J. Flory分别于 1949年和1956年对刚性棒状液晶高分子作出理论解释。但 直到20世纪60年代中期,美国Du Pont公司发现聚对苯二 甲酰对苯二胺的液晶溶液可纺出高强度高模量的纤维,液 晶高分子才引起人们的广泛关注 。
此外,美国的W.H.公司发表了液晶在平面电视、彩 色电视等方面有应用前景的报道。从此,液晶逐渐走出 化学家和物理学家的实验室,成为一类重要的工业材料。
第11页/共52页
2. 液晶的发展简史 2.3 液晶高分子的发展
1923年,德国化学家D. Vorlander提出了液晶高分 子的科学设想,但事实上人们对高分子液晶态的认识是 从1937年Bawden等在烟草花叶病毒的悬浮液中观察到 液晶态开始的。
第25页/共52页
5. 液晶的分类
图1.4 胆甾相液晶
第26页/共52页
6. 液晶性能的表征
高分子液晶态
差示扫描量热仪 (DSC)
偏光显微镜 (POM)
X-射线衍射 (XRD)
第27页/共52页
6. 液晶性能的表征 6.1 热性能分析
(1)DSC 液晶的相行为研究主要采用DSC。DSC在高分子研究 方面的应用特别广泛,如研究聚合物的相转变、熔点、玻 璃化温度,以及研究聚合、交联、氧化、分解等反应,并 测定反应温度、反应热、反应动力学参数等。
第13页/共52页
2. 液晶的发展简史
20世纪70年代,Kevlar纤维的商品化开创了液晶高 分子研究的新纪元,以后又有自增强塑料Xydar(美国 Dartco公司,1984),Vectra(美国Eastman公司,1985) 和Ekonol(日本住友,1986)等聚酯类液晶高分子的工 业化生产,从此,液晶高分子走上一条迅速发展的道路。
高分子结晶形态
高分子结晶形态1. 概述高分子结晶形态是指高分子材料在固态下的晶体结构和形态特征。
高分子材料具有多种结晶形态,包括无定形态、部分结晶态和完全结晶态。
高分子结晶形态对材料的物理性质和应用性能有着重要的影响,因此对高分子结晶形态的研究具有重要的科学意义和应用价值。
2. 高分子结晶机理高分子的结晶是由于分子间的相互作用力的存在而形成的。
高分子分子链的局部有序排列形成晶体结构,而分子链之间的无序排列则形成无定形态。
高分子结晶的主要机理包括链段的折叠和交叉,分子链的扭曲和屈曲以及分子链之间的相互作用力等。
3. 高分子结晶行为高分子材料的结晶行为可以通过热分析技术进行研究,如差示扫描量热法(DSC)、热重分析法(TGA)等。
这些技术可以通过测量材料的热性能变化来确定结晶温度、结晶度和结晶速率等参数,从而了解高分子材料的结晶行为。
3.1 结晶温度高分子材料的结晶温度是指材料从无定形态转变为结晶态的温度范围。
结晶温度取决于分子链的结晶能力以及外界条件,如温度、压力和结晶助剂等。
高分子材料的结晶温度通常通过DSC技术来测定。
3.2 结晶度高分子材料的结晶度是指材料中结晶部分的比例。
结晶度可以通过测量材料的熔点和热焓来确定。
高分子材料的结晶度与其结晶速率和结晶温度等因素密切相关。
3.3 结晶速率高分子材料的结晶速率是指材料从无定形态转变为结晶态的速度。
结晶速率受到多种因素的影响,包括温度、结晶助剂、分子链的结晶能力等。
高分子材料的结晶速率可以通过DSC技术和透射电子显微镜(TEM)等技术来研究。
4. 高分子结晶形态的影响因素高分子结晶形态的形成受到多种因素的影响,主要包括分子结构、分子量、结晶助剂和加工条件等。
4.1 分子结构高分子材料的分子结构对其结晶形态有着重要的影响。
分子结构中的键长、键角和键的取向等参数会影响分子链的折叠和交叉,从而影响结晶形态的形成。
4.2 分子量高分子材料的分子量对其结晶形态也有着重要的影响。
《高分子物理》ppt课件
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
高分子物理课件第二章
2、同质多晶现象
聚乙烯的稳定晶系是斜方晶系,拉伸时可形成 三斜或单斜晶系。
同质多晶现象:由于结晶条件的变化,引起分 子链构象的变化或者堆积方式的改变,一种聚合 物可以形成几种不同的晶型。
形成的晶型不同,聚合物所表现出来的性能 也不相同。
3、 聚丙烯的晶胞结构
基于内聚能的加和性,即原子或基团摩尔吸引力常 数Gi的加和
CED
Gi
i
M0
CED与高聚物物理性质之间的关系
a. CED < 300 J/cm3时(70cal/cm3) 聚合物都是非极性的,分子间作用力主要是色散力,比较 弱,分子链属于柔性链,具有高弹性,作橡胶使用。 b. CED > 400 J/cm3时(100cal/cm3) 聚合物都是极性的,由于分子链上有强的极性基团或分子 间能形成氢键,分子间作用力较强,加上易于结晶和取向, 作纤维使用 c. 300 J/cm3 < CED < 400 J/cm3时(70-100cal/cm3) 聚合物的分子间作用力居中,适宜作塑料使
但是在用X射线研究聚合物的凝聚态结构时,人们 发现:聚合物内部确实存在着三维有序的规整结构。
结晶聚合物最重要的实验证据为:
x射线衍射花样(图)——一系列同心圆(德拜环) (非晶聚合物—弥散环或称无定形晕) 衍射曲线—尖锐的衍射峰 (非晶聚合物—很钝的衍射峰)
实验证明:如果高分子链本身具有必要 的规整结构,同时给予适宜的条件(温度等), 就会发生结晶,形成晶体。
纤维(>100)
解释PE的 CED < 300J/cm3 却作为塑料使用,Why? PE分子链的结构非常规整,很容易结晶, 从而使材料具有一定的强度,作为塑料使用。
高分子材料教学课件PPT
• 氢键是与电负性较强的原子相结合的氢原子(如X—H)同时与另 一个电负性较强的原子(如Y)之间的相互作用,即(X—H…Y).这 些电负性铰强的原子一般是氮、氧或卤素原子.一般认为在氢键 中,X—H基本上是共价键,而H…Y则是一种强而有方向性的范 德华力.这里把氢键归入范德华力是因为氢键本质上是带有部分 负电荷的Y与电偶极矩很大的极性键X—H间的静电吸引相互作用.
5
聚合物分子内与分子间相互作用力
• 物质的结构是指物质的组成单元(原于或分子)之间在相互吸引和排斥作用
达到平衡时的空间诽布.因此为了认识高聚物的结构,首先应了解存在于高聚 物分子内和分子间的相互作用.
• 化学键
构成分子的原子间的作用力有吸引力和斥力,吸引力是原子形成分于的结合力, 叫作主价力,或称键合力.斥力是各原子的电子之间的相互排斥力.当吸引力 和斥力达到平衡时,便形成稳定的化学键.
• 金属键 是由金属原子的价电子和金属离子晶格之间的相互 作用而形成的,无方向性和饱和性,赋予高导电性.在所谓的 “金属螯合高聚”(metallocene po1ymer)中可以说存在金属 键.
2024/6/20
7
• 范德华力
作用能: 2~8kJ/mol
是存在于分子间或分子内非键合原于间的相互作用力.两分子间的 范德华力F(r)及相互作用能E(r)是分子之间距离r的函数如图所示.
2024/6/20
19
重要高分子材料
合成树脂和塑料: 填充增强增韧,降低成本. 教 材P332表7.4
➢ 通用塑料: 应用广, 产量大, 价格廉的塑料. 如聚烯烃: PE, PP, PS等; PVC; 酚醛, 环氧, 聚酯, 尿醛等.
➢ 工程塑料: 综合性能好, 可代替金属作工程材料, 制 造机器零部件的塑料. 最重要的有:
高分子物理-聚合物的结晶态
• 对各种聚合物的结晶速度与温度关系的考 察结果表明,聚合物本体结晶速度—温度 曲线都呈单峰形,结晶温度范围都在其玻 璃化温度与熔点之间,在某一适当温度下, 结晶速度将出现极大值。
• 经验关系式
Tmax 0.63Tm 0.37Tg 18.5
也有人提出仅从熔点对Tmax进行更简便的估算
• 特点:晶片厚度=分子链长度。
• 例如:PE在>200oC,>4000atm下的结晶。
晶片厚度=103~104 nm,基本上为 伸直的分子链的长度。
• 目前认为:伸直链晶片是一种热力学上最稳 定的高分子晶体。
6. 纤维状晶和串晶
在存在流动场时,高分子链 的构象发生畸变,成为伸展 的形式,并沿流动的方向平 行排列,在适当的条件下, 可发生成核结晶,形成纤维 状晶。
• 随着交联度增加,聚合物便迅速失去结晶能力。
• 分子间力也往往使链柔性降低,影响结晶能力。 但是分子间能形成氢键时,则有利于结晶结构的 稳定。
特例: 以下两种结构单元所组成的无规共聚物在整个 配比范围内都能结晶,且晶胞参数不发生变化。
6.1 常见结晶性聚合物中晶体的晶胞
• 一、晶胞:晶区结构具有重复性,最小重复 单元称为晶胞。
高分子溶液温度较低时边搅 拌边结晶,可以形成一种类 似于串珠结构的特殊结晶形 态——串晶。
6.3 结晶聚合物的结构模型
• 1. 缨状微束模型 • 结晶聚合物中,晶区与非晶区互相穿插,
同时存在,在晶区中,分子链互相平行排 列形成规整的结构,但晶区尺寸很小,一 根分子链可以同时穿过几个晶区和非晶区, 晶区在通常情况下是无规取向的;而在非 晶区中,分子链的堆砌是完全无序的。也 称两相模型 。
4. 小角激光散射法
高分子物理 第06讲 结晶形态与单晶结构
单晶、球晶、树枝状晶、纤维晶、串晶、伸直 链晶等
(1) 单晶 Single Crystal (片晶 lamella)
PE单晶
i-PS单晶
稀溶液,慢降温
螺旋生长
175℃从0.003%的 溶液中缓慢结晶
PA6 precipitated from solution
PEO-b-PS
聚乙烯在226℃于4800大气压下结晶8小时得到的 伸直链晶: 晶体的熔点为140.1℃;结晶度达97%; 密度为0.9938克/厘米3;伸直链长度达3×103nm
那么,通常情况下的聚合物结晶都是 一种亚稳态。
(6) 球晶 Spherulite
当结晶性聚合物从浓溶液中析出或从熔体冷却结 晶时,通常形成球晶。
PVP-b-PEO
聚乙烯的空心棱锥结构
t
单晶的形成条件
一般是在极稀的溶液中(浓度约0.01~0.1%)缓慢结晶形成 的。在适当的条件下,聚合物单晶体还可以在熔体中形成
210oC, 4h
205oC, 4h
200oC, 4h
AFM images of isotactic PS crystals in 11nm thick film in different Tc.
明确了晶粒尺寸为100A的是晶片的厚度 结晶条件对晶体形态与结构的影响如何?
没有说明!
1
⎛⎜⎝ S 2 M w ⎞⎟⎠ 2
熔体
1
nm /(g / mol) 2
结晶态
0.046
0.046
0.035
0.034
0.035
0.036
0.022
0.024~0.029
近邻折叠
熔体
高分子物理课件:第9讲 聚合物的结晶态
东华大学
DONGHUA UNIVERSITY
聚合物在晶体中的构象
1. 能量最低原则 2. 周期最短原则
东华大学
DONGHUA UNIVERSITY
1.1 结晶聚合物的结构模型
1)缨状胶束模型
缨状胶束模型,又称为两相结构模型,多年来被大家 公认为结晶聚合物的结构模型。 这种模型认为高聚物在结晶时总不能完全结晶,而只 能是部分结晶;有晶区,同时还存在着非晶区,具有 两相同时并存的结构状态;每个高分子链可贯穿好几 个晶区,在非晶区中分子链是卷曲而相互缠结的。
东华大学
DONGHUA UNIVERSITY
如果以h0、h∞和ht分别表示膨胀计的起始、最终和t时间的读数, 将实验得到的数据作(ht-h∞)/(h0-h∞)对t的图,则可得到反 S形的曲线。
东华大学
DONGHUA UNIVERSITY
由于结晶过程所需的全部时间不易测量,通常规定体 积收缩进行到一半所需时间的倒数1/t1/2,作为实验温 度下的结晶速度。
东华大学
DONGHUA UNIVERSITY
2)折叠链结构模型
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
图3.6支持了规整折叠模型。
图3.7给出了包括多种类型缺陷在内的结构示意图, 由于高分子的分子链很长,结晶速度又很快,因此在 结晶中必然存在很大的缺陷
3、偏光显微镜法 原理:在偏光显微镜下可以直接观察到球晶的轮廓
尺寸。配上热台,就可在等温条件下观察聚合物球 晶的生长过程,测量球晶的半径随时间的变化。
东华大学
DONGHUA UNIVERSITY
高分子物理——第五章 聚合物的结晶态ppt课件
a=b=c
a=b=c
a=b=c
a=b=c
其中,
高分子结晶中正交晶系和单斜晶系占了60%左右。
高聚物有各向异性,合成完高整编聚辑pp物t 的晶格中无立方晶系33。
(二)、高分子晶体的特征 1、高分子晶体本质上是分子晶体 2、具各向异性 3、无立方晶系 4、晶体结构具有多重性 5、高分子结晶的不完全性
Seven crystalline morphologies of polymer
完整编辑ppt
9
(一)、单晶(体)
形成条件--极稀溶液中缓慢结晶 具有规则的几何外形 内部在三维空间的排列具有高度的规整性 晶片厚度为100Å,基本单元是折叠链晶片 不同聚合物的单晶形状不同 不仅能形成单层片晶,还能形成多层晶体 凡能结晶的高分子在适当条件下都可以形成单晶。
(2)螺旋型构象 带有较大侧基的高分子,为减少空间位阻,降低 位能,通常采用螺旋构象。
HPq
H—螺旋构象
P—每个等同周期重复单元的数目
等同周期:在高分子链上具有相同结构的两 点间的最小距离。
q—每个等同周期中螺旋的数目
完整编辑ppt
36
PTFE 晶体中分子链构象呈螺旋型构象 H136
因为PTFE的螺旋构象,使碳原子被F所包围,F原 子相互排斥,有自润滑性,因此具有冷流性。又由于它 的螺旋硬棒状结构,因此熔点高,可耐三酸两碱。
1、刚柔性适当结晶能力强
PE>PET>PC
天然橡胶柔性很好,但结晶能力很弱。
2、分子间作用力使分子链柔性↓ ,结晶能力 ↓ 适当的分子间作用力,有利于巩固已形成的结晶结构
3、支化使分子对称性↓,结晶能力↓ 4、交联限制了链段运动,减弱或失去结晶能力
高分子物理-第二章-高分子凝聚态ppt课件.ppt
Row nucleation
(4) 串晶 Shish-kebab structure
较低温度下, 边结晶边搅拌
PE
i-PS
(5) 伸直链晶
聚合物在高压 和高温下结晶 时,可以得到 厚度与其分子 链长度相当的 晶片
Extended chain crystal of PE Needle-like extended chain crystal of POM
球晶结构示意图
环带球晶
聚乙烯
偏光显微镜下球晶的生长
聚乙烯在125℃等温结晶
球晶的生长过程
控制球晶大小的方法
球晶的大小对性能有重要影响:球晶大透明性差、 力学性能差,反之,球晶小透明性和力学性能好。
(1) 控制形成速度:将熔体急速冷却,生成较小 的球晶;缓慢冷却,则生成较大的球晶。 (2)采用共聚的方法:破坏链的均一性和规整性, 生成较小球晶。 (3)外加成核剂:可获得小甚至微小的球晶。
《2》折叠链模型 (50年代 A。Keller提出)
实验现象:电子显微镜观察到几十微米范围的PE单晶 测得晶片厚度约为100A,且与分子量无关 X衍射还证明分子主链垂直晶片平面
提出模型:分子链规则地折叠形成厚100A的晶片 晶片再堆砌形成片晶
可以解释:片晶、球晶的结晶形态 不能解释:单晶表面密度比体密度低
nl = 2dhklsinq
n=1, 2, 3, …称为衍射级数
q为衍射角
多晶样品的衍射花样
样品
铝箔的X-射线和电子射线衍射花样
X-射线衍射花样
电子射线衍射花样晶体样品的 Nhomakorabea射曲线2.1.2 聚合物在晶体中的构象
等同周期(或称纤维周期):高分子晶体中, 在 c 轴方向化学结构和几何结构重复单元 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球晶的生长过程
知识点:高分子的结晶形态
3.纤维状晶体
形成条件: 具有一定分子链沿着流动方 向排列
聚乙烯纤维晶(二甲苯,114℃)
知识点:高分子的结晶形态
4. 串晶 Shish-kebab structure
脊纤维:伸直链构成 附晶:折叠连构成
PE串晶 形成条件:在较低温度下,边结晶边搅拌
知识点:高分子的结晶形态 5.伸直链晶体
生成条件:聚合物在高温高压 (如挤出)下结晶,可以得到 厚度与其分子链长度相当的晶体
PE伸直链晶体
知识点:高分子的结晶形态
6.树枝状晶 Dendritic crystal
PE
PEO聚氧化乙烯
生成条件:溶液浓度较大,温度较低,高分子的扩散成为结晶 生长的控制因素,此时在突出的棱角上要比其它邻近处的生长速 度更快,从而倾向于树枝状地生长,最后形成树枝状晶体。
2. 球晶
球晶的特征:
球晶偏光显微镜照片
a. 直径从0.1u到1cm b. 结晶度远低于100% c. 由纤维状晶片组成 d. 沿径向恒速增长 e. 分子链垂直于径向 f. 偏光显微镜下可以观察
到黑十字
生成条件:从熔体冷却结晶或从浓溶液中析出而形成的。
知识点:高分子的结晶形态
2. 球晶
球晶是如何形成的呢?
感谢观看!
《高 分 子 物 理 》
课程团队:李彩虹 余旺旺 栗娟 苏珺
知识点:高分子的结晶形态
结晶形态
单晶
球晶
纤维晶
串晶
伸直链晶 树枝晶
知识点:高分子的结晶形态 1.折叠链片晶
10nm
PE片晶
单晶厚度示意图
生成条件:线形高分子从极稀溶液(浓度0.01~0.1%) 溶液中缓慢结晶形成.
知识点:高分子的结晶形态