第五次课第三章储盖层

合集下载

《石油与天然气地质学》复习题1

《石油与天然气地质学》复习题1

《石油与天然气地质学》复习题第一章油气藏中的流体——石油、天然气、油田水一、名词解释石油、石油的灰分、组分组成、石油的比重、石油的荧光性;天然气、气顶气、气藏气、凝析气(凝析油)、固态气水合物、煤型气、煤成气、煤层气;油田水、油田水矿化度二、问答题1. 简述石油的元素组成。

2. 简述石油中化合物组成的类型及特征。

3.何谓正构烷烃分布曲线?在油气特征分析中有哪些应用?4. 简述Tissot和Welte 三角图解的石油分类原则及类型。

5. 简述海陆相原油的基本区别。

(如何鉴别海相原油和陆相原油?)6. 描述石油物理性质的主要指标有哪些?7. 简述天然气依其分布特征在地壳中的产出类型及分布特征。

8. 油田水的主要水型及特征。

9. 碳同位素的地质意义。

第二章油气生成与烃源岩一、名词解释沉积有机质、干酪根、成油门限(门限温度、门限深度)、生油窗、烃源岩、有机碳、有机质成熟度、氯仿沥青“A”、CPI值、TTI法(值);二、问答题1.沉积有机质的生化组成主要有哪些?对成油最有利的生化组成是什么?2.按化学分类,干酪根可分为几种类型?简述其化学组成特征。

3.论述有机质向油气转化的现代模式及其勘探意义。

(试述干酪根成烃演化机制)4.试述有机质成烃的主要控制因素。

(简述时间—温度指数(TTI)的理论依据、方法及其应用。

)5.试述有利于油气生成的大地构造环境和岩相古地理环境(地质条件)。

6.天然气可划分哪些成因类型?有哪些特征?7.试述生油理论的发展。

8.评价生油岩质量的主要指标。

9.油源对比的基本原则是什么?目前常用的油源对比的指标有哪几类?第三章储集层和盖层一、名词解释储集层、绝对孔隙度、有效孔隙度、绝对渗透率、有效(相)渗透率、相对渗透率、孔隙结构、流体饱和度、砂岩体、盖层、排替压力二、问答题1.试述压汞曲线的原理及评价孔隙结构的参数。

2.碎屑岩储集层的孔隙类型有哪些?影响碎屑岩储集层物性的地质条件(因素)。

(简述碎屑岩储集层的主要孔隙类型及影响储油物性的因素。

石油地质学 第五节 油气藏形成的条件

石油地质学 第五节    油气藏形成的条件
二、充分条件
油气藏形成的充分条件是指上述基本要素在时空上的 良好匹配,既有充足的油气源、有利的生储盖组合和 大容积的有效圈闭。
三、成烃坳陷和充足油气源
(一)成烃坳陷
(1)成烃坳陷概念及其与油 气聚集区关系 成烃坳陷:盆地中分布成熟 烃源岩或成烃灶的深坳陷区。 成烃坳陷与油气聚集区关系:
(a)成烃坳陷提供油 气聚区所需的油气。
(1)油气丰度 油气丰度:单位面积成烃坳陷所生成的可采油气储量。 按油(气)丰度通常将含油气盆地(坳陷)分成三
个等级: (a)丰富的(>2×104 m3 / km2); (b)中等的(0.2×104 m3—2×104 m3 / km2 ); (c)差的(< 0.2×104 m3 / km2 )。
成烃坳陷所具有总的生成的可采油气储量 (Q)是该坳陷面积(S)与油气的丰度乘 积。
包裹体均一温度(℃)
25
25
20
S74井 5468.8-5729.9 20
15
17块样品,274个测点 15
S79井 5530.84-5703.64
10
10块样品,185个测点
10
个数
5
5
0
0
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
f.临界含油饱和度(临界油析出因子):油、水共存条件下, 油开始排出所应有的最低饱和度。或油、水共存条件下,油相对渗透率 为零时,最大含油饱和度。不同的烃源岩在不同条件下,其值不同,一 般在10%-20%,但可能低到1%。
g.聚集系数(运聚系数):油气地质储量(聚集量)与生油 量之比。统计表明,石油运聚系数多为3%左右,最高达35%。天然气运 聚系数一般在0.5%-2%。

油气藏的驱动类型及储、盖层研究

油气藏的驱动类型及储、盖层研究

关键 词 : 气藏 ; 油 驱动 类 型 ; 储盖层
中图 分类 号
文 章编号 :06 7 8 (0 0 1—0 5一 O 10— 9 12 1 )0 16 3

油 气藏 的驱 动类 型是 进行 油气 藏开 采及 有效 提 高 采收 率 的基础 。储 集层 和盖 层是 油气 聚集 成藏 所 必 须 的两个 基本 要素 。本 文对 此进 行 了分析 并提 出 了存在 的 问题 。 1 油气 藏 的驱动 类型 研 究
为溶解 气驱 ( 兴家 ,0 2[ 陈碧珏 (9 7[进 一 卓 20 )引。 1 8 ) 。 步 指 出溶解 气驱 动能 量 的大小 主要 取决 于油 层 中原 油 溶 解气 体 的数 量 。据 M. 马克 西 莫 夫 (90 [ N. 18 )1 ]
点[ 6 1] - 认为 , 油藏的驱动类型大致可分为 5 , 种 即水
将 水 压驱动 定 义为 : 油藏 开采 后 由于压 力下 降 , 围 周 水体( 边水 、 水 、 人 工 注 水 ) 油 藏 能 量 进 行 补 底 或 对 给, 这就 是 水压驱 动 。 照能量 补给 而使 油藏 压力 的 依 保 持 情况 不 同 , 压驱 动 又 分 为 刚性 水 压驱 动 和 弹 水 性 水压 驱动 两 种 。谢 丛 姣 (04 [等 按 弹性驱 动 的 20)] 4
溶 解 气驱 和 弹性 驱 动 , 属 于 消耗 油 藏 自身 能量 的 都
驱动方 式 ; 靠 向上 的外力 作 用驱 油 , 括 边水驱 动 ② 包
和底水 驱动 , 作用 力强 的为 刚性 水压 驱 动 , 作用力 弱 的为弹性 水 压驱 动 ; 靠 向下 的外力 作 用驱油 , 括 ③ 包
重力 驱动 是石 油靠 本身 重力 作用 流 向井底 的 一 种 驱动 方式 [ 。谢 丛姣 (0 4 [将重 力 驱动 分 为 压 5 ] 2 0 ) 4 头重 力驱 动和 具 自由油面 的重力 驱 动两 种 。陈碧 珏 ( 9 7 [根 据 油 层 倾 角 的陡 缓 , 重 力 驱 动划 分 为 1 8 )3 ] 将

石油与天然气复习思考题及答案

石油与天然气复习思考题及答案

第一章石油和天然气的成分和性质1、石油与可燃有机矿产的概念石油: 指地下岩石空隙中天然生成的,以液态烃为主要化学组分的可燃有机矿产。

由古代的动物、植物遗体演变而来,属有机成因,又具有燃烧能力,总称为可燃有机矿产或可燃有机岩。

2、石油的主要元素组成和化合物组成?石油的元素组成和化合物组成有什么特点?组成石油的化学元素主要有:C、H、O 、S、N,其中C和H两种元素占绝对优势。

元素组成特点:一般石油中碳的含量占84—87%,氢含量为11一14%,两者在石油中以烃的形态出现,占石油成分的97—99%。

剩下的硫、氮、氧及微量元素的总含量一般只有1—4%。

但是,在个别情况下主要由于硫分增多,这个比例可高达3%-7%。

石油的化合物组成归纳起来,主要可分为烃和非烃两类。

烃类:(1)烷烃(2)环烷烃(3)芳香烃非烃化合物主要包括:含硫、含氮、含氧化合物化合物组成特点:碳、氢、硫、氮、氧五种主要元素在石油中可以构成巨大数量的化合物。

不论其数量如何多,但其化学性质都取决于这些元素构成的官能团;每一种官能团都具有特殊的化学特征,在其所连接的各种有机化合物中起着相同的作用。

3、石油的颜色有那些?为什么有白色石油?石油的颜色变化范围很大,从白色、淡黄色、黄褐色、深褐色、黑绿色至黑色。

石油的颜色与胶质—沥青质含量有关,含量越高颜色越深。

白色石油的形成,可能于运移过程中,带色的胶质和沥青质被岩石吸附有关。

4、索可洛夫根据存在的环境将天然气分为哪八大类?①大气;②表层沉积物中的气体;③沉积岩中的气体;④海洋中的气体;⑤变质岩中的气体;⑥岩浆岩中的气体;⑦地慢排出气;⑧宇宙气。

5、根据产出状态,天然气有哪些类型?何谓气藏气、气顶气、凝析气?① 气藏气② 气顶气③ 溶解气④ 凝析气⑤固态气体水合物气藏气:指基本上不与石油伴生,单独聚集成纯气藏的天然气气顶气:指与石油共存于油气藏中呈游离气顶状态的天然气。

凝析气:当地下温度、压力超过临界条件后,液态烃逆蒸发而形成的气体。

石油地质学

石油地质学

《石油地质学》绪论知识点:石油地质学的概念:石油地质学是研究石油和天然气在地壳中生成、运移和聚集规律的学科,是石油和天然气地质学的简称。

研究对象及研究内容:经典内容:1、油气藏的基本要素(基本要素:油气藏中的流体(气、油、水)、储集层、盖层、圈闭和油气藏)2、油气藏形成原理(形成机理:烃源岩和油气成因、油气运移和聚集、油气藏形成及破坏)3、油气分布规律(含油气盆地、盆地中的油气聚集单元和油气在时、空、深上的分布规律)扩展内容:含油气系统和盆地模拟、非常规含油气系统和非常规油气资源以及油气勘探基本程序和油气资源评价方法。

第一章油气藏中的流体——石油、天然气和油田水基本概念:石油:又称原油(Crude Oil ),是以液态形式存在于地下岩石孔隙中的可燃有机矿产。

石油的灰分:石油燃烧后的余烬。

石油的比重:单位体积石油的重量。

石油的荧光性:石油在紫外光照射下可产生荧光的特性,即石油的荧光性。

天然气(Natural Gas):广义:指存在于自然界的一切气体。

凝析气:一种特殊的气藏气。

在地下较高温度、压力条件下,凝析油因逆蒸发作用而气化,呈单一气相存在,故称凝析气。

(凝析油:指在地层特殊温压条件下,液态烃逆蒸发形成的凝析气被开采到地面后,由于温度和压力降低而逆凝结为液态烃即称凝析油。

)(含有凝析油的气藏,称为凝析油气藏,或称为凝析气藏)固态气水合物:(何生、叶加仁等编著《石油及天然气地质学》称为天然气-水合物)油田水(Oil And Gas Field Water):(何生、叶加仁等编著《石油及天然地质学》称为油气田水)广义是指油气田区域内的地下水,包括油气层水和非油气层水。

狭义是指油气田范围内直接与油气层连通的地下水,即油气层水。

油田水矿化度:是指单位体积油气田水中溶解固体物质的总和。

知识点:石油的元素组成:主要是碳(C)和氢(H),其次是氮(N)、硫(S)、氧(O)。

石油化合物组成及特征:碳、氢两元素主要呈烃类化合物存在,是石油组成的主体。

石油地质学第3章

石油地质学第3章

§1油气盖层及 其封闭机理
三、封闭性影响因素
2、岩石的韧性强弱影响裂隙形成: 同时岩石的韧性强弱也会对盖层封闭性造成影响,其 本质是通过影响断裂与裂缝形成的难易程度来间接控 制盖层封闭性。一般来说,韧性岩层要比脆性岩层更 容易产生断裂和裂缝,可见韧性的强弱对盖层封堵油 气非常重要。
§1油气盖层及 其封闭机理
一、盖层的定义及类型
局部盖层只控制油气的局部分布格局,不利于 形成大面积的油气分布,油气保存条件较差。 局部盖层的形成与分布受控于盆地的沉积旋回 性,与生油岩相的配合可有效控制盆地内烃类 的相态和储量分布。
§1盖层类型及 其封闭机理
一、盖层的定义及类型
根据盖层的岩石特征可以分为泥页岩类、蒸发岩类和 致密灰岩类。常见的盖层主要有泥页岩类、蒸发岩类, 如泥岩、页岩、石膏、硬石膏、盐岩、含膏或含盐的 软泥岩与泥岩。致密碳酸盐岩、致密砂岩类盖层相对 较少,也有一些特殊盖层,如铝土岩盖层、冰成盖层、 煤层、侵入岩体和喷出岩体等。
§1油气盖层及 其封闭机理
二、盖层封闭油气的机制
3)其他特殊封闭机理
当早期油藏发生了破坏,或油气向地表运移过程中, 在储层上方由于氧化或降解作用形成沥青,从而对下 伏储层中油气形成封闭。如加利福尼亚州圣华金河谷 Coalinga东部油田的Temblor砂岩油藏,产油砂岩层 从上倾方向到露头的短距离范围内充满了沥青,从而 形成有效的沥青封盖聚集。
§1油气盖层及 其封闭机理
四、盖层的分级评价
表3-2 盖层的分级标准
分类 1
分类 2
级别 封闭的油柱高度/m 级别
特征
A
>300
最好
没有来自油藏的烃类渗入
B
150~300

石油地质学课件——第三章 储集层和盖层

石油地质学课件——第三章 储集层和盖层

孔喉越粗;平坦段越长,说明孔喉的百分含量越大。
孔隙结构定量评价
③饱和度中值压力:非润湿 相饱和度为50%时对应的毛细管 压力(Pc50%),与之对应的喉 道半径称为饱和度中值喉道半径 (r50)。Pc50%越低,r50越大, 则孔隙结构好。
④最小非饱和的孔隙体积百 分数(Smin%):当注入汞的压 力达到仪器的最高压力时,仍没 有被汞侵入的孔隙体积百分数。 一般将小于0.04μm的孔隙称为 束缚孔隙。束缚孔隙含量愈大, 储集层渗透性能越差。
Pt=Vp/Vt*100% 按岩石孔隙大小,有超毛细 管孔隙、毛细管孔隙和微毛细 管孔隙三类。 有效孔隙度:指彼此连通的, 且在一般压力条件下,可以允许 根据孔隙度的大小可将砂岩储集层进行分级 液体在其中流动的超毛细管孔隙 和毛细管孔隙体积之和与岩石总体积的比值。
Pe=Ve/Vt*100%
(一) 岩石孔隙大小分类
渗透率与孔隙度的关系图
孔隙度与渗透率之间的关系
碳酸盐岩储集层:孔隙度 与渗透率无明显的关系。孔隙 大小主要影响其孔隙容积。因 为碳酸盐岩储集空间的分布与 岩石结构特征之间的关系变化 很大,不一定以原生孔隙为主, 有时可以是次生孔隙占主要的。
渗透率与孔隙度的关系图
五、流体饱和度
流体饱和度:油、气、水在储集岩孔隙中的含 量分别占总孔隙体积的百分数称为油、气、水的 饱和度。 在油藏中的油、水分布反映出毛细管压 力同油、水两相压力差相平衡的结果,在油藏的 不同高度上的油、水饱和度是变化的。
岩石结构对原生孔隙的影响
分选:粒度中值一定时:分选差的岩石,小颗粒充填大孔隙, 使孔隙度、渗透率降低;分选好的岩石,孔渗增高。孔隙度、渗 透率随着分选系数趋于1而增加,分选系数So<2时,各种粒径的砂 岩孔隙度、渗透率都随So增大而降低;分选系数So>2时,中细粒 砂岩,孔隙度随So增大而缓慢下降;粗粒和极细粒砂岩,So增加 时,孔隙度基本不变。

石油地质学第3章储集层与盖层

石油地质学第3章储集层与盖层
砂岩储集性能
物源
沉积环境
沉积后作用
碎屑颗粒成分
结构
第二节 碎屑岩储集层
1、物源及沉积环境
受物源和沉积环境控制的因素主要包括:碎屑颗粒的矿物成分、碎 屑颗粒的粒度与分选、碎屑颗粒的排列方式与圆球度、基质含量
1)碎屑颗粒的矿物成分 碎屑颗粒的构成:石英、长石、云母、重矿物、岩屑 ( 石英+长石 >95% ) • 耐风化性: 石英 > 长石 • 亲水/亲油性: 长石 > 石英
“正常情况” “煤”
孔隙结构的主要变量
(据Wardlaw,1990)
(a)孔隙形状
(b)孔-喉连通性
(c)不相关的孔-喉结构 (d)相关的孔-喉结构
(e)空间无序的孔隙结构 (f)空间有序的孔隙结构
第一节 储集层 2、孔隙结构的研究方法
(1)压汞法(mercury porosimetry)
A、原理:模拟地层条件下,油气的运移--是非润湿相流体 (油气)不断排驱储层孔洞缝中的润湿相流体(水)的过程。
(Photograph by R.L. Kugler)
第二节 碎屑岩储集层
2、化学压实作用 发生在颗粒接触点上,即应力集中点上明显的溶解作用。
• 造成颗粒镶嵌接触或缝合接触,使粒间孔变小 • 溶解物质的再沉淀, 进一步使 Ø、K 降低
压溶造成的硅质胶结
孔隙空间缩小
石英增生 压溶接触
第二节 碎屑岩储集层
3、胶结作用
• 胶结物的含量是影响储集物性重要因素
e=VVcrp 100%
• 常简称为“孔隙度” • 储量计算的重要参数 • 储集层大多在10-20%
第一节 储集层
按孔隙度对储集层的评价
孔隙度 (100%)

石油地质学PPT课件

石油地质学PPT课件
• 旋光性:当偏光通过石油时,偏光面会发生旋转,这个角叫旋光角, 多数为右旋,一般随含油地层年代的增长而减小。
• 溶解性:石油难溶于水,而易溶于有机溶剂,如:氯仿、四氯化碳、 苯和石油醚、醇等。
a
30
天然气的成分和性质
• 天然气:广义讲自然界所有天然形成的气体均可以称天然气。狭义的天然气 是气态烃和非烃气。
• 比重:20摄氏度时,一般介于0.75~1.00之间,比重大于0.90的为重 质石油,小于0.90的为轻质石油。
• 粘度:1泊=1达因的切力作用于液体流动速度为1厘米/秒移动1厘米每 平方厘米。石油是粘性流体。厘泊=1/100泊。 大庆油田的石油粘度为19~22厘泊。
• 荧光性:在紫外线照射下发出荧光,是一种冷发光现象,常用于检测 岩芯是否含油。饱和烃不发光,芳香烃和非烃发光。轻质油发浅兰色, 含胶质多的石油一般发绿或黄色,含沥青多的石油发褐色荧光。
3 溶解气:溶于水或石油的天然气,常溶于饱和或过饱和的油藏中,重烃气 高达40%。
4 凝析气:当地下温度、压力超过临界条件后,液态烃逆蒸发(可逆裂解) 为气体,称为凝析气,一旦采出后,由于地表压力、温度降低而凝结为轻质 油,即凝析油。一般分布在地下3000-4000米深处。
5 固态气体化合物:在海洋底特定压力和温度条件下,甲烷气体分子天然地
1939年于老君庙打下第一口井,39年a8月日喷原由10吨。
15
我国现代石油工业
玉门油田的开发,有力地支持了中国的抗日战争
建国后第一个大型油田:新疆克拉玛依油田
大庆油田的发现:1955年始,开始地质普查,1959年9月26日,松基3 井喷出高产油流,从而发现了大庆油田。大庆油田已经稳产5000万吨 以上达20多年了,至少还可以稳产10年以上,是中国最大的国有企业。

第3章储层和盖层

第3章储层和盖层

我国同类碎屑岩砂体产油状况表
砂体类型 河流 三角洲 扇三角洲 水下扇 滩、坝 冲(洪)积扇 湖底扇 油田名称 陕甘宁(J1)、东营孤东(N)、黄骅大港(N)、 冀东南堡 (N)、东濮文留(Es) 辽河(Es)、东营胜坨(Es)、松辽大庆(Kl)、 柴达木朵斯库勒(E) 辽河西部(Es)、南阳双河(Eh)、东濮濮城(Es) 储量规模 千万吨级 亿吨级 千万吨级
第三章
储集层与盖层
储集层的物理性质 常见的储集层类型 盖层
§1 储集层的物理性质
油气在地下是储存在一些岩石的孔、 油气在地下是储存在一些岩石的孔、洞、缝之中的, 缝之中的, 其储集方式就象水充满在海绵里一样。 其储集方式就象水充满在海绵里一样。 凡是能够存储和渗滤流体( 凡是能够存储和渗滤流体(油、气 、水)的岩层都可 以称之为储集层 储集层。 以称之为储集层。 储层之所以能够储集油气,是因为具备了两个特征: 储层之所以能够储集油气,是因为具备了两个特征: 孔隙性——直接决定岩层储集油气的数量; 直接决定岩层储集油气的数量 孔隙性 直接决定岩层储集油气的数量; 渗透性——控制了储层内所含油气的产能。 控制了储层内所含油气的产能 渗透性 控制了储层内所含油气的产能。 而决定孔、渗性好坏的基本因素是岩石的孔隙结构 孔隙结构, 而决定孔、渗性好坏的基本因素是岩石的孔隙结构, 这些构成了储层物性分析的主要内容。 这些构成了储层物性分析的主要内容。
铸体薄片法:将液体有机玻璃(红、蓝)单体在常温下 铸体薄片法 注入岩样,经高温聚合成有机玻璃,磨片后在镜下观察, 可分辨岩石中的孔、喉分布。 铸体法:在注入有机玻 铸体法 璃后,将岩样在HF中浸 泡,溶掉岩石骨架部分 后,可观察孔隙的空间 展布、立体构架。 评价指标: 评价指标
1、排驱压力(Pd) 排驱压力( 饱和度中值压力( 2、饱和度中值压力(Pc50) 3、最小非饱和的孔隙体积百 分数( 分数(Smin%) 4、孔喉半径集中范围和频数

5-3油气藏形成的基本条件

5-3油气藏形成的基本条件
油凹陷斜坡带或古隆起斜坡上,由于岩性、岩相横向 发生变化,烃源岩层和储集层同属一层,两者以岩性
的横向变化方式接触,油气以侧向同层运移为主。
•(3)顶生式生储盖组合:烃源岩层与盖层同属一层,
而储集层位于其下的组合类型。
•(4)自生、自储、自盖式生储盖组合:烃源岩层、
储集层和盖层同属一层。石灰岩中局部裂缝发育段储
12个盆地都大于10×104km2 ,沉积岩体积多在50×104km3以 上,生油岩系总厚度一般在500m以上。
有些盆地面积虽然较小,但沉积岩厚度大,圈闭的有效容 积大,生油层总厚度大,油源丰富,也可形成丰富的油气聚集。
美国西部的洛杉矶盆地,面积仅3900km2。沉积厚度达6000m, 泥质生油岩系厚达2000-3000m,油源极为丰富。储集层、圈闭 条件好,油气十分丰富。该盆地石油可采储量近20×108m3,储 量丰度居世界各含油气盆地之首,俗称“小而肥”盆地。
渤海湾盆地的东营凹陷面积只有5700km2,生、储油条件极好, 目前已发现石油地质储量超过20×108吨,丰富程度可与洛杉矶 盆地相媲美。
(二)有利的生、储、盖组合
生油层中生成的油气能及时运移到良好储集层
中,同时盖层的质量好,能保证运移至储层中的油
气不会逸散。
根据生储盖组合之间的沉积连续性可将其分为 两大类。即连续沉积的生、储、盖组合和被断层或 不整合面所分隔的不连续生、储、盖组合。
油 40 亿;气 7790 亿 4个 油 9.9 亿;气 29940 亿 3个 油 34 亿;气 184080 亿 4个 油 27 亿;气 11200 亿 大油气田 6 个 1 个(气) 1个 1个
41 万 62 万 6万 60.2 万 22.6 万 25 万
• 大盆地形成大油气田,具有体积巨大的生油岩体

石油天然气地质学第5章盖层研究课件.ppt

石油天然气地质学第5章盖层研究课件.ppt
大量统计资料表明,声波时差值越大,泥岩孔隙度越大, 则排替压力越小;所以,泥岩声波时差值与其封闭性之间有较 好的对应关系。
郝石生、陈章明、吕延防等(1995):以松辽盆地的数据 为例,总结了泥岩、粉砂质泥岩和泥质粉砂岩的排替压力与声 波时差之间的对应经验公式:
泥岩:
Pdc 247.7 0.0714t 15.7143 7.4
指出,只要有1米厚的粘土层作盖层,就能起到封闭油气的作 用。如果再加上时间因素,也只需要几米厚就足够了。
别列托对西高加索区下白垩统油层的盖层进行了统计和 分析,认为埋深在1200-3000米范围内,5-10米厚的泥岩可封 闭。 我国:松辽盆地:泥岩盖层厚度下限-20m
川南三叠系气藏石膏盖层下限-6~10m 以上是对泥岩而言,对化学岩却无人涉足。
2. 盖层分类
(1)按分布规模
局部:含油气盆地的局部隆起上 区域:含油气盆地全区覆盖
⑵ 按成分
相对均质盖层(其它岩性夹层<25%) 不均质盖层(其它岩性夹层>25%)
陆源成因:含泥质、粉砂质盖层
化学成因:含岩盐、石膏、硬石膏
⑶ 按成因
冰冻成因:含冰冻砂、粉砂
混合成因:灰泥、膏盐、灰盐、膏灰、
泥冰
特殊盖层:水合物盖层 沥青盖层
7. 泥质盖层的砂质、粉砂质百分含量及泥质系数 呈夹层或杂质形式出现于泥质盖层中的砂、粉砂含量越 高,遮挡力越差。 泥质系数─-泥岩总厚度/盖层总厚度。系数越大,遮挡 能力越强。
8. 盖层中交换Na+含量 Na+含量高,则膨胀性、吸水性、塑性都好,遮挡能力 强(此Fra bibliotek标尚有争议)。
9. 盖层的分散度 分散度(粉碎程度)越高,其渗透率就越小。 10. 盖层岩石塑性 塑性大,盖层好。——不易产生裂缝。 塑性大小顺序:盐岩—硬石膏-富有机质页岩—页岩—粉 砂质页岩—钙质页岩—燧石岩 泥岩塑性的影响:粘土矿物种类和含量

石油地质-第三章-储集层、盖层

石油地质-第三章-储集层、盖层
储集层的孔隙度与渗透率之间的关系岩石的孔隙度和渗透率间无严格的函数关系但有一定的内在联系因孔隙度和渗透率取决于岩石本身的结构与组成凡具有渗透性的岩石均具有一定的孔隙度特别是有效孔隙度与渗透率的关系更为密切对碎屑岩储集层来说一般是pe越大k值越高即k值随pe的增加而有规律的增加
第三章 储集层和盖层
第一节 第二节 第三节 第四节 储集层的基本性质 碎屑岩储集层 碳酸盐岩储集层 盖层
20
30
40
50
60
70
80
90
100
含油饱和度(%)
油、气饱和度与相对渗透率的关系曲线
三.储集层的孔隙度与渗透率之间的关系 岩石的孔隙度和渗透率间无严格的函数关系,但有一定的内在 联系,因孔隙度和渗透率取决于岩石本身的结构与组成,凡具有 渗透性的岩石均具有一定的孔隙度,特别是有效孔隙度与渗透率 的关系更为密切,对碎屑岩储集层来说,一般是Pe越大,K值越高, 即K值随Pe的增加而有规律的增加。 有效孔隙相同,直径小的孔隙比直径大的渗透率低。
1.岩石的矿物成分 碎屑岩的矿物成分主要是石英和长石,它们对储油物性的影响 是不同的。一般石英砂岩比长石砂岩的储油物性好。其原因是: ①亲水性不同,长石比石英强,当被水润湿时,长石表面形成 的液体薄膜比石英厚,一般情况下,这些液体不能流动,因此, 减少了孔隙流动的截面积; ②抗风化能力不同,石英抗风化 能力强,颗粒表面光滑,油气易 通过;长石不耐风化,表面常有 次生高岭土和绢云母,它们对油 气有吸附作用,可吸水膨胀,堵 塞原来的孔隙。 2.岩石的结构构造 沉积岩粒间孔隙的大小、形态和 发育程度主要受碎屑岩颗粒的粒 岩石颗粒 孔隙系统 胶结物 径、分选、磨圆度和填充程度的 岩石孔隙结构示意图 控制。
岩石中流体的相对渗透率与油气、油水的饱和度(某一单相流 体体积和孔隙体积之比)成正相关关系。随着该相流体饱和度的 增加,有效渗透率在增加,相对渗透率值也在增加,直到有效渗 透率等于绝对渗透率,相对渗透率值等于1为止。

石油天然气地质与勘探

石油天然气地质与勘探

第一章
石油、天然气、油田水的成分与性质第一节石油沥青类概述
第二节石油的成分与性质
第一章
石油、天然气、油田水的成分与性质第三节天然气的成分与性质
第四节油田水的成分与性质
第五节重质油与固体沥青
第六节石油沥青类中的碳、氢等同位素
第二章石油与天然气的形成第一节油气成因假说概述
第二章石油与天然气的形成
第二节油气有机成因有关问题一、生成油气的原始物质
二、促使油气生成的因素
三、有机质成烃演化过程
第二章石油与天然气的形成第三节烃源岩研究
第二章石油与天然气的形成第四节天然气成因及其特征
第三章储集层与盖层
第一节储集层(储集岩体)
第三章储集层与盖层第二节盖层与生储盖组合
第四章石油与天然气的运移第一节概述
第二节油气初次运移。

石油地质学 第3章圈闭和油气藏讲解

石油地质学 第3章圈闭和油气藏讲解

③遮挡条件 ①储集层
遮挡条件?
遮挡条件
盖层本身的弯曲作为遮挡 断层遮挡(封闭)
岩性变化遮挡(封闭)
地层不整合遮挡
3、圈闭类型划分
划分方法:根据遮挡层的成因类型进行划分
• 因地层变形与变位形成的构造圈闭
包括:背斜圈闭、断层圈闭、刺穿接触圈闭
• 因纵向上沉积连续性中断而形成的地层圈闭 (与地层不整合有关的圈闭:包括不整合遮挡和不整合
覆盖圈闭) • 因沉积相变或成岩作用导致孔渗性变化而形成
的岩性圈闭 (包括岩性尖灭和透镜体圈闭,原生和和次生成岩圈闭) • 上述各种不同因素共同形成的复合圈闭 • 特殊类型(非常规)(如:水动力圈闭)
部分圈闭类型示意图
圈闭的成因分类
• 构造圈闭
背斜圈闭
断层圈闭
岩体刺穿接触圈闭
• 地层圈闭(与地层不整合有关的圈闭)
第三章 圈闭与油气藏
气 油 水
背斜油气藏
第一节 圈闭与油气藏的概念
一、圈闭
1.圈闭的概念
圈闭:地下适合于油气聚集的场所
从地质特征看,圈闭是周围被致密层所 限定的储集体。
从成藏动力学角度看,圈闭是周围被高 势区所围限的低势空间。
2、圈闭要素
由三个部分组成(圈闭的三要素):
②盖层
②盖层
①储集层
③遮挡条件
构造油气藏:构造圈闭中的油气聚集
构造圈闭
背斜圈闭 断层圈闭 岩体刺穿圈闭
构造油气藏
背斜油气藏 断层油气藏 岩体刺穿油气藏 裂缝性油气藏
一、背斜圈闭和背斜油气藏
背斜圈闭:由背斜作用而形成的圈闭. 由于地层褶皱形成背斜遮挡层而形成的圈闭
背斜油气藏:背斜圈闭中的油气聚集
“背斜学说”(I. C.White, 1885):早期找油理论

《石油地质学》课程笔记

《石油地质学》课程笔记

《石油地质学》课程笔记第一章绪论1.1 石油和天然气在现代社会中的地位石油和天然气是现代社会最重要的化石能源,对于全球经济发展和社会进步具有举足轻重的作用。

它们不仅是能源的主要来源,还是化学工业、农业、医药、制冷和运输等行业不可或缺的原材料。

随着全球经济的快速增长,石油和天然气需求持续增加,导致资源紧张和价格波动。

因此,石油和天然气资源的勘探、开发和利用成为各国政府和企业关注的焦点。

1.2 我国油气地质与勘探发展简史我国石油和天然气的开发利用历史悠久,早在公元前就有关于石油和天然气的记载。

20世纪初,我国开始引进西方的地质理论和勘探技术,开展油气资源的调查和勘探。

新中国成立后,我国油气地质与勘探事业取得了举世瞩目的成就。

1950年代,发现了大庆、胜利等大型油田,使我国成为石油生产大国。

此后,我国在陆地和海域油气勘探不断取得突破,形成了多个重要的油气产区。

1.3 世界油气地质与勘探发展简史世界油气地质与勘探的发展历程与人类对能源的需求密切相关。

19世纪初,人们开始使用煤油作为照明燃料,推动了石油勘探的兴起。

随着内燃机的发明和应用,石油需求激增,促使勘探技术不断进步。

20世纪初,地质学家们提出了油气成因理论,为油气勘探提供了科学依据。

此后,地震勘探、钻井技术、油气藏评价等技术的突破,使得油气勘探领域不断扩大,发现了大量油气田。

第二章石油、天然气、油田水的基本特征2.1 石油的元素组成石油是一种复杂的混合物,主要由碳(C)和氢(H)两种元素组成,碳的含量约占83%至87%,氢的含量约占11%至14%。

此外,石油中还含有少量的硫(S)、氮(N)、氧(O)和微量金属元素等。

2.2 石油的化合物组成石油中的化合物主要包括烷烃、环烷烃和芳香烃。

烷烃是石油中含量最高的化合物,主要包括甲烷、乙烷、丙烷等。

环烷烃包括环戊烷、环己烷等。

芳香烃包括苯、甲苯、二甲苯等。

2.3 石油的馏分组成与组分组成石油可以通过蒸馏分离成不同的馏分,主要包括:轻馏分(液化石油气、汽油)、中馏分(柴油、煤油)、重馏分(润滑油、沥青)和残余油(重油、渣油)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五次课第三章储盖层
(2) 渗透率(permeability)
达西定律: QK P1 P2S
P1
L
L
S
P2
当单相液体呈层状流通过孔隙性介质时,在单位时 间内通过岩石截面积的流量与岩样两端的压力差和 截面积成正比,而与液体通过岩石的长度和液体的
粘度成反比。
Q L
K P1 P2S
渗透率的单位是 m 2
油气藏构成的地质要素
页岩 盖层

第五次课第三章储盖层
第三章
储集层和盖层
(reservoir and caprock)
第五次课第三章储盖层
一、岩石的孔隙性和渗透性
1、储集层和盖层的概念
储集层:能够储存流体, 并且能渗滤流体的岩层称为储集层
孔隙性决定着岩层储存油气的能力 渗透性控制岩层内油气流动的能力
石003井,3517.25m, J1b13 ,中粗砂岩,粒间孔发育, 长石溶孔,石英加大, φ:12.05%,K:6.00md,×50
第五次课第三章储盖层
盆参2井,4440.31m,J1s,粗中砂岩,粒间孔发育,石英、 长石自形加大,φ:15.82%,K:134.0md,×50
第五次课第三章储盖层
溶孔粉-细晶鲕粒白云岩,具残余泥-微晶结构, 以发育粒内溶孔为主,次为粒间溶孔。普光2井,39
(22/75),5×10,(-),井深5164.99m 第五次课第三章储盖层
溶孔粉-细晶鲕粒白云岩,具残余泥-微晶结构, 以发育粒内溶孔为主,次为粒间溶孔。普光2井,37
(50/71),5×10,(-),井深5125.10m 第五次课第三章储盖层
②相对渗透率为零时,流体的饱和度不为零: 束缚水饱和度与临界含油饱和度
级别 1 2 3 4 5
砂岩孔隙度评价 砂岩孔隙度(%)
>20 15-20 10-15 5-10
0-5
第五次课第三章储盖层
评价 很好
好 中等
差 无价值
3、渗透性 (1) 渗透性 渗透性是指在一定的压力差下,岩石允许流体通过 的能力 。
岩石渗透性与非参透性是相对的:
渗透性岩石:砾岩、砂岩、多孔石灰岩、白云岩 非透性岩石:泥岩、盐岩、石膏
拐8井,3215.62m, J1b ,中砂岩,长石溶蚀残晶, 自生高岭石伴生,岩屑粒内溶孔, φ:16.90%, K:2.82md,×50 第五次课第三章储盖层
永1井,5882m,J2x,长石溶蚀残余 10X20,单偏光
第五次课第三章储盖层
22/30a-1井 4665.8m
22/30a-1井 4657.2m
第五次课第三章储盖层
①超毛细管孔隙:孔隙直径>0.5mm,
裂缝宽度>0.25mm,流体可在其中自由流动
②毛细管孔隙:孔隙:0.5-0.0002mm,
裂缝:0.25-0.0001mm,具有毛细管力 的影响,流体不能自由流动
③微毛细管孔隙:孔隙直径<0.0002mm,
裂缝<0.0001mm, 通常压力下流体不 能在其中流动
为绝对渗透率。
储集层渗透率分级
级别
渗透率 (10-3μm2)
评价
油层
气层
1
>1000
极好
2
1000-500好Fra bibliotek常规3
500-100
中等
储层
4
100-10
较差
5
10-1
差-可能 低渗透储层
6
1-0.1
不渗透
7
<0.1第五次课第三章储盖层
致密储层
相渗透率(phase permeability) 有效渗透率(effective permeability)
储集物性
盖层:覆盖在储集层之上,
能够阻止油气向上运动的细粒、致密的岩层
第五次课第三章储盖层
2、孔隙性 (1) 孔隙 广义孔隙:岩石中未被固体物质充填的空间: 包括狭义的孔隙、裂缝、洞穴 狭义孔隙:沉积物中颗粒间、颗粒内和 充填物内的空隙
第五次课第三章储盖层
石003井,3517.25m, J1b13 ,中粗砂岩,粒间孔发育,长石 溶孔,石英加大,砂岩干净,φ:12.05%,K:6.00md,×50
第五次课第三章储盖层
石西2井,3207.96m,J1s21,中粗砂岩,粒间孔发育,石 英自形加大,φ:15.51%,K:53.60md,×50
第五次课第三章储盖层
石007井,3505.22m, J1b13 ,含砾粗砂岩,粒间 孔发育, φ:14.33%,K:41.38md,×50
第五次课第三章储盖层
第五次课第三章储盖层
溶孔粉-细晶鲕粒白云岩,粒间和粒内溶孔均较发育, 孔内普遍充填有沥青。普光2井,36(66/88), 5×10,(第-五次)课第,三章井储盖深层 5121.03m
溶孔粉-细晶鲕粒白云岩,具残余泥-微晶结构, 粒间和粒内溶孔非常发育。普光2井,41(8/67),
5×10,(-),井深5182.92m 第五次课第三章储盖层
第五次课第三章储盖层
(2) 孔隙度(porosity) 孔隙度是衡量岩石孔隙发育程度的一个参数 总孔隙度:岩样中所有孔隙空间的体积之和
(孔隙总体积)与岩样体积的比值
P=[(ΣVp)/Vr]×100%
第五次课第三章储盖层
有效孔隙度:岩样中互相连通的,流体能够 通过的孔隙体积之和与岩样体积的比值
Pe=[(ΣVe)/Vr]×100%
当粘度为1(10-3Pa.s)的液体,在1(105Pa)压差下,通过截面积为1cm2,
长度为1cm的岩样时,若此时的流量正好是1cm3/s,则该岩样的渗透率即
为1 m 2
第五次课第三章储盖层
绝对渗透率(absolute permeability):
当岩石中只有单相流体存在,并且流体与岩石不发生
任何的物理和化学反应,此时岩石对流体的渗透率称
碎裂化溶孔不等晶白云岩,普光第2五井次,课3第4(三章32储/9盖1层),5×10,(-),井深5098.40m
溶孔粗晶白云岩,非常典型的晶间孔, 普光2井,30(36/55),5×10, (-),第井五次课深第三5章0储6盖9层.40m
溶孔粗晶白云岩,非常典型的晶间孔,普光2井, 30(29/55),5×10,(-),井深5068.70m
当多相流体并存时,岩石对其中某一相 流体的渗透率,称为岩石对该相流体的 相渗透率,也称为有效渗透率
第五次课第三章储盖层
相对渗透率(relative permeability):
有效渗透率与绝对渗透率的比值。相对渗透率无单位
第五次课第三章储盖层
相对渗透率特征:
①相对渗透率的 大小与流体饱和 度有关
相关文档
最新文档