第3章储层和盖层-石油与天然气地质学= 西北大学
《石油与天然气地质学》复习题1
《石油与天然气地质学》复习题第一章油气藏中的流体——石油、天然气、油田水一、名词解释石油、石油的灰分、组分组成、石油的比重、石油的荧光性;天然气、气顶气、气藏气、凝析气(凝析油)、固态气水合物、煤型气、煤成气、煤层气;油田水、油田水矿化度二、问答题1. 简述石油的元素组成。
2. 简述石油中化合物组成的类型及特征。
3.何谓正构烷烃分布曲线?在油气特征分析中有哪些应用?4. 简述Tissot和Welte 三角图解的石油分类原则及类型。
5. 简述海陆相原油的基本区别。
(如何鉴别海相原油和陆相原油?)6. 描述石油物理性质的主要指标有哪些?7. 简述天然气依其分布特征在地壳中的产出类型及分布特征。
8. 油田水的主要水型及特征。
9. 碳同位素的地质意义。
第二章油气生成与烃源岩一、名词解释沉积有机质、干酪根、成油门限(门限温度、门限深度)、生油窗、烃源岩、有机碳、有机质成熟度、氯仿沥青“A”、CPI值、TTI法(值);二、问答题1.沉积有机质的生化组成主要有哪些?对成油最有利的生化组成是什么?2.按化学分类,干酪根可分为几种类型?简述其化学组成特征。
3.论述有机质向油气转化的现代模式及其勘探意义。
(试述干酪根成烃演化机制)4.试述有机质成烃的主要控制因素。
(简述时间—温度指数(TTI)的理论依据、方法及其应用。
)5.试述有利于油气生成的大地构造环境和岩相古地理环境(地质条件)。
6.天然气可划分哪些成因类型?有哪些特征?7.试述生油理论的发展。
8.评价生油岩质量的主要指标。
9.油源对比的基本原则是什么?目前常用的油源对比的指标有哪几类?第三章储集层和盖层一、名词解释储集层、绝对孔隙度、有效孔隙度、绝对渗透率、有效(相)渗透率、相对渗透率、孔隙结构、流体饱和度、砂岩体、盖层、排替压力二、问答题1.试述压汞曲线的原理及评价孔隙结构的参数。
2.碎屑岩储集层的孔隙类型有哪些?影响碎屑岩储集层物性的地质条件(因素)。
(简述碎屑岩储集层的主要孔隙类型及影响储油物性的因素。
石油与天然气地质学 储集层和盖层
缝)原生孔隙 沉积颗粒间:粒间孔、晶间孔等等
(2)次生孔隙 ①溶蚀、淋滤作用: 溶蚀孔、洞
②构造作用:构造裂缝
孔隙按大小的分类
①超毛细管孔隙:孔隙直径>0.5mm,裂缝宽度>0.25mm
流体可在其中自由流动
②毛细管孔隙:孔隙:0.5-0.0002mm,裂缝:0.25-0.0001mm,
盖层
储油气层
第三章 储集层和盖层
• 第一节 岩石的孔隙性和渗透性 • 第二节 碎屑岩储集层 • 第三节 碳酸盐岩储集层 • 第四节 其它岩类储集层 • 第五节 盖层
基本概念
储集岩与储层
1.储集岩: 具有孔隙空间并能储渗流体的岩石。 2.储层:凡是能够储存和渗滤流体的岩层(reservoir rock)。( 但不一定含有油气) 3.含油气层 :储集层中储集了一定数量的石油或天然气, 称含油气层(oil-bearing rock)。 4.产层(pay) :已经开采的具有工业价值的含油气层。
当单相液体呈层状流通过孔隙性介质时,在单位时间内
通过岩石截面积的流量与岩样两端的压力差和截面积成正比,
而与液体通过岩石的长度和液体的粘度成反比。
几种渗透率的概念
1)绝对渗透率(absolute permeability):
当岩石中只有单相流体存在,并且流体与岩石不发生任何的物 理和化学反应,此时岩石对流体的渗透率称为绝对渗透率。
100 %
有效孔隙度:岩样中互相连通的,流体能够 通过的孔隙体积之和与岩样体积的比值
e
Ve Vr
100 %
3、有效孔隙度的评价指标
特高孔隙度
Фe≥30%
高孔隙度
25%≤Фe<30%
中孔隙度
15%≤Фe<25%
最新石油与天然气地质学教案——第二章 储集层和盖层
第二章储集层和盖层第一节储集层的物性参数储集层的基本特征是具孔隙性和渗透性,其孔隙渗透性的好坏、分布规律是控制地下油气分布状况、油气储量及产量的主要因素。
一、储集层的孔隙性绝对孔隙度:岩样中所有孔隙空间体积之和与该岩样总体积的比值。
是衡量岩石孔隙的发育程度。
Pt=V p/V t*100%按岩石孔隙大小,有超毛细管孔隙、毛细管孔隙和微毛细管孔隙三类。
1.超毛细管孔隙:直径>0.5mm,相应裂缝宽度>0.25mm,液体在重力作用下自由流动。
2.毛细管孔隙:直径0.5~0.0002mm,裂缝宽度0.25~0.0001mm,由于毛细管力的作用,液体不能自由流动。
3. 微毛细管孔隙:直径<0.0002mm,裂缝宽度<0.0001mm,液体在非常高的剩余流体压力梯度下流动。
有效孔隙度:指彼此连通的,且在一般压力条件下,可以允许液体在其中流动的超毛细管孔隙和毛细管孔隙体积之和与岩石总体积的比值。
Pe=V e/V t*100%二、渗透性渗透性:指在一定的压差下,岩石允许流体通过其连通孔隙的性质。
对于储集层而言,指在地层压力条件下,流体的流动能力。
其大小遵循达西定律。
K即为岩石的渗透率,国际单位为μm2,常用单位为达西(D)。
国际单位:μ=1Pa.s △P=1Pa F=1m2 L=1m Q=1cm3/s则:K=1μm2常用单位:μ=1厘泊△P=1大气压 F=1cm2 L=1cm Q=1cm3/s则:K=1D=1000md1D=0.987μm21D=987*10-6μm2绝对渗透率:单相液体充满岩石孔隙,液体不与岩石发生任何物理化学反应,测得的渗透率称为绝对渗透率。
有效渗透率:储集层中有多相流体共存时,岩石对每一单相流体的渗透率称该相流体的有效渗透率。
油气水分别用Ko、Kg、Kw表示。
相对渗透率:对每一相流体局部饱和时的有效渗透率与全部饱和时的绝对渗透率之比值,称为该相流体的相对渗透率。
油气水分别表示为Ko/K、Kg/K、Kw/K。
石油地质学第3章
§1油气盖层及 其封闭机理
三、封闭性影响因素
2、岩石的韧性强弱影响裂隙形成: 同时岩石的韧性强弱也会对盖层封闭性造成影响,其 本质是通过影响断裂与裂缝形成的难易程度来间接控 制盖层封闭性。一般来说,韧性岩层要比脆性岩层更 容易产生断裂和裂缝,可见韧性的强弱对盖层封堵油 气非常重要。
§1油气盖层及 其封闭机理
一、盖层的定义及类型
局部盖层只控制油气的局部分布格局,不利于 形成大面积的油气分布,油气保存条件较差。 局部盖层的形成与分布受控于盆地的沉积旋回 性,与生油岩相的配合可有效控制盆地内烃类 的相态和储量分布。
§1盖层类型及 其封闭机理
一、盖层的定义及类型
根据盖层的岩石特征可以分为泥页岩类、蒸发岩类和 致密灰岩类。常见的盖层主要有泥页岩类、蒸发岩类, 如泥岩、页岩、石膏、硬石膏、盐岩、含膏或含盐的 软泥岩与泥岩。致密碳酸盐岩、致密砂岩类盖层相对 较少,也有一些特殊盖层,如铝土岩盖层、冰成盖层、 煤层、侵入岩体和喷出岩体等。
§1油气盖层及 其封闭机理
二、盖层封闭油气的机制
3)其他特殊封闭机理
当早期油藏发生了破坏,或油气向地表运移过程中, 在储层上方由于氧化或降解作用形成沥青,从而对下 伏储层中油气形成封闭。如加利福尼亚州圣华金河谷 Coalinga东部油田的Temblor砂岩油藏,产油砂岩层 从上倾方向到露头的短距离范围内充满了沥青,从而 形成有效的沥青封盖聚集。
§1油气盖层及 其封闭机理
四、盖层的分级评价
表3-2 盖层的分级标准
分类 1
分类 2
级别 封闭的油柱高度/m 级别
特征
A
>300
最好
没有来自油藏的烃类渗入
B
150~300
石油地质学课件——第三章 储集层和盖层
孔喉越粗;平坦段越长,说明孔喉的百分含量越大。
孔隙结构定量评价
③饱和度中值压力:非润湿 相饱和度为50%时对应的毛细管 压力(Pc50%),与之对应的喉 道半径称为饱和度中值喉道半径 (r50)。Pc50%越低,r50越大, 则孔隙结构好。
④最小非饱和的孔隙体积百 分数(Smin%):当注入汞的压 力达到仪器的最高压力时,仍没 有被汞侵入的孔隙体积百分数。 一般将小于0.04μm的孔隙称为 束缚孔隙。束缚孔隙含量愈大, 储集层渗透性能越差。
Pt=Vp/Vt*100% 按岩石孔隙大小,有超毛细 管孔隙、毛细管孔隙和微毛细 管孔隙三类。 有效孔隙度:指彼此连通的, 且在一般压力条件下,可以允许 根据孔隙度的大小可将砂岩储集层进行分级 液体在其中流动的超毛细管孔隙 和毛细管孔隙体积之和与岩石总体积的比值。
Pe=Ve/Vt*100%
(一) 岩石孔隙大小分类
渗透率与孔隙度的关系图
孔隙度与渗透率之间的关系
碳酸盐岩储集层:孔隙度 与渗透率无明显的关系。孔隙 大小主要影响其孔隙容积。因 为碳酸盐岩储集空间的分布与 岩石结构特征之间的关系变化 很大,不一定以原生孔隙为主, 有时可以是次生孔隙占主要的。
渗透率与孔隙度的关系图
五、流体饱和度
流体饱和度:油、气、水在储集岩孔隙中的含 量分别占总孔隙体积的百分数称为油、气、水的 饱和度。 在油藏中的油、水分布反映出毛细管压 力同油、水两相压力差相平衡的结果,在油藏的 不同高度上的油、水饱和度是变化的。
岩石结构对原生孔隙的影响
分选:粒度中值一定时:分选差的岩石,小颗粒充填大孔隙, 使孔隙度、渗透率降低;分选好的岩石,孔渗增高。孔隙度、渗 透率随着分选系数趋于1而增加,分选系数So<2时,各种粒径的砂 岩孔隙度、渗透率都随So增大而降低;分选系数So>2时,中细粒 砂岩,孔隙度随So增大而缓慢下降;粗粒和极细粒砂岩,So增加 时,孔隙度基本不变。
石油地质学第3章储层和盖层
形状,规模可大可小。
河流相
2.三角洲砂岩体 三角洲平原:分 流河道砂岩体;
三角洲前缘:水
下分流河道、河口坝、 远坝、前缘席状砂等 砂岩体; 前三角洲:以泥
岩为主。
3.海岸砂岩体 主要有海 滩砂、砂坝、 堤岛、风成砂 丘等砂岩体,
一般呈带状或
串珠状沿岸线
分布,分选好。
4.浊积砂岩体 平面呈扇形,成因有海底扇、深海扇、湖底 扇等。扇中部分一般有分选较好的砂质沉积,可 构成良好储层。
岩石中的孔隙 (红色)
一.孔隙性
储集层中的孔隙: Vp 总孔隙度/绝对孔隙度(φ t): t 100 % Vt 孔隙通常可分为三类: ① 超毛细管孔隙(d>500m) 连通孔隙/有效孔隙 ② 毛细管孔隙(500~ 2 m) ③ 微毛细管孔隙(d<2 m)
有效孔隙度 (φ e):
评价指标:
1、排驱压力(Pd) 2、饱和度中值压 力(Pc50) 3、最小非饱和的 孔隙体积百分数 (Smin%) 4、孔喉半径集中 范围和频数
我国部分油区砂岩储集层的物性特征
地区 层系 孔隙度 % 20 —30 20 —25 17 —20 10 —17 20 —30 10 —20 16 —23 7 —16 渗透率 毫达西 100 —300 30 —100 10 —30 0.5 —10 20 —400 0.3 —20 60 —1000 0.3 —40 排驱压力( 汞) 大气压 0.1—1.5 1—4 4—8 10—20 0.2 —4 3—15 0.2 —1 2—7 7—10 5—9 <0.1 —5 9—14 15—45 1—5 9 —15 15 —25 15 —25 <0.1 0.1—5 5 —300 2 —500 >20 3—30 <l 一 4 0.2 —6 饱和度中值 毛管压力 ( 汞)大气压 0.7—3 3 —10 0 —80 >100 1—6 6 —40 1—6 15 —50 30 —50 40 —90 >100 >70 10 一>50 8 —20 2 —25 如裂缝发 育可产气 无自然产能 中 中一高 晶间孔 杂基内微孔隙 杂基内微孔隙、拉间孔 粒间孔、杂基内微孔隙 产微气 晶间孔 高 中 中一低 低 中 低 中 无自然产能 粒间孔隙 充填未满孔、胶结物晶间 孔,粒间孔、构造裂缝 充填未满孔、杂基内微孔隙 杂基内微孔隙、晶间隙 粒间孔、溶蚀孔隙 杂基内微孔隙 粒间孔、杂基内微孔隙 杂基内微孔隙 产能 主要孔隙类型
第三章第四节__构造圈闭和油气藏
构造圈闭与油气藏[内容提要] 由于地壳运动使储集层顶面发生了变形或变位而形成的圈闭,称为构造圈闭,在其中聚集了烃类之后就称为构造油气藏。
它是最重要的一类油气藏。
它进一步可分为背斜、断层、裂缝及岩体刺穿构造油气藏等。
关键词:构造圈闭油气藏一.圈闭和油气藏的概念1.圈闭圈闭是地下储集层中能够阻止油气继续向前运移,并且在其中聚集起来的一种场所。
(它实际上只是表明其中能够有油气,但无论其中是否有油气,都可以称为圈闭)圈闭的形成必须具有三个必要条件:(1)储集层(2)盖层(3)一定的遮挡条件(封闭条件)。
而遮挡条件的形成,即可以是背斜,也可以是断层、不整合或岩石的物性变化引起。
这样,当组成圈闭的这三部分配合良好时,其中的储集层便处于上方或四周被不渗透岩层所包围或阻隔的状态。
一旦油气通过这里,它便能够起到捕获油气的作用,从而在其中形成油气聚集。
2.油气藏当圈闭中聚集了一定数量的油气之后,就形成了油气藏(油藏、气藏)。
其定义为:油气藏是单一圈闭内具有独立压力系统和统一油水(气水)界面的油气聚集,是地壳中最基本的油气聚集单位。
不具备以上两个条件,即使位于同一面积上的油气聚集也不能看作是同一油气藏。
由此可见,圈闭是油气藏形成的不可缺少的基本条件。
同时,圈闭的类型还决定着油气藏的类型及其勘探方法;圈闭的位置和埋藏深度是设计井位和井深的依据;圈闭容积的大小又直接影响其中油气的可能储量多少。
这正是石油地质工作者十分重视寻找和研究圈闭的原因。
二.构造圈闭由于地壳运动使储集层顶面发生了变形或变位而形成的圈闭,称为构造圈闭,在其中聚集了烃类之后就称为构造油气藏。
根据其变形或变位及储层的变化特点可分为:背斜圈闭和油气藏、断层圈闭和油气藏、裂缝性背斜圈闭和油气藏、刺穿圈闭和油气藏AAA一、背斜圈闭和油气藏1、概念背斜油气藏:由于储集层发生褶皱变形,其上部又为非渗透性岩层所覆盖遮挡,底面或下倾方向被高油气势面或非渗透性岩层联合封闭而形成的圈闭即为背斜圈闭,聚集油气后,成为背斜油气藏。
西北大学博士入学考试复习题-石油天然气地质
一、概念:1、天然气狭义:但是石油和天然气地质学界所讲的是狭义的天然气,系指与油田和气田有关的可燃气体,成分以气态烃为主,多与生物成因有关。
2、储层凡是能够储存和渗滤流体的岩石均称为储集岩,由储集岩构成的地层称为储集层,即储层。
3、盖层盖层是指位于储集层上方,能阻止储集层中油气向上逸散的岩层。
4、烃源岩通常我们将能够生成石油和天然气的岩石称为生油岩,又叫做烃源岩。
5、圈闭适合于油气聚集、形成油气藏的场所,称为圈闭。
圈闭由三部分组成,储集层、盖层、阻止油气继续运移、造成油气聚集的遮挡物。
总之圈闭是具备捕获分散烃类形成油气聚集的有效空间,具备储藏油气的能力,但圈闭中不一定都有油气。
6、含油气盆地含油气盆地指的是地壳上具有统一的地质发展历史,发育着良好的生、储、盖组合及圈闭条件,并已发现油气田的沉积盆地。
7、油气田油气田是指受单一局部构造或者地层因素控制的,同一产油面积上的油藏、气藏、油气藏的总和。
8、油气藏油气藏:是地壳上油气聚集的基本单元,是油气在单一圈闭中的聚集,具有独立压力系统和统一的油水界面。
更具体的说,就是一定数量的运移着的油气,由于遮挡物的作用,阻止了它们继续运移,而在储集层中聚集起来,就形成了油气藏。
9、初次运移油气自烃源岩向储集层中的运移,称为初次运移。
10、二次运移石油和天然气进入储集层以后的一切运移,都称为二次运移。
11、滚动勘探开发所谓滚动勘探开发是指,对于复式油气聚集带(区)或复杂油气田,从评价勘探到油气田全面投入开发阶段,在采取整体控制的基础上,勘探一块,开采一块,评价勘探与油田开发紧密结合、交叉进行的工作方法。
12、储量石油与天然气储量是指埋在地下的石油和天然气的数量。
它是油气田勘探工作成果的综合反映,是油气田开发的物质基础,也是石油工业发展和油田建设的依据。
13、石油石油是由各种碳烃化合物和少量杂质组成的存在于地下岩石孔隙中的液态可燃有机矿产,是成分十分复杂的天然有机化合物的混合物。
石油地质学第3章储集层与盖层
物源
沉积环境
沉积后作用
碎屑颗粒成分
结构
第二节 碎屑岩储集层
1、物源及沉积环境
受物源和沉积环境控制的因素主要包括:碎屑颗粒的矿物成分、碎 屑颗粒的粒度与分选、碎屑颗粒的排列方式与圆球度、基质含量
1)碎屑颗粒的矿物成分 碎屑颗粒的构成:石英、长石、云母、重矿物、岩屑 ( 石英+长石 >95% ) • 耐风化性: 石英 > 长石 • 亲水/亲油性: 长石 > 石英
“正常情况” “煤”
孔隙结构的主要变量
(据Wardlaw,1990)
(a)孔隙形状
(b)孔-喉连通性
(c)不相关的孔-喉结构 (d)相关的孔-喉结构
(e)空间无序的孔隙结构 (f)空间有序的孔隙结构
第一节 储集层 2、孔隙结构的研究方法
(1)压汞法(mercury porosimetry)
A、原理:模拟地层条件下,油气的运移--是非润湿相流体 (油气)不断排驱储层孔洞缝中的润湿相流体(水)的过程。
(Photograph by R.L. Kugler)
第二节 碎屑岩储集层
2、化学压实作用 发生在颗粒接触点上,即应力集中点上明显的溶解作用。
• 造成颗粒镶嵌接触或缝合接触,使粒间孔变小 • 溶解物质的再沉淀, 进一步使 Ø、K 降低
压溶造成的硅质胶结
孔隙空间缩小
石英增生 压溶接触
第二节 碎屑岩储集层
3、胶结作用
• 胶结物的含量是影响储集物性重要因素
e=VVcrp 100%
• 常简称为“孔隙度” • 储量计算的重要参数 • 储集层大多在10-20%
第一节 储集层
按孔隙度对储集层的评价
孔隙度 (100%)
03 第二章 储集层和盖层——【石油地质学 姜福杰】
的渗透率即为m1 2
第一节 岩石的孔隙性和渗透性
绝对渗透率(absolute permeability): 当岩石中只有单相流体存在,并且流体与岩石不发生
任何的物理和化学反应,此时岩石对流体的渗透率称
为绝对渗透率。 储集层渗透率分级
级别
渗透率 (10-3μm2)
评价
油层
气层
1
>1000
极好
21000-500源自流体自由流动疏松砂岩、大裂缝、溶洞
孔隙
孔
一般常见砂岩、微裂缝
隙
毛细管孔隙
逐
孔隙直径介于0.5~
渐
2×10-4mm,裂缝
减
宽度介于0.25~
小
1×10-4mm之间
外力大于毛管阻力,
流体流动
孔隙
孔隙
致密砂岩、泥岩
微毛细管孔隙
通常温、压下,
孔隙直径<2×10-4mm, 流体不可流动
裂缝宽度<1×10-4mm
有效渗透率与绝对渗透率的比值。 相对渗透率无单位 Ko/K、Kg/K、Kw/K
相对渗透率影响因素:
①相对渗透率与绝对 渗透率有关
②相对渗透率与流体性质有关
③相对渗透率的大小与流 体饱和度有关相。只有流 体的饱和度达到一定量时, 才有相对渗透率。 临界饱和度
第一节 岩石的孔隙性和渗透性 三、岩石的孔喉结构 1. 孔隙系统构成
岩石孔隙系统示意图
(1岩石颗粒;2胶结物;3孔隙系统)
第一节 岩石的孔隙性和渗透性
孔隙与喉道的不同配置决定储集层具有不同性质。
储集层特征 好
较好 较差
差
孔隙直径 大
较大 大 低
喉道 大
较粗 较细
2012年西北大学石油与天然气地质原题及答案整理
原始氢含量较高,但低于Ⅰ型甘酪根,H/C原子比介于0.65-1.25,O/C原子比介于0.04-0.13。属于高饱和度的多环碳骨架,含中等长度直链烷烃和环烷烃甚多,也含多环芳香烃及杂原子官能团;来源于海相浮游生物和微生物的混合有机质;生油潜能中等。Ⅲ型甘酪根:
原始氢含量低,氧含量高,H/C原子比介于0.46-0.93,O/C原子比介于
(5)地层不整合对油气分布的控制
不整合对油气分布也有重要的控制作用。世界上有大量油气聚集在不整合附近,特别是在不整合面之下。不整合之下的风化淋滤带是有利储集层的分布带。不整合面之下的岩石经过长期的风化剥蚀和溶解淋滤,形成了孔隙、裂缝发育的风化淋滤带。这些岩石可以作为油气运移的通道和储集岩,特别是在碳酸盐岩地区,这种不整合面之下的风化淋滤带特别发育,为储集油气的重要空间。不整合面之下是油气聚集的重要场所。
(4)深部高温生气阶段
当深度超过6000-7000m,沉积物已进入变生作用阶段,达到有机质转换的末期,相当于半无烟煤-无烟煤的高度碳化阶段。温度超过了250℃,以高温高压为特征,已形成的液态烃和重质气态烃强烈裂解,变成热力学上最稳定的甲烷;甘酪根残渣释放出甲烷后进一步缩聚,H/C原子比降至0.45-0.3,接近甲烷生成的最低限。
五、主要储集层的岩性与孔隙特征类型
储层是指具有相互连通的孔隙、裂隙等储集空间,且能够储存和渗流流体的岩层。储集层一般包括碎屑岩储集层、碳酸盐储集层、其他岩类储集层(火山岩储集层、结晶岩储集层、泥质岩储集层)。
1、碎屑岩储集层
碎屑岩储集层主要包括各种砾岩、砂砾岩、砂岩、粉砂岩等碎屑沉积岩,主要由成分复杂的矿物碎屑、岩石碎屑和一定数量的胶结物所组成。是目前国内外勘探开发的主要储集类型。在沉积、成岩过程、构造运动等地质因素的耦合作用下形成的碎屑岩储集空间包括原生孔隙和次生孔隙。
《石油天然气地质与勘探》第3章_储集层和盖层
五、储集岩(层)的孔隙结构
——岩石所具有的孔隙和喉道的几何形状、大小、分布
及其连通关系。
压汞压法测汞岩法石研孔隙究结岩构石:孔隙P结c 构《毛细管压力曲线图》
目前最定小量非研饱究和的岩孔石隙孔体隙系结构最主要的方法之一。 0.075
(3-4)
Pb
百分基数本Sm原in理% 如下:
毛细管压力,MPa
孔喉半径,um
不同储层孔 隙度与渗透 率的关系图 (Selley,1 988)(黑 色为孔隙)
岩石的孔隙度与渗透率之间通常没有严格的函数 关系,渗透率一般随有效孔隙度的增大而增大,但具 体情况视岩性、储层类型的不同而不同。
碎屑岩储集层的有效孔隙度与渗透率的有较好的 正相关关系。
碳酸盐岩有效孔隙度与渗透率无明显关系。孔洞 不发育者与碎屑岩具有相似的规律;裂缝发育者裂缝 比孔隙对渗透率的影响大。
束缚水主要有亲水岩石颗粒表面的薄膜滞水及微 细毛管孔道中的毛管滞水等,相应的饱和度称为束
缚水饱和度,用符号Swc表示。
石油与天然气地质学
和注水量,避免超压注水导致储层破裂。
提高采收率途径和措施
注水开发
通过向油藏注水补充地层能量,提高采收率。注水方式包 括边缘注水、切割注水、面积注水和点状注水等。
气体驱替
利用天然气、二氧化碳等气体驱替油藏中的原油,提高采 收率。气体驱替方式包括连续气驱、周期注气等。
化学驱替
向油藏注入化学剂(如聚合物、表面活性剂、碱等),改 善原油流动性,提高采收率。化学驱替方式包括聚合物驱 、三元复合驱等。
开发过程中储层保护策略
钻井过程中的储层保护
01
优化钻井液性能,减少钻井液对储层的损害;采用欠平衡钻井
技术,降低钻井液柱压力,减少压差卡钻风险。
完井过程中的储层保护
02
优化完井方式,如采用裸眼完井、筛管完井等,减少完井作业
对储层的损害。
注水开发过程中的储层保护
03
优化注水水质,减少注入水对储层的损害;合理控制注水压力
04 油气运移与聚集机制探讨
油气运移方式及驱动力分析
运移方式
油气在地下岩层中的运移方式主要包 括渗透、扩散和涌流等,这些方式受 岩层物性、流体性质和驱动力等因素 影响。
驱动力分析
油气运移的主要驱动力包括浮力、水 动力、毛细管力和构造应力等,这些 力在油气运移过程中起着重要作用。
油气聚集条件及过程模拟
包括水平井、多分支井、大位移井、欠平 衡钻井、自动化智能化钻井等技术的不断 发展和应用,提高了钻井效率和质量。
未来钻井工程将更加注重环保、高效、 智能化发展,推动石油和天然气工业 的可持续发展。
钻井工程面临的挑战
包括复杂地层条件(如高温高压、高含硫等 )、深海和超深海环境、环保要求日益严格 等,对钻井工程技术和设备提出了更高的要 求。
石油地质-第三章-储集层、盖层
第三章 储集层和盖层
第一节 第二节 第三节 第四节 储集层的基本性质 碎屑岩储集层 碳酸盐岩储集层 盖层
20
30
40
50
60
70
80
90
100
含油饱和度(%)
油、气饱和度与相对渗透率的关系曲线
三.储集层的孔隙度与渗透率之间的关系 岩石的孔隙度和渗透率间无严格的函数关系,但有一定的内在 联系,因孔隙度和渗透率取决于岩石本身的结构与组成,凡具有 渗透性的岩石均具有一定的孔隙度,特别是有效孔隙度与渗透率 的关系更为密切,对碎屑岩储集层来说,一般是Pe越大,K值越高, 即K值随Pe的增加而有规律的增加。 有效孔隙相同,直径小的孔隙比直径大的渗透率低。
1.岩石的矿物成分 碎屑岩的矿物成分主要是石英和长石,它们对储油物性的影响 是不同的。一般石英砂岩比长石砂岩的储油物性好。其原因是: ①亲水性不同,长石比石英强,当被水润湿时,长石表面形成 的液体薄膜比石英厚,一般情况下,这些液体不能流动,因此, 减少了孔隙流动的截面积; ②抗风化能力不同,石英抗风化 能力强,颗粒表面光滑,油气易 通过;长石不耐风化,表面常有 次生高岭土和绢云母,它们对油 气有吸附作用,可吸水膨胀,堵 塞原来的孔隙。 2.岩石的结构构造 沉积岩粒间孔隙的大小、形态和 发育程度主要受碎屑岩颗粒的粒 岩石颗粒 孔隙系统 胶结物 径、分选、磨圆度和填充程度的 岩石孔隙结构示意图 控制。
岩石中流体的相对渗透率与油气、油水的饱和度(某一单相流 体体积和孔隙体积之比)成正相关关系。随着该相流体饱和度的 增加,有效渗透率在增加,相对渗透率值也在增加,直到有效渗 透率等于绝对渗透率,相对渗透率值等于1为止。
石油地质学-第三讲储集层和盖层
二、储集层的渗透性
渗透性,在压力差存在条件下,岩石允许流体通过 其连通孔隙的性能。
习惯将流体较易通过其连通孔隙的岩石,称渗透性 岩石;把不易通过或通过速度慢的岩石称为非渗透性 岩石。渗透性用渗透率表示。
实验表明:当单相流体通过多孔介质沿孔隙通道呈 层状流动时,遵循直线渗透定律。
Q=K(P1 - P2)S /μL
①任一相流体相渗透率均小于绝对渗透率;
②相渗透率的增加程度与该相在介质中饱和度成正比(So越小,Sw越大,Ko越 小;So越大,Kw越小,Ko越大;当So达100%时,Ko=K=1, Kw=0)
三、储层的孔隙结构
•孔隙结构,指岩石所具有的孔隙和喉道的几何形状、 大小、分布及其连通关系; •孔隙, 岩石系统中膨大的空间; •喉道,连通孔隙的细小部分;
第三章 储集层和盖层
基本内容提要:
储集层基本特征是孔隙性和渗透性;而决定孔 隙性和渗透性好坏的根本因素是孔隙结构,与沉积 作用和成岩后生作用改造密切相关。
盖层好坏影响着油气在地下聚集和保存;盖层 的形成机理和相对性是盖层的重要条件,评价盖层 从宏观和微观两方面进行。
第一节 储集层的物理性质
各种不同类型的岩石均具有一定的孔 隙和裂隙。
决定孔隙度好、坏 的主要是孔隙;决 定渗透率好坏的主 要是喉道。
排(饱(替P和Pdc压)度50力:中)值:是指压是力指
压 大 力非为汞量。实注换润50验入言湿%中岩之时相汞样,对饱开的是应和始压非的度 润毛湿相细开管始压注力入。岩与 样之中最相大对的应连的通喉喉道 道半的毛径细,管称压为力饱。和 在 上 (度(毛压图细力中中r5管最A0值))压小喉所,力的道对曲拐Pc应半线点50径 的越压力低即,为r5排0驱越压大, 力则。岩岩石石排孔驱隙压结力构 越越小,好说;明反大之孔,喉则 越越多,差孔。隙结构越
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造裂缝:成组分布、具一定方向性,可
分为张、压、扭性。
碳酸盐岩溶解作用与喀斯特地貌
㈡.影响碳酸盐岩储层物性的因素
① 沉积环境:水动力条件强有助于原生孔隙的形成。 ②成岩后生作用:
溶解作用:地下水带走了易溶矿物形成次生孔隙。
胶结作用:可发生在沉积物堆积之后的任何阶段,
•了解岩石孔隙结构的方法:压汞法、铸体法及铸体 薄片法。 •压汞法研究岩石孔隙结构的理论根据是毛细管原理。
2 cos Pc rc
大部分沉积岩亲水,当油气通过孔隙介质时一 般作为非润湿相,都要面临毛细管压力的作用。 实验时,汞作为非润湿相,其属性可近似代表 油、气通过岩石孔隙介质时的情形。 从外界向岩样注入汞 时,随外界压力由小逐渐 增大,汞最先进入的是一 些大的孔隙,然后才是小 的孔隙和喉道。
• • • • •
Reservoir rock (bed) Caprock Porosity (porous media) Permability Porous structure
三.孔隙结构
储集岩的孔隙结构是指岩石所具有的孔隙和喉道 的几何形状、大小、分布及其相互连通关系。 岩石的孔隙结构由孔隙和喉道组成。孔隙主要起 储存流体的作用,而喉道主要影响岩石的渗透性。
并可多次进行,多世代的胶结对孔隙系统的破坏作用更
为严重。主要胶结物是亮晶方解石、石膏、硬石膏。
成 岩 作 用 对 碳 酸 盐 岩 空 隙 的 影 响
重结晶作用——随T、P 的升高,矿物成分不变,而 晶体大小、形状和排列方位 发生了变化,使得原本致密、 细粒结构的岩石→粗粒、疏 松、多晶间孔隙的岩石,从 而改善了储层物性; 白云岩化作用——即白 云石取代方解石、硬石膏和 其它矿物的作用。一般对孔、 渗性有好的作用。
南堡冀东(Es)、黄骅羊二庄、沈青庄、北塘(Es) 百万—千万吨级 东濮文留(Es)、 黄骅南大港(Es)、 东营平方王(Es) 准噶尔西北缘克拉玛依(T)、鸭儿峡 辽河(Es)、黄骅大港(Es)、东濮白庙(Es) 千万吨级 亿吨级 千万吨级
二.碳酸盐岩储集层
(一) 孔隙空间特征
碳酸盐岩储集层主要是一些多孔的粒屑 灰岩、生物骨架灰岩和白云岩等。其孔隙类型 可分为:原生孔隙、次生孔隙和裂缝三类。
Ⅰ级 Ⅱ级
Ⅲ级 Ⅳ级 Ⅴ级 Ⅵ级
>1000 1000-100
100-10 10-1 1-0.1 <0.1
极好 好
中等 低渗 特低渗 致密层
绝对渗透率—单相流体 有效渗透率/相渗透率:ko、kg、kw 相对渗透率:kro、krg、krw
ko k ro k
Vo So 100% VP
kro = 0~1。 有效渗透率和相对渗透率取决于:岩石性质、 流体性质及其数量比例(饱和度)有关。
大可小。
河流相
2.三角洲砂岩体 三角洲平原:分 流河道砂岩体;
三角洲前缘:水
下分流河道、河口坝、 远坝、前缘席状砂等 砂岩体; 前三角洲:以泥
岩为主。
3.海岸砂岩体 主要有海 滩砂、砂坝、 堤岛、风成砂 丘等砂岩体,
一般呈带状或
串珠状沿岸线
分布,分选好。
4.浊积砂岩体 平面呈扇形,成因有海底扇、深海扇、湖底 扇等。扇中部分一般有分选较好的砂质沉积,可 构成良好储层。
k F P Q L
上式中的k即为渗透率:
Q L k F P
按SI制,k的单位是μ m2,CGS制中,k的单位为达 西(D)和毫达西(mD),换算关系为:
1mD=987×10-6μ m2=0.987×10-3μ m2。
储层的k值一般在5~1000mD之间。
根据储层的渗透率大小可将储集层分为6级: 级别 渗透率(md) 渗透性评价
有效孔隙度 (φ e):
Ve e 100 % Vt
砂岩:φe=5~30%,一般10~20%; 碳酸盐岩,φe<5%。
裂缝系统
砂岩储层的孔隙度评价分级
级别
1 2
砂岩孔隙度(%)
20-25 15-20
评价等级
很好 好
3
4 5
10-15
5-10 <5
中等
差 无价值
二.渗透性
岩石的渗透性是指在一定压力差下,岩石允 许流体通过的能力。一般情况下,砂岩、砾岩、多 孔的石灰岩、白云岩等都是渗透性岩石;而泥岩、 膏盐、泥灰岩等则属于非渗透性岩石。(相对的) 岩石渗透性的好坏用渗透率表示。 当单相流体通过孔隙介质并沿孔隙通道呈层状 流动时,服从达西直线渗透定律:
(三)常见碳酸盐岩储层的类型及其特征 1、孔隙型储集层(包括礁型):沙特加瓦尔油 田:J3砂屑灰岩产油 2、溶蚀型储集层:岩溶发育地区 3、裂缝型储集层:伊朗R阿斯马利灰岩裂缝 储层,加奇沙兰油田 4、复合型储集层:任丘古潜山
中国碳酸盐岩油气储层类型
——古风化壳型、沉积成岩型、沉积相型、构造裂缝型
第三章 储集层与盖层
•储集层的物理性质
•常见的储集层类型 •盖层
§1 储集层的物理性质
油气在地下是储存在一些岩石的孔、洞、缝之中的,
其储集方式与水充满在海绵里有一定相似之处。
凡是能够存储和渗滤流体(油、气 、水)的岩层 都可以称之为储集层。油气层—— 储层之所以能够储集油气,是因为具备了两个特征: 孔隙性——直接决定岩层储集油气的数量;
5.湖泊砂岩体
砂岩体类型多
种多样,其中以滨
浅湖的湖滩砂岩和
湖成三角洲砂岩体
最为发育,储集物 性也好。
我国同类碎屑岩砂体产油状况表
砂体类型 河流 三角洲 扇三角洲 水下扇 滩、坝 冲(洪)积扇 湖底扇 油田名称 陕甘宁(J1)、东营孤东(N)、黄骅大港(N)、 冀东南堡 (N)、东濮文留(Es) 辽河(Es)、东营胜坨(Es)、松辽大庆(Kl)、 柴达木尕斯库勒(E) 辽河西部(Es)、南阳双河(Eh)、东濮濮城(Es) 储量规模 千万吨级 亿吨级 千万吨级
不同孔隙结构的毛细管 压力曲线/压汞曲线
某一阶段进汞量/总进汞量 =SHg%
孔隙-喉道的 分选性
不同类型孔隙结构的毛细管压力曲线
孔隙-喉道的 分选性
研究孔隙结构的其它方法
铸体薄片法:将液体有机玻璃(红、蓝)单体 在常温下注入岩样,经高温聚合成有机玻璃,磨片 后在镜下观察,可分辨岩石中的孔、喉分布。 铸体法:在注入有机玻璃后,将岩样在HF中浸 泡,溶掉岩石骨架部分后,可观察孔隙的空间展布、 立体构架。
胶结作用:胶结物的数量、类型和成分对物性也 起一定作用。“消极因素”
颗粒接触与胶结类型的关系
(二)碎屑岩储集层的成因类型 砂岩体是指在某一沉积环境下形成的具有一 定形态、岩性和分布特征,并以砂质岩为主的沉 积岩体,其形状有席状、带状和树枝状等。
各种沉积环境分布示意图
从成因看,与油 气有关的常见类型有: 1.河流砂岩体 平面常呈带状, 可分叉,剖面上呈下 凹上凸形状,规模可
砂岩的孔、渗间一 般具有良好的半对 数关系。
3. 颗粒的分选和磨 圆程度 颗粒的分选和磨 圆度越高,即杂质越
少,颗粒越接近球形,
越有利于形成较高的
孔、渗性。
4.成岩后生作用 压实作用 :使物性变差,但在高压带仍可保持 很高的孔隙度(欠压实作用)。 溶解作用 :使物性变好,可产生溶蚀孔隙。特 别是有机质热成熟产生的有机酸和CO2可使储集层中 的碳酸盐胶结物及铝硅酸盐颗粒大量溶解,从而有 助于次生孔隙的形成。
四川相国寺气田 陕西靖边气田 潜山 台地陆表海蒸发潮坪 风化、淋滤 隐藻白云片 多种岩镕孔、洞、缝 河北任丘油田 洞穴 台地陆表海蒸发潮坪 风化、淋滤 洞穴填集角砾岩 洞穴及其填集物之间,砾内的多种孔、洞、缝 山东孤北油田 云质藻坪 台地蒸发海潮间藻坪 溶蚀、破裂 隐藻白云岩、粘结白云岩 藻架孔洞、晶问孔、溶孔粘结腔孔 四川威远气田 云化灰坪 台地局限海潮间灰云坪 云化、破裂 粉晶白云岩 晶间孔、裂缝 四川卧龙河气田 四川卧龙河、阳高寺气田 暴露浅滩 台地局限海浅滩 云化、淋滤、溶蚀 颗粒白云岩 粒间及轮内溶孔 四川磨溪气田 云化礁 台缘礁、水下低隆礁 云化、溶蚀 砂糖状内云岩 晶间溶蚀孔、洞 四川板东气田 溶蚀礁 台缘瞧、水下低隆破 淋滤、溶蚀 礁灰岩、颗粒灰岩 生物壳粒间、粒内溶孔 广东流花油田 介壳滩 湖泊缓坡颗粒坪 破裂、溶蚀 介壳灰岩 层间缝及其溶孔、构造缝 四川八角场油田 坡积 台缘缓坡 溶蚀 塌积角砾碳酸盐岩 晶间、砾内溶孔,垮塌大型洞穴 宁夏天环构造 礁岩 湖泊水下低隆礁 云化、淋滤、溶蚀 藻骨架白云岩、球粒白云岩 骨架孔 山东平方王油田 礁丘 湖泊陡坡礁丘 云化、淋滤、溶蚀 骨架、颗粒、泥品碳酸盐岩 骨架孔、粒间孔、体腔孔 山东平方工油田 天津王徐庄油田 浅滩 湖泊近岸浅滩 淋滤、溶蚀 颗粒灰岩 粒间溶孔、粒内孔 山东垦利油田 裂缝 台地局限海、 潮坪泥灰坪 破裂 泥质灰岩 构造缝 四川永安场气田 裂缝—深 台地开阔海水下生屑坪 破裂、溶蚀 生屑灰岩 构造缝、沿缝溶洞 四川纳溪气田 岩溶 膏溶
碳 酸 盐 岩 孔 隙 类 型 示 意 图
黑 色 为 孔 隙
孔隙类型
1.受组构控制的原生孔隙 ① 粒间孔隙; ② 遮蔽孔隙; ③ 粒内孔隙; ④ 生物骨架孔隙; ⑤ 生物钻孔(潜穴) 孔隙; ⑥ 鸟眼孔隙; ⑦ 收缩孔隙; ⑧ 晶间孔隙。
2.溶解作用形成的次生孔隙 ① 粒内溶孔和印模孔;
② 粒间溶孔;
岩石类型包括各种砂岩、砂砾岩、砾岩、粉砂岩等。
(一)孔隙特征及影响物性的主要因素
储集空间主要是碎屑颗粒之间的原生粒间孔隙; 其次是溶孔(粒间溶孔、粒内溶孔、铸模孔等); 另外还有裂缝、解理缝、层理缝和层间缝。
砂岩储层的孔隙
(据罗蛰潭,王允诚,1986)
影响碎屑岩储集层物性的主要因素有以下几个方面: 1. 岩石的矿物组分 石英好于长石,原因有二: 2. 颗粒的排列方式和大小 立方体(47.6%)/菱面体(25.9%) 颗粒大小