数字图像处理实验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验指导书
电气信息综合实验中心
(一)MATLAB在图像处理中的应用
原理:MATLAB 语言是由美国MathWorks 公司推出的计算机软件,现已成为国际公认的最优秀的科学计算与数学应用软件之一,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。同时,工具箱内的函数源程序也是开放性的,多为M 进行文件,用户可以查看这些文件的代码并进行更改,MALAB 支持用户对其函数二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。MATLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB 强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MATLAB 中的数字图像同样适用。
数字图像处理工具箱函数包括以下15 类:、⑴、图像显示函数;⑵、图像文件输入、输出函数;⑶、图像几何操作函数;⑷、图像像素值及统计函数;⑸、图像分析函数;⑹、图像增强函数;⑺、线性滤波函数;⑻、二维线性滤波器设计函数;⑼、图像变换函数;⑽、图像邻域及块操作函数;⑾、二值图像操作函数;⑿、基于区域的图像处理函数;⒀、颜色图操作函数;⒁、颜色空间转换函数;⒂、图像类型和类型转换函数。MATLAB 图像处理工具箱支持四种图像类型,分别为真彩色图像、索引色图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。MATLAB 可操作的图像文件包括BMP、HDF、JPEG、PCX、TIFF、XWD 等格式。
实验内容:MATLAB操作基础
包括MATLAB的安装及界面使用。
参考资料:
(二)直方图与灰度变换
灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。
实验内容:
1、灰度直方图
(1)计算出一幅灰度图像的直方图
clear
close all
I=imread('004.bmp');·
imhist(I)
title('实验一(1)直方图');
(2)对灰度图像进行简单的灰度线形变换,
figure
subplot(2,2,1)
imshow(I);
title('试验2-灰度线性变换');
subplot(2,2,2)
histeq(I);
(3)看其直方图的对应变化和图像对比度的变化。
原图像f(m,n) 的灰度范围[a,b] 线形变换为图像g(m,n),灰度范围[a’,b’]
公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)
figure
subplot(2,2,1)
imshow(I)
J=imadjust(I,[0.3,0.7],[0,1],1);
title(' 实验一(3)用g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)进行变换');
subplot(2,2,2)
imshow(J)
subplot(2,2,3)
imshow(I)
J=imadjust(I,[0.5 0.8],[0,1],1);
subplot(2,2,4)
imshow(J)
(4) 图像二值化(选取一个域值,(5) 将图像变为黑白图像)
figure
subplot(2,2,1)
imshow(I)
J=find(I<150);
I(J)=0;
J=find(I>=150);
I(J)=255;
title(' 实验一(4)图像二值化( 域值为150 )');
subplot(2,2,2)
imshow(I)
clc;
I=imread('004.bmp');
bw=im2bw(I,0.5);%选取阈值为0.5
figure;
imshow(bw) %显示二值图象
图象处理实验(三)模板运算
一、实验内容:
(1)平滑:平滑的目的是模糊和消除噪声。平滑是用低通滤波器来完成,在空域中全是正值。
(2)锐化:锐化的目的是增强被模糊的细节。锐化是用高通滤波器来完成,在空域中,接近原点处为正,在远离原点处为负。
利用模板进行图象增强就是进行模板卷积。
1、利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。
2、利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。
3、选择一个经过低通滤波器滤波的模糊图象,利用sobel和prewitt水平边缘增强高通滤波器(模板)对其进行高通滤波图象边缘增强,验证模板的滤波效果。
4、选择一幅灰度图象分别利用一阶Sobel算子和二阶Laplacian算子对其进行边缘检测,验证检测效果。
二、实验步骤:
1、利用低通邻域平均模板进行平滑:
I=imread('004.bmp');
subplot(1,3,1);
imshow(I);
title('原图');
J=fspecial('average');
J1=filter2(J,I)/255;
subplot(1,3,2);
imshow(J1);
title('3*3滤波');
K=fspecial('average',9);
K1=filter2(K,I)/255;
subplot(1,3,3);
imshow(K1);
title('9*9滤波');
2、中值滤波和平均滤波
I=imread('004.bmp');
J=imnoise(I,'gaussian',0,0.01);
subplot(2,2,1);