电气主接线的基本形式及优缺点(优.选)

合集下载

电气主接线的形式及优缺点介绍

电气主接线的形式及优缺点介绍

电气主接线的形式及优缺点介绍【单母线接线】优点:接线简单清晰,设备少,操作方便,便于扩建和采用成套配电装置。

缺点:不够灵活可靠,任一元件(母线或母线隔离开关等)故障时检修,均需使整个配电装置停电,单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障母线的供电。

适用范围:6-10KV配电装置的出线回路数不超过5回;35-63KV 配电装置出线回路数不超过3回;110-220KV配电装置的出线回路数不超过2回。

【单母线分段接线】优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。

当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。

缺点:当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电。

当出线为双回路时,常使架空线路出现交叉跨越。

扩建时需向两个方向均衡扩建。

适用范围:6-10KV配电装置出线回路数为6回及以上时;35KV配电装置出线回路数为4-8回时;110-220KV配电装置出线回路数为3-4回时。

【单母分段带旁路母线】这种接线方式在进出线不多,容量不大的中小型电压等级为35-110KV的变电所较为实用,具有足够的可靠性和灵活性。

【桥型接线】1、内桥形接线优点:高压断器数量少,四个回路只需三台断路器。

缺点:变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运;桥连断路器检修时,两个回路需解列运行;出线断路器检修时,线路需较长时期停运。

适用范围:适用于较小容量的发电厂,变电所并且变压器不经常切换或线路较长,故障率较高的情况。

2、外桥形接线优点:高压断路器数量少,四个回路只需三台断路器。

缺点:线路的切除和投入较复杂,需动作两台断路器,并有一台变压器暂时停运。

高压侧断路器检修时,变压器较长时期停运。

适用范围:适用于较小容量的发电厂,变电所并且变压器的切换较频繁或线路较短,故障率较少的情况。

电气主接线各种连接方式优缺点与实际应用

电气主接线各种连接方式优缺点与实际应用

电气主接线各种连接方式优缺点与实际应用摘要:结合自身工作经验,通过大量文献资料分析了电气主接线各种连接方式优缺点,总结了电气主接线8种接线方式的设计要求和应用原则,并通过案例进行了论证。关键词:电气主接线;连接方式;优缺点;分析;实际;应用电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。1 电气主接线接线要求对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。它的接线方式能反映正常和事故情况下的供送电情况。电气主接线又称电气一次接线图。电气主接线应满足以下几点要求:(1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。(2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。(3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。2 电气主接线常见8种接线方式优缺点分析2.1 线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式。线路变压器组接线的优点是断路器少,接线简单,造价省。相应220kV采用线路变压器组,110kV宜采用单母分段接线,正常分段断路器打开运行,对限制短路电流效果显著,较适合于110kV开环运行的网架。但其可靠性相对较差,线路故障检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大。其较适合用于正常二运一备的城区中心变电所,如上海中心城区就有采用。2.2 桥形接线桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。2.3 多角形接线多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。四边形的保护接线比较复杂,一、二次回路倒换操作较多。2.4 单母线分段接线单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。2.5 双母线接线双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。2.6 双母线带旁路接线双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。其特点是具有双母线接线的优点,当线路(主变压器)断路器检修时,仍有继续供电,但旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大,一般为了节省断路器及设备间隔,当出线达到5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则采用母联兼旁路或旁路兼母联的接线方式。2.7 双母线分段带旁路接线双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器,它具有双母线带旁路的优点,但投资费用较大,占用设备间隔较多,一般采用此种接线的原则为:(1)当设备连接的进出线总数为12~16回时,在一组母线上设置分段断路器;(2)当设备连接的进出线总数为17回及以上时,在两组母线上设置分段断器。2.8 3/2(4/3)断路器接线3/2(4/3)断路器接线就是在每3(4)个断路器中间送出2(3)回回路,一般只用于500kV(或重要220kV)电网的母线主接线。它的主要优点是:(1)运行调度灵活,正常时两条母线和全部断路器运行,成多路环状供电;(2)检修时操作方便,当一组母线停支时,回路不需要切换,任一台断路器检修,各回路仍按原接线方式霆,不需切换;(3)运行可靠,每一回路由两台断路器供电,母线发生故障时,任何回路都不停电。2/3(4/3)断路器接线的缺点是使用设备较多,特别是断路器和电流互感器,投资费用大,保护接线复杂。3 案例分析:10kV终端变电所主接线模式分析终端变电所又称受端变电所,这类变电所接近负荷中心,电能通过它分配给用户或下级配电所。在确保供电可靠性的前提下,变电所主接线设计应有利于规范化、简单化、自动化及无人化,尽可能减少占地面积。变电所主接线方式应根据负荷性质、变压器负载率、电气设备特点及上级电网强弱等因素确定。一般终端变电所高压侧主接线形式选用线路-变压器组接线和内桥接线。3.1 线路-变压器组接线线路-变压器组接线是最简单主接线方式。高压配电装置只配置2个设备单元,接线简单清晰,占地面积小,送电线路故障时由送电端变电所出线断路器跳闸。在正常运行方式下,L1、L2线路各带一台主变,系统接线简单,运行可靠、经济,有利于变电所实现自动化、无人化。如主变容量满足低负载率标准(2台主变负载率取0.5~0.65),系统发生故障时,恢复供电操作十分方便。当1台主变或一条线路故障退出运行,只需在变电所低压侧作转移负荷操作,就能确保100%负荷正常用电,对相邻变电所无影响。如主变容量按高负载率配置(2台主变负载率高于0.65),主变或线路发生故障时,需要通过相邻变电所联络线来转移部份负荷,实现相互支援。因此,对于地方电网中110kV终端变电所,如主变容量满足N-1要求,即主变容量满足低负载率标准,首先应推荐采用线路-变压器组接线方式。3.2 内桥接线内桥接线是终端变电所最常用的主接线方式(见图2)。其高压侧断路器数量较少,线路故障操作简单、方便,系统接线清晰。在正常运行方式下,桥断路器打开,类似于线路-变压器组接线,L1、L2线路各带1台主变。因内桥接线线路侧装有断路器,线路的投入和切除十分方便。当送电线路发生故障时,只需断开故障线路的断路器,不影响其它回路正常运行。但变压器故障时,则与其连接的两台断路器都要断开,从而影响了一回未故障线路的正常运行。随着主变制造工艺和质量的迅速提高,现在各厂家生产的主变大都为免维护式。因主变压器运行可靠性较高,其故障率一般小于1.5次/百台?年,而且主变也不需要经常切换,而送电线路故障率高达0.36次/百km?年。因此,对于地方电网中110kV终端变电所,如主变容量不能满足N-1 要求,采用内桥主接线方式有利于提高系统供电可靠性。参考文献[1] 李义山.变配电实用技术[M].北京:机械工业出版社,2003.[2] 居荣.供配电技术[M].北京:化学工业出版社,2005.。

各种接线方式的优缺点

各种接线方式的优缺点

各种接线方式的优缺点第一篇:各种接线方式的优缺点单母线接线优点:接线简单,清晰,设备少,操作方便,便于扩建和采用成套配电装置。

缺点:可靠性差,母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就是要造成全厂或全站长期停电,调度不方便,电能只能并列运行,并且线路侧发生短路时,有较大的短路电流。

2.1 双母线接线优点:有两组母线,可以互为备用,运行可靠性和灵活性高,调度灵方便、便于扩建,可以向母线左右任意一个方向顺延扩建,检修任一母线时,隔离开关仅仅使本回路断开。

缺点:造价高,因为增加了一组母线及其隔离开关,增加了配电装置构架及占地面积;当母线故障或检修时,隔离开关作倒换操作电器,容易误操作,但可以装断路器的连锁装置加以克服。

单元接线(1)优点:单元接线简单,开关设备少,操作简单以及因不设发电机电压级母线,而在发电机和变压器之间采用封闭母线,使得在发电机和变压器低压侧短路的几率和短路电流相对于具有发电机电压级母线时,有所减小。

(2)缺点:存在如下技术问题:1)当主变压器或厂总变压器发生故障时,除了跳主变压器高压侧出口断路器外,还需跳发电机磁场开关。

2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵拒跳,则只能通过失灵保护出口启动母差保护或发远方跳闸信号使线路对侧断路器跳闸;若因通道原因远方跳闸信号失效,则只能由对侧后备保护来切除故障,这样故障切除时间大大延长,会造成发电机、主变压器严重损坏。

单母线分段接线(1)优点:1)供电可靠性和灵活性相对于单母线接线高,操作简单,接线方便,便于检修,投资较小,对重要用户可以从不同段引出两回馈电线路,由两个电源供电。

2)当一段母线发生故障分段断路器自动将故障段切除,保证正常断母线不间断供电和不致使重要用户停电。

(2)缺点:1)当任一段母线发生故障时,将造成两段母线同时停电,在判断故障后,拉开分段隔离开关,完好段即可恢复供电,这期间将造成完好段的短时停电。

主接线的基本形式及优缺点分析

主接线的基本形式及优缺点分析

主接线的基本形式及优缺点分析作者:冯岩来源:《中国科技博览》2014年第20期中图分类号:TU75 文献标识码:A 文章编号:1009-914X(2014)20-0060-01确定变电站主接线形式,对变电站的电气设备选择,变电站的配电设备布置及变电站运行的可靠性、灵活性、安全性及经济性等密切相关。

根据负荷等级的要求保证供电的可靠性,主接线形式要求结构简单、运行灵活、布置清晰、操作方便安全,尽可能避免运行人员误操作。

对变电站总容量的计算要遵循以下几个原则:首先,要对变电站的用电负荷情况进行分析,根据用电设备的运行状态和工作制对用电设备进行分析。

其次,根据用电设备负荷分析情况,利用需用系数法和二项式法对变电站总电力负荷进行计算。

变电站主接线行驶大体上可以分为三种接线形式及方案。

1.桥式主接线形式在大型工业企业总变电站中,我保证一、二级负荷供电的可靠性,常采用两路电源供电,并安装两台变压器构成桥式主接线形式。

桥式主接线形式又分为内桥式和外桥式两种结构。

见“图1.1内桥式主接线图”和“图1.2外桥式主接线图”。

内桥式主接线多用于供电线路较长的区域,故障与检修机会较多,并且变电站负荷比较平稳,其变压器不经常切换总变电站。

内桥式主接线的主要特点是:提高了线路运行的灵活性,增强了变电站供电的可靠性。

当线路XL1检修及故障时,断路器DL1断开,这时变电站的变压器B1可有线路XL2经断路器DL2和桥接断路器DL3继续供电,而不会使低压侧的重要负载供电中断。

同样,当线路XL2检修及故障时,变压器B2可由线路XL1继续供电。

外桥式主接线运行的灵活性与供电的可靠性和内桥式主接线相似,此种主接线形式适用于供电线路较短,故障与检修机会较少,而变电站的负荷变化较大,变压器需经常切换的变电站。

当供电系统采用环网供电,变电站的高压侧有穿越功率时,应选用外桥式主接线方式。

此时穿越功率不通过线路断路器DL1和DL2,直接由桥式断路器DL3传送。

电气主接线的基本形式

电气主接线的基本形式

电气主接线的基本形式通常有以下几种:
1. 单回路接线:即将一组负荷电器按顺序依次接到电源的一个回路上,每个电器之间串联连接,形成一个回路。

这种接线形式适用于负荷电器较少、电路简单的情况。

2. 并联接线:即将多组负荷电器同时接到电源的同一电压等级上,并联连接,形成一个并联回路。

这种接线形式适用于负荷电器较多、电路复杂的情况。

3. 星形接线:即将三相电源的三个相线分别接到负荷电器的三个相线上,同时将三个中性线连接在一起形成星形连接。

这种接线形式适用于三相负荷电器的供电。

4. 三角形接线:即将三相电源的三个相线依次接到负荷电器的三个相线上,形成一个三角形回路。

这种接线形式适用于三相负荷电器的供电。

以上是电气主接线的基本形式,不同的接线形式适用于不同的电路和负荷电器,需要根据具体情况进行选择。

值得收藏!电气主接线方式大汇总

值得收藏!电气主接线方式大汇总

值得收藏!电气主接线方式大汇总电气主接线方式大汇总 1、电气主接线的概念在变电站中,发电机、变压器、断路器、隔离开关、互感器等高压电气设备,以及将它们连接在一起的高压电缆和母线,按照其功能要求组成的主回路称为电气一次系统,又叫做电气主接线。

在选择电气主接线时,需要根据变电站在电网中的地位、进出线回路数、电压等级、负荷性质等条件,满足供电可靠性、调度灵活性、经济性等方面的要求。

2、电气主接线的类型电气主接线的主体是电源(进线)回路和线路(出线)回路。

分为有汇流母线和无汇流母线两大类。

本期我们主要关注有汇流母线的接线方式。

电气主接线的基本分类如下:3、电气主接线的基本形式(1)单母线接线如图为单母线接线,各电源和出现都接在一条共同母线W上。

每条回路中都装有断路器和隔离开关。

紧靠母线侧的(如QS2)为母线隔离开关,靠近线路侧的(如QS3)为线路隔离开关。

当检修断路器QF2时,停电操作顺序为:先断开QF2,再依次拉开两侧隔离开关QS3、QS2。

然后在QF2两侧挂上接地线,以保证检修人员安全。

QF2恢复送电的操作顺序为:先依次合上QS2、QS3,再合上QF2。

优点:接线简单清晰,设备少投资低,操作方便。

缺点:可靠性不高,不够灵活。

具体表现为: a.任一线路断路器检修时,该回路必须停电;b.母线或母线隔离开关发生故障或检修时,连接在母线上的所有回路都将停电;适用范围: 6~10kV出线数≤5回; 35kV出线数≤3回;110kV出线数≤2回。

(2)单母线分段与单母线接线相比,单母线分段增加了一台母线分段断路器(或隔离开关)将单母线分为两段。

QF闭合,母线并列运行:相当于不分段的单母线接线。

若电源1停止供电,则电源2通过QF闭合向I段母线供电,不影响对负荷的供电;若I段母线故障时,保护装置使QF自动跳开,I段母线被切除,II 段母线继续供电。

QF断开,母线分列运行:相当于两个不分段的单母线接线。

若电源1停止供电,I段母线失压时,可由自动重合闸装置自动合上QF,I段母线恢复供电;若I段母线故障时,不影响II段,II段母线继续供电。

电气主接线

电气主接线

八、我厂500KV系统电气主接线形式



500kV系统的电气主接线 1 500kV系统运行方式 1 500kV系统为二分之三接线,第一串有三台、第二串有两台LW12-500型六氟 化硫罐式断路器,3、4号机组经由两串五台断路器经双梨乙线并入系统。 2 500kV母线采用管形硬母线,每条母线装设一组接地刀闸和一组单相PT。 3 正常运行时5011、5012、5013、5022、5023开关均在合闸位置,环网运行。 4 发电机解路列时将发变组两侧开关断开,拉开解列机组出口刀闸后,重新合 上两侧开关,保持500kV系统标准运行方式。 5 任一台断器故障时,可断开环网,将故障断路器两侧刀闸断开,将故障断路 器退出运行。 6 当母线需检修时,断开母线直接连接的断路器及其两侧刀闸,退出母线运行。
三、我厂220KV系统和500KV系统图
表5-1 主要设备的图形符号和文字符号表
电气一次
5
四、电气主接线6种接线方式优缺点


4、1 线路变压器组接线 线路变压器组接线就是线路和变压器直接相连, 是一种最简单的接线方式。线路变压器组接线的优 点:是断路器少,接线简单,造价省。相应220kV采用 线路变压器组,110kV宜采用单母分段接线,正常分段 断路器打开运行,对限制短路电流效果显著,较适合 于110kV开环运行的网架,但其可靠性相对较差,线 路故障检修停运时,变压器将被迫停运,对变电所的 供电负荷影响较大。
十一、高压断路器结构、种类

高压断路器的主要结构大体分为:导流部分,灭弧部分,绝缘部分,操作机构部 分。高压开关的主要类型按灭弧介质分为:油断路器,空气断路器,真空断路器, 六氟化硫断路器,固体产气断路器,磁吹断路器。 按操作性质可分为:电动机构,气动机构,液压机构,弹簧储能机构,手动机构。 (1)油断路器。利用变压器油作为灭弧介质,分多油和少油两种类型。 (2)六氟化硫断路器。采用惰性气体六氟化硫来灭弧,并利用它所具有的很高的 绝缘性能来增强触头间的绝缘。 (3)真空断路器。触头密封在高真空的灭弧室内,利用真空的高绝缘性能来灭弧。 (4)空气断路器。利用高速流动的压缩空气来灭弧。 (5)固体产气断路器。利用固体产气物质在电弧高温作用下分解出来的气体来灭 弧。 (6)磁吹断路器。断路时,利用本身流过的大电流产生的电磁力将电弧迅速拉长 而吸人磁性灭弧室内冷却熄灭。

简述电气主接线的基本形式。

简述电气主接线的基本形式。

简述电气主接线的基本形式。

电气主接线是电力系统中电力设备进行电气互联所采用的一种重要的方式,主要是通过将不同电气设备之间的电气信号进行连接,以实现设备之间的数据和能量传输。

电气主接线的基本形式主要有三种,分别是单线制、电气柜式和集中控制柜式。

其中,单线制是最简单的一种电气主接线方式,它是通过将电气设备直接与电缆或导线连接,实现设备之间的电气互联。

它的缺点是线路复杂,难以维护,不易管理。

因此,在大型电力系统中使用比较少。

电气柜式是一种较为常见的电气主接线方式,它是通过将所有的电气设备的电缆或导线连接到一个电气柜中,并在电气柜中完成信号转换、集中控制和电流保护等功能。

电气柜式电气主接线具有结构简单、灵活性好、可靠性高、易于维护等优点,被广泛应用在各类工业和民用电力设施中。

集中控制柜式是一种高端的电气主接线方式,它是通过将所有的电气设备连接到一个集中控制柜中,并在该控制柜中实现电气信号转换、数据采集、集中控制和电流保护等功能。

集中控制柜式电气主接线具有传输速度快、可靠性高、控制灵活、操作简便等特点,通常应用于大型的物流、制造业、石化和航空等领域。

综上所述,不同的电气主接线方式各有优缺点,需要根据具体的电气系统规模、应用需求和技术要求来选择最适合的方式,以提高电气设备的效率和可靠性,确
保电力系统的安全稳定运行。

电气主接线各种连接方式优缺点-电气主接线常见8种接线方式优缺点分析

电气主接线各种连接方式优缺点-电气主接线常见8种接线方式优缺点分析

电气主接线各种连接方式优缺点作者:管理员发表时间:2010/5/27 22:20:57 阅读:次电气主接线主要是指在发电厂变电所的电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路、电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等,它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。

一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图,在绘制主接线全图时,将互感器、避雷器、电容器中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。

1 电气主接线接线要求对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定它的接线方式能反映正常和事故情况下的供送电情况,电气主接线又称电气一次接线图。

电气主接线应满足以下几点要求:(1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。

(2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电,在扩建时应能很方便的从初期建设到最终接线。

(3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。

2 电气主接线常见8种接线方式优缺点分析2.1 线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式,线路变压器组接线的优点是断路器少,接线简单,造价省,对变电所的供电负荷影响较大,其较适合用于正常二运一备的城区中心变电所。

2.2 桥形接线桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少,也是投资较省的一种接线方式,根据桥形断路器的位置又可分为内桥和外桥两种接线,由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线,若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。

电气主接线的基本形式及优缺点

电气主接线的基本形式及优缺点

第四章电气主接线第2节单母线接线主接线的基本形式,就是主要电气设备常用的几种连接方式。

概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。

变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。

各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。

在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。

但有母线后,配电装置占地面积较大,使用断路器等设备增多。

无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。

有汇流母线的接线形式主要有:单母线接线和双母线接线。

一、单母线接线单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。

供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。

每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。

断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。

隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。

同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。

同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。

为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。

电气主接线形式分类及其优缺点

电气主接线形式分类及其优缺点

电气主接线形式分类及其优缺点电气主接线可分为有汇流母线和无汇流母线两种类型。

选择主接线类型时,应根据变电所在系统中的地位、进出线回路数、设备特点、负荷性质等条件进行。

一、单母线接线1、单母线接线所有电源进线和出线都连接在同一组公共母线上。

单母线接线既可以保证电源并列工作,又能使任一条出线都可以从任一电源获电,每条回路中都装有隔离开关和断路器。

1)优点(1)接线简单清晰、设备少、投资小、运行操作方便、便于扩建和采用成套配电装置;(2)隔离开关仅在检修电气设备时做隔离电源用,不作为倒闸操作设备,从而避免因隔离开关进行大量倒闸操作而引起起的误操作事故。

2)缺点(1)母线或母线隔离开关检修时,连接在母线上的所有回路都需要停止工作;(2)母线、母线隔离开关发生短路故障或断路器靠母线侧绝缘套管损坏时,所有断路器都将自动断开,造成全部停电;(3)检修任一电源或出线断路器时,该回路必须停电。

3)适用范围单母线接线供电的灵活性和可靠性都较差,故适用于小容量的发电厂或变电所,及对供电可靠性要求不高二、三级负荷。

6~10kV出线数≤ 5回;35kV出线数≤3回;110kV出线数≤ 2回。

2、单母线分段接线出线回路数增多时,可用断路器将母线分段,成为单母线分段接线。

1)优点(1)用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电,提高了供电的灵活性;(2)当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和重要用户不停电,提高了供电的可靠性。

2)缺点(1)当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电;(2)任一出线断路器检修时,该回路必须停止工作;(3)当出线为双回路时,常使架空线路出现交叉跨越;(4)扩建时需向两个方向扩建。

3)适用范围单母线分段接线虽然比单母线接线提高了供电的可靠性和灵活性,但当电源容量较大和出线数目较多时,尤其单回路供电的用户较多时,缺点更加突出。

供电系统的主要接线方式

供电系统的主要接线方式

1、供电系统的主要接线方式,各中接线方式的优缺点是什么?①桥式接线:采用有两回电源线路受电和装设两台变压器的桥式主接线。

桥式接线分为:外桥、内桥和全桥三种。

外桥接线对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到全桥或单母线分段的接线,且投资少,占地面积小。

缺点是倒换线路时操作不方便,变电所一侧无线路保护。

适用于进线短而倒闸次数少的变电所,或变压器采取经济运行需要经常切换的终端变电所,以及可能发展为有穿越负荷的变电所。

内桥接线一次侧可设线路保护,倒换线路操作方便,设备投资与占地面积均较全桥少。

缺点是操作变压器和扩建成全桥或单母线分段不如外侨方便。

适用于进线距离长,变压器切换少的终端变电所。

全桥接线适应性强,对线路、变压器的操作均方便,运行灵活,且易于扩展成单母线分段式的中间变电所。

缺点是设备多,投资大,变电所占地面积大。

②线路变压器组结线:其优点是简单,设备少,基建快,投资费用低,但供电设备可靠性差。

③单母线:进出线均有短路器以及与母线相连的母线隔离开关,与负电线路的线隔离开关。

一般分为单母线不分段和单母线分段两种典型结线。

a、单母线不分段:结果简单,造价低,运行不够灵活,供电可靠性差,适用于小容量用户。

b、单母线分段的可靠性和灵活性比单母线不分段有所提高。

隔断开关分段(QS分段)—适用由双回路供电,允许短时间停电的二级负荷。

短路器分段(QF分段)—适用一级负荷较多的情况,可切断负荷和故障电流,也可在继电保护下实现自动分合闸,在其中一条路线故障或需要检修时,可以将负荷转到另外一条线路,避免全部停电,但它使电源只能通过一回路供进线供电,供电功率降低,从而使更多的用户停电。

2、无限大容量供电系统和有限大容量供电系统答:所谓无限大容量供电系统是指电源内阻抗为零,在短路过程中电源端电压恒定不变,短路电流周期分量恒定不变的供电系统。

事实上,真正无限大容量供电系统是不存在的,通常将电源内阻抗小于短路回路总阻抗10%的电源看做无限大容量供电系统。

电气主接线的基本形式及优缺点

电气主接线的基本形式及优缺点

电气主接线的基本形式及优缺点电气主接线是指用于电力系统中的主要电气设备之间互相连接和分配电能的线路。

它具有多种基本形式,每种形式都有其各自的优缺点。

下面将主要介绍四种常见的电气主接线形式:单线串接、单线双返串接、单线环接和双线环接。

1.单线串接:单线串接是指将电气设备依次连接在一条电缆或导线上的方式。

其主要特点是连接简单,占用空间较小,安装和维护成本较低。

但由于只有一条线路,如果有一段出现故障,整个线路都会中断,造成供电中断的风险较大。

2.单线双返串接:单线双返串接是指将电气设备分别通过两条线路与配电柜相连,形成两条平行的回路。

其优点是具有冗余性,即一条线路出现故障时,可以通过另一条线路正常供电,保证供电的可靠性。

缺点是需要更多的线缆和工程投资。

3.单线环接:单线环接是指将电气设备依次连接在一条闭合环形电缆或导线上的方式。

其主要优点是可以实现电气设备的双向供电,减少线路的长度和电阻,提高供电的稳定性和可靠性。

但对于大规模电气设备的环接,其功率损耗较大,容易产生电能负荷不平衡的问题。

4.双线环接:双线环接是指将电气设备通过两条平行的闭合环形电缆或导线相互连接的方式。

它综合了单线环接和单线双返串接的优点,既具有可靠的冗余性,又具有电能负荷均衡的特点。

双线环接在电气系统的供电可靠性和稳定性方面表现出较好的性能,但需要更多的线缆和更大的投资。

总结来说,电气主接线的基本形式有单线串接、单线双返串接、单线环接和双线环接四种。

不同形式的主接线具有各自的优缺点,根据具体的电气设备和供电要求来选择适合的形式,以提高电气系统的供电可靠性和稳定性。

电气主接线详述

电气主接线详述

2、外桥接线特点




1。变压器发生故障时,仅故障变压器支路的 断路器自动跳闸; 2。线路故障时,有两台高压断路器自动跳闸; 3。线路投入与切除时,操作复杂。 适用范围:线路较短和变压器需要经常切换, 而且线路有穿越功率通过的装置中。
多角形接线


1、在角形接线中,断路器数等于回路数,且每条回 路都与两台断路器相连。 2、隔离开关作为隔离电器,不做操作电器,从而具 有较高的可靠性和灵活性。 3、检修断路器时,接线须开环运行。 4、角形接线进出线数比较固定且不便扩建, 因此,这种接线多用于最终容量已确定的110KV及以 上的配电装置中。
电气主接线
伍家洁
一、电气主接线的概念

电气主接线概念:指发电厂或变电所中的一次设备按
照设计要求,连接起来的电路,也称为主电路。

因三相交流电路一般情况下是对称电路,因此电气主 接线图是单线图,某些局部因三相结构不同处用三相 表示(电流互感器、阻波器等)。
二、


电气主接线的形式

电气主接线的基本接线形式:有母线和无母 线两大类。 有母线类:单母线及单母线分段接线、双母 线及双母线分段接线、单母线或双母线带旁 路接线、一个半断路器接线等。 无母线类:多角形接线、桥形接线、发电 机—变压器单元接线、发电机—变压器—线 路组单元接线等。
计划检修4QF步骤:Ⅰ母、Ⅱ母并列运行:电源1、LI、L3 运行于Ⅰ母,电源2、L2、L4运行于Ⅱ母。 1.取下QFj直流操作保险; 2.合上2QS1,6QS1; 3.拉开2QS2,6QS2; 4.给上QFj直流操作保险; 5.拉开QFj; 6.拉开QSj2, QSj1; 7.拉开4QF; 8.拉开4QS3,4QS2; 9.拆下4QF,将断口用跨条短接; 10.合上QSj1,QSj2,4QS3,4QS2; 11.合上QFj。

电气主接线常见8种接线方式优缺点分析

电气主接线常见8种接线方式优缺点分析

电气主接线常见8种接线方式优缺点分析一、线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式,线路变压器组接线的优点是断路器少,接线简单,造价省,对变电所的供电负荷影响较大,其较适合用于正常二运一备的城区中心变电所。

二、桥形接线桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少,也是投资较省的一种接线方式,根据桥形断路器的位置又可分为内桥和外桥两种接线,由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线,若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。

三、多角形接线多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路,多角形接线所用设备少,投资省,运行的灵活性和可靠性较好,正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小,其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大,环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则,四边形的保护接线比较复杂,一、二次回路倒换操作较多。

四、单母线分段接线单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。

五、双母线接线双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。

与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积,投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。

常用电气主接线的方式及优缺点

常用电气主接线的方式及优缺点

常用电气主接线的方式及优缺点
惠保安;任海燕;李亚强;罗辉
【期刊名称】《今日科苑》
【年(卷),期】2011(000)020
【摘要】电气主接线主要是指在电力系统中,传送功率和正常运行等要求标示高压电气设备之间相互关系电路。

包括发电机、变压器、母线、断路器、隔离刀闸、线路等。

它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。

【总页数】1页(P165-165)
【作者】惠保安;任海燕;李亚强;罗辉
【作者单位】山东华聚能源股份有限责任公司济二矿电厂
【正文语种】中文
【中图分类】TM854
【相关文献】
1.电气主接线各种连接方式优缺点浅析 [J], 刘明辉
2.电气主接线各种连接方式优缺点与实际应用 [J], 苗德刚
3.电气主接线各种连接方式优缺点与实际应用 [J], 李鑫;刘春江
4.电气主接线各种连接方式优缺点与实际应用 [J], 袁文进
5.强震仪器常用授时方式的优缺点及应用——以ETNA2为例 [J], 何金刚;李文倩;魏斌
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章电气主接线
第2节单母线接线
主接线的基本形式,就是主要电气设备常用的几种连接方式。

概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。

变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。

各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。

在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。

但有母线后,配电装置占地面积较大,使用断路器等设备增多。

无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。

有汇流母线的接线形式主要有:单母线接线和双母线接线。

一、单母线接线
单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。

供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。

每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。

断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。

隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。

同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。

同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。

为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。

接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。

当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。

对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

图4—1单母线接线
QF—断路器;QS—隔离开关
1.单母线接线的优缺点
优点:接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。

缺点:灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接的电源;与之相连的所有电力装置在整个检修期间均需停止工作。

此外,在出线断路器
检修期间,必须停止该回路的工作。

2.单母线接线的适用范围:
一般适用于一台主变压器的以下三种情况:
(1)6~10kV配电装置的出线回路数不超过5回。

(2)35~63kV配电装置的出线回路数不超过3回。

(3)110~220kV配电装置的出线回路数不超过2回。

二、单母线分段接线
为了克服一般单母线接线存在的缺点,提高它的供电可靠性和灵活性,把单母线分成几段,在每段母线之间装设一个分段断路器和两个隔离开关。

每段母线上均接有电源和出线回路,便成为单母线分段接线。

图4—2单母线分段接线
1.单母线分段接线的优缺点
优点:(1)用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。

(2)当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。

缺点:(1)当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电。

(2)当出线为双回路时,常使架空线路出现交叉跨越。

(3)扩建时需向两个方向均衡扩建。

2.单母线接线的适用范围:
(1)6~10kV配电装置出线回路数为6回及以上时。

(2)35~63kV配电装置出线回路数为4~8回时。

(3)110~220kV配电装置出线回路数为3~4回时。

三、单母线带旁路母线的接线
有了旁路母线,检修与它相连的任意回路的断路器时,该回路便可以不停电,从而提高了供电的可靠性。

它广泛地用于出线数较多的110kV及以上的高压配电装置中。

而35kV及以下的配电装置一般不设旁路母线,因为负荷小,供电距离短,容易取得备用电源,有可能停电检修断路器,并且断路器的检修、安装或更换均较方便。

一般35kV以下配电装置多为屋内型,为节省建筑面积,降低造价都不设旁路母线。

只有在向特殊重要的Ⅰ、Ⅱ类用户负荷供电,不允许停电检修断路器时,才设置旁路母线。

带有专用旁路断路器的接线,加装了价高的断路器和隔离开关,增加了投资。

供电可靠性有特殊需要或接入旁路母线的线路过多、难于操作时采用。

为节约建设投资,可以不采用专用旁路断路器。

对于单母线分段接线,常采用以分段断路器兼作旁路断路器的接线。

两段母线均可带旁路母线,正常时旁路母线不带电。

图4—3单母线分段断路器兼做旁路断路器接线
以此图为例,说明不停电检修任一出线路断路器的倒闸操作步骤。

例如检修QF1,第一步检查旁母有无故障,此时分段断路器QF f及隔离开关QS2、QS3在闭合状态,QS1、QS4、QS5均断开,以单母线分段方式运行。

当QF f作为旁路断路器运行时,闭合隔离开关QS1,后断开QF f和QS3,,再合上QS4,最后合QF f。

如果旁母无故障,QF f不跳闸。

第二步合上QSp,断开QF1及两侧的隔离开关。

这时,该出线路L1经QSp、旁母、QS4、QF f和QS2仍然联在第一段母线上。

该出线路这种接线方式,对于进出线不多,电压为35~110kV的变电所较为适用,具有足够的可靠性和灵活性。

最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更
改。

相关文档
最新文档