2017江苏卷 高考数学

合集下载

2017年江苏高考数学真题及答案

2017年江苏高考数学真题及答案

2017年江苏高考数学真题及答案数学I 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B I ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan1 -= 46πα⎛⎫⎪⎝⎭,则tanα= .6.如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切。

记圆柱O1O2的体积为V1 ,球O的体积为V2,则12VV的值是7.记函数2()6f x x x+-的定义域为D.在区间[-4,5]上随机取一个数x,则x∈ D的概率是8.在平面直角坐标系xoy中 ,双曲线2213xy-=的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 ,则四边形F1 P F2 Q的面积是9.等比数列{}n a的各项均为实数,其前n项的和为S n,已知36763,44S S==,则8a=10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是11.已知函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。

对2017江苏高考数学应用题和数列题

对2017江苏高考数学应用题和数列题
n2 n d 2
使得 S n
a m , 1 ( m 1) d n
( *) ;那么 m 随着 n 的变化而
f (n) .
变化,可设满足函数关系式 m 又
d 0
,那么要使(*)对任
恒成立,则
m f ( n)
;代入得:
d Bd 1 ,即有 ; 2 1 d Cd 0
时, S n a m . (注意:存在性问题的证明方法,找出符合题意的对象)
解法 2: (看到这个题目,联想到和 2013 年考的是一样的: 恒等式问题) 由题意设
n2 n Sn n d 2
am 1 (m 1)d
; 又 等 差 数 列 {a n } 的 前 n 项 和
;由题意知对任意正整数 n ,总存在正整数 m ,
【解析】 设公比为 q , 因为 a2 1 , 则由 a8
q 4 q 2 2 0 ,解得 q 2 2 ,所以 a6 a2q4 4 .
在解有关等差数列的问题时可以考虑化归为 a1 和 d 等基本 量,通过建立方程(组)获得解.即等差数列的通项公式
an a1 (n 1)d
t 2 106 f (t ) 3 4 (5 t 20) 。 4 t
令 t 2 x(25 x 400) ,被开方部分为 h( x) ,这时函数式较为简 单了。
x x 106 也可以使用三元基本不等式求解, g (t ) h( x) 2 8 8 x x x 106 x x 106 3 75 ,当且仅当 2 8 8 x 8 8 x2
(2015 年第 11 题 数列 {an } 满足 a1 1 , 且 an1 an 则数列 { 1 } 的前 10 项和为

2017年高考数学(理科江苏专版)二轮专题复习与策略课件:第1部分 专题5 第16讲 高考中圆

2017年高考数学(理科江苏专版)二轮专题复习与策略课件:第1部分 专题5 第16讲 高考中圆
问:A,B 两点应选在何处可使得小道 AB 最短?
[解] 如图,分别由两条道路所在直线建立直角坐标系xOy.
设A(a,0),B(0,b)(0<a<1,0<b<1), 则直线AB的方程为ax+by=1,即bx+ay-ab=0.
因为AB与圆C相切,所以|b+ba2+-aa2b|=1. 化简得 ab-2(a+b)+2=0,即ab=2(a+b)-2. 5分 因此AB= a2+b2= a+b2-2ab = a+b2-4a+b+4 = a+b-22. 因为0<a<1,0<b<1,所以0<a+b<2, 12分
(2)因为M→P·M→Q=0,所以∠PMQ=π2.
又由(1)得MP=MQ=r=
5,所以点M到直线l的距离d=
10 2.
14分
由点到直线的距离公式可知,|2m-4m-2+2m4-1|= 210,解得m=± 6. 16分
2.(2013·江苏高考)如图16-2,在平面直角坐标系xOy中,点A(0,3),直线l: y=2x-4.设圆C的半径为1,圆心在l上.
又因为AB⊥BC,所以BF=AFcos∠AFB=4030,
从而BC=CF-BF=150.
因此新桥BC的长是150 m. 8分
(2)设保护区的边界圆M与BC的切点为D,连结MD,则MD⊥BC,且MD是圆 M的半径,并设MD=r m,OM=d m(0≤d≤60).
因为OA⊥OC,所以sin∠CFO=cos∠FCO. 故由(1)知sin∠CFO=MMDF=OFM-DOM=6830r-d=35, 所以r=680-5 3d. 12分
[解] (1)由已知得A(6,0),直线ON的方程为y=-3x, 设Q(x0,2)(x0>0),由|3x01+02|=7 510及x0>0得x0=4,∴Q(4,2). 5分 ∴直线AQ的方程为y=-(x-6),即x+y-6=0, 由xy+=y--36x=,0, 得yx==9-,3, 即B(-3,9), ∴AB= -3-62+92=9 2,从而t=396 22=14 h. 即货运汽车需要1 5分钟时间. 8分

2017年江苏省高考数学试卷(真题详细解析).docx

2017年江苏省高考数学试卷(真题详细解析).docx

2017 年江苏省高考数学试卷一 .填空题1(.5 分)已知集合 A={ 1,2} ,B={ a,a2+3} .若 A∩B={ 1} ,则实数 a 的值为.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取件.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出 y 的值是.5.(5 分)若 tan(α﹣)=.则tanα=.6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q,其焦点是 F1,F2,则四边形 F1PF2Q 的面积是.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则 a8=.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数 f(x)=x3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为 45°.若 =m +n( m,n∈ R),则 m+n=.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=, n∈ N* } ,则方程 f(x)﹣ lgx=0 的解的个数是.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥求证:(1)EF∥平面 ABC;(2) AD⊥AC.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.17.( 14 分)如图,在平面直角坐标系xOy 中,椭圆 E:=1( a> b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点 P 在椭圆E 上,且位于第一象限,过点 F1作直线 PF1的垂线 l1,过点 F2作直线 PF2的垂线l2.(1)求椭圆 E 的标准方程;(2)若直线 l1,l2的交点 Q 在椭圆 E 上,求点 P 的坐标.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将 l 放在容器Ⅰ中, l 的一端置于点 A ,另一端置于棱 CC1上,求 l 没入水中部分的度;(2)将 l 放在容器Ⅱ中, l 的一端置于点 E ,另一端置于棱 GG1上,求 l 没入水中部分的度.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.20.( 16 分)已知函数f( x) =x3+ax2+bx+1(a>0,b∈R)有极,且函数 f ′( x)的极点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定域;(Ⅱ)明: b2> 3a;(Ⅲ)若 f( x),f ′(x)两个函数的所有极之和不小于,求数a的取范.二 .非,附加( 21-24 做)【修 4-1:几何明】(本小分0分)21.如, AB 半 O 的直径,直 PC切半 O 于点 C,AP⊥PC,P 垂足.求:(1)∠PAC=∠CAB;(2) AC2 =AP?AB.[ 修 4-2:矩与 ]22.已知矩 A=,B=.(1)求 AB;( 2)若曲 C1:=1在矩AB的作用下得到另一曲2,求CC2的方程.[ 修 4-4:坐系与参数方程 ]23.在平面直角坐系xOy 中,已知直 l 的参数方程(t参数),曲 C 的参数方程(s参数).P曲C上的点,求点P 到直 l 的距离的最小.[修 4-5:不等式]24.已知 a,b,c, d 数,且 a2+b2=4,c2+d2=16,明 ac+bd≤ 8.【必做】25.如,在平行六面体ABCD A1B1C1D1中, AA1⊥平面 ABCD,且 AB=AD=2,AA1=,∠ BAD=120°.(1)求异面直 A1B 与 AC1所成角的余弦;(2)求二面角 B A1D A 的正弦.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明E( X)<.2017 年江苏省高考数学试卷参考答案与试题解析一 .填空题2+3} .若 A∩B={ 1} ,则实数 a 的值为 1 ..(分)已知集合1 5A={ 1,2} ,B={ a,a【分析】利用交集定义直接求解.【解答】解:∵集合 A={ 1,2} ,B={ a,a2+3} .A∩B={ 1} ,∴a=1 或 a2+3=1,当a=1 时, A={ 1,1} , B={ 1, 4} ,成立;a2+3=1 无解.综上, a=1.故答案为: 1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数 z=( 1+i)(1+2i) =1﹣2+3i=﹣ 1+3i,∴ | z| ==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000 件,而抽取60 件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18 件,故答案为: 18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值 x=,不满足x≥1,所以 y=2+log2=2﹣=﹣ 2,故答案为:﹣ 2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5 分)若 tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵ tan(α﹣)===∴6tan α﹣6=tan α+1,解得 tan α=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,23.圆柱的体积为:πR?2R=2πR则 == .故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由 6+x﹣x2≥0 得 x2﹣x﹣6≤0,得﹣ 2≤ x≤ 3,则 D=[ ﹣2,3] ,则在区间 [ ﹣ 4, 5] 上随机取一个数 x,则 x∈ D 的概率 P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣ y2=1 的右准线与它的两条渐近线分别交于点 P, Q,其焦点是 F1,2,则四边形 1 2.F F PF Q 的面积是【分析】求出双曲线的准线方程和渐近线方程,得到 P,Q 坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣ y2=1的右准线:x=,双曲线渐近线方程为:±x,y=所以 P(,),Q(,﹣),F1(﹣,). 2(,).20 F 2 0则四边形 F1PF2Q 的面积是:=2.故答案为: 2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则a8= 32 .【分析】设等比数列 { a n的公比为≠, 3, 6,可得=,}q 1 S =S = =,联立解出即可得出.【解答】解:设等比数列 { a n} 的公比为 q≠ 1,∵ S3, 6,∴,,解得 a1=,q=2.则 a8==32.故答案为: 32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4× 2×=240(万元).当且仅当 x=30 时取等号.故答案为: 30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题..(分)已知函数3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a 11 5f(x)=x﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是[ ﹣ 1, ] .【分析】求出 f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在 R 上递增;再由奇偶性的定义,可得 f(x)为奇函数,原不等式即为2a2≤ 1﹣ a,运用二次不等式的解法即可得到所求范围.【解答】解:函数 f (x) =x3﹣ 2x+e x﹣的导数为:f ′(x)=3x2﹣2+e x+ ≥﹣ 2+2=0,可得 f (x)在 R 上递增;3+2x+e ﹣x x 3x又 f(﹣ x) +f (x)=(﹣ x)﹣e +x﹣2x+e ﹣ =0,可得 f (x)为奇函数,则f( a﹣ 1) +f (2a2)≤ 0,即有 f (2a2)≤﹣ f(a﹣1)由 f(﹣( a﹣1))=﹣ f( a﹣1),f(2a2)≤ f(1﹣a),即有 2a2≤1﹣a,解得﹣ 1≤a≤,故答案为: [ ﹣1,] .【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5 分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为45°.若=m +n(m,n∈ R),则 m+n= 3.【分析】如图所示,建立直角坐标系. A(1,0).由与的夹角为α,且tanα=7.可得 cosα=, sin α= . C.可得°°cos(α+45 ) =. sin(α+45 )=.B.利用=m +n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴ cosα=,sinα=.∴ C.°( cosα﹣sin α)=.cos(α+45) =sin(α+45°(sin α+cosα)=.)=∴ B.∵=m +n (m, n∈ R),∴ =m﹣ n, =0+ n,解得 n=,m=.则m+n=3.故答案为: 3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是[ ﹣5,1].【分析】根据题意,设 P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线 2x+y+5≤ 0 以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设 P(x0, y0),则有 x02+y02=50,=(﹣ 12﹣ x0,﹣ y0)?(﹣ x0,6﹣y0)=( 12+x0)x0﹣ y(0 6﹣ y0)=12x0+6y+x02+y02≤20,化为: 12x0﹣6y0+30≤0,即 2x0﹣y0+5≤ 0,表示直线 2x﹣ y+5=0 以及直线上方的区域,联立,解可得 x0﹣或0 ,= 5x =1结合图形分析可得:点P 的横坐标 x0的取值范围是 [ ﹣5,1] ,故答案为: [ ﹣5 ,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于 x0、y0的关系式.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=,n∈ N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中 f( x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f ( x)=,其中集合D={ x| x=,n∈ N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间 [ 0,1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又 f( x)是定义在 R 上且周期为 1 的函数,∴在区间 [ 1,2)上, f(x)=,此时f(x)的图象与y=lgx 有且只有一个交点;同理:区间 [ 2, 3)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 3, 4)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 4, 5)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 5, 6)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 6, 7)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 7, 8)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 8, 9)上, f( x)的图象与 y=lgx 有且只有一个交点;在区间 [ 9,+∞)上, f(x)的图象与 y=lgx 无交点;故f( x)的图象与 y=lgx 有 8 个交点;即方程 f(x)﹣ lgx=0 的解的个数是 8,故答案为: 8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥平面BCD,点 E、F(E 与 A、D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.求证:(1)EF∥平面 ABC;(2) AD⊥AC.【分析】(1)利用 AB∥EF及线面平行判定定理可得结论;(2)通过取线段 CD上点 G,连结 FG、EG使得 FG∥ BC,则 EG∥ AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为 AB⊥ AD, EF⊥AD,且 A、B、E、F 四点共面,所以 AB∥EF,又因为 EF?平面 ABC,AB? 平面 ABC,所以由线面平行判定定理可知:EF∥平面 ABC;(2)在线段 CD上取点 G,连结 FG、 EG使得 FG∥BC,则 EG∥AC,因为 BC⊥BD, FG∥ BC,所以 FG⊥BD,又因为平面 ABD⊥平面 BCD,所以 FG⊥平面 ABD,所以 FG⊥AD,又因为 AD⊥EF,且 EF∩FG=F,所以 AD⊥平面 EFG,所以 AD⊥EG,故 AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,( 2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵ =(cosx, sinx), =(3,﹣),∥,∴﹣cosx=3sinx,∴ tanx=﹣,∵ x ∈[ 0,π] ,∴ x=,( 2) f (x )==3cosx ﹣ sinx=2(cosx ﹣ sinx )=2 cos (x+),∵ x ∈[ 0,π] ,∴ x+ ∈[, ] ,∴﹣ 1≤cos (x+ )≤,当 x=0 时, f (x )有最大值,最大值 3,当 x=时, f (x )有最小值,最小值﹣ 2 .【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.( 14 分)如图,在平面直角坐标系 xOy 中,椭圆 E :=1( a > b >0)的左、右焦点分别为 F 1, 2 ,离心率为 ,两准线之间的距离为 8 .点 P 在椭圆FE 上,且位于第一象限,过点F 作直线 PF 的垂线 l ,过点 F 作直线 PF 的垂线1 112 2 l 2.( 1)求椭圆 E 的标准方程;( 2)若直线 l 1,l 2 的交点 Q 在椭圆 E 上,求点 P 的坐标.【分析】(1)由椭圆的离心率公式求得 a=2c ,由椭圆的准线方程 x=±,则 2×=8,即可求得 a 和 c 的值,则 b 2=a 2﹣ c 2 =3,即可求得椭圆方程;( 2)设 P 点坐标,分别求得直线 PF 2 的斜率及直线 P F 1 的斜率,则即可求得 l 2及l1的斜率及方程,联立求得 Q 点坐标,由 Q 在椭圆方程,求得 y02=x02﹣1,联立即可求得 P 点坐标;方法二:设 P(m, n),当 m≠1时,=,=,求得直线l1及l1的方程,联立求得 Q 点坐标,根据对称性可得=± n2,联立椭圆方程,即可求得 P 点坐标.【解答】解:(1)由题意可知:椭圆的离心率e== ,则 a=2c,①椭圆的准线方程 x=±,由 2×=8,②由①②解得: a=2,c=1,则 b2 2﹣c2,=a=3∴椭圆的标准方程:;( 2)方法一:设 P(x0,0),则直线 2 的斜率=,y PF则直线 l2的斜率 2 ﹣,直线l 2的方程﹣(﹣),k =y=x 1直线 PF1的斜率=,则直线 l2的斜率1﹣,直线l 1 的方程﹣(),k =y=x+1联立,解得:,则Q(﹣x0,),由 P,Q 在椭圆上, P, Q 的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣ 1,则,解得:,则,又 P 在第一象限,所以P 的坐标为:P(,).方法二:设 P(m, n),由 P 在第一象限,则 m> 0, n> 0,当 m=1 时,不存在,解得: Q 与 F1重合,不满足题意,当 m≠1 时,=,=,由 l1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线 l1的方程 y=﹣( x+1),①直线 l2的方程 y=﹣(x﹣1),②联立解得: x=﹣m,则 Q(﹣ m,),由 Q 在椭圆方程,由对称性可得:=±n2,即m2﹣ n2=1,或 m2+n2=1,由 P(m,n),在椭圆方程,,解得:,或,无解,又 P 在第一象限,所以P 的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1上,求 l 没入水中部分的长度;( 2)将 l 放在容器Ⅱ中, l 的一端置于点 E 处,另一端置于侧棱 GG1上,求 l 没入水中部分的长度.【分析】(1)设玻璃棒在 CC1上的点为 M,玻璃棒与水面的交点为 N,过 N 作NP∥MC,交 AC于点 P,推导出 CC1⊥平面 ABCD,CC1⊥ AC,NP⊥ AC,求出MC=30cm,推导出△ ANP∽△ AMC,由此能出玻璃棒 l 没入水中部分的长度.(2)设玻璃棒在 GG1上的点为 M,玻璃棒与水面的交点为 N,过点 N 作 NP⊥ EG,交 EG于点 P,过点 E 作 EQ⊥E1G1,交 E1G1于点 Q,推导出 EE1G1G 为等腰梯形,求出 E1Q=24cm,E1E=40cm,由正弦定理求出 sin∠GEM= ,由此能求出玻璃棒 l没入水中部分的长度.【解答】解:(1)设玻璃棒在 CC1上的点为 M ,玻璃棒与水面的交点为 N,在平面 ACM 中,过 N 作 NP∥MC,交 AC于点 P,∵ABCD﹣A1B1C1D1为正四棱柱,∴ CC1⊥平面 ABCD,又∵ AC? 平面 ABCD,∴ CC1⊥AC,∴ NP⊥AC,∴NP=12cm,且 AM2=AC2+MC2,解得 MC=30cm,∵ NP∥MC,∴△ ANP∽△ AMC,∴= ,,得AN=16cm.∴玻璃棒 l 没入水中部分的长度为16cm.(2)设玻璃棒在 GG1上的点为 M ,玻璃棒与水面的交点为 N,在平面 E1EGG1中,过点 N 作 NP⊥EG,交 EG于点 P,过点 E 作 EQ⊥ E1G1,交 E1G1于点 Q,∵ EFGH﹣ E1F1G1H1为正四棱台,∴ EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G 为等腰梯形,画出平面 E1EGG1的平面图,∵ E1G1=62cm,EG=14cm,EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得: E1E=40cm,∴sin∠EE1G1= ,sin∠EGM=sin∠EE1G1= ,cos∠EGM=﹣,根据正弦定理得:=,∴ sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠ EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠ EMG= ,∴ EN===20cm.∴玻璃棒 l 没入水中部分的长度为20cm.【点】本考玻璃棒 l 没入水中部分的度的求法,考空中、面、面面的位置关系等基知,考推理能力、运算求解能力、空想象能力,考数形合思想、化与化思想,是中档.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.【分析】(1)由意可知根据等差数列的性, a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=( a n+a n+3)+(a n﹣ 2+a n+2)+(a n﹣ 1+a n+1)═2×3a n,根据“P(k)数列”的定,可得﹣3数列 { a n} 是“P(3)数列”;( 2)由已知条件合( 1)中的,可得到 { a n} 从第 3 起等差数列,再通判断 a2与 a3的关系和 a1与 a2的关系,可知 { a n} 等差数列.【解答】解:( 1)明:等差数列 { a n} 首 a1,公差 d, a n =a1+(n 1)d,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n +2a n+2a n,=2×3a n,∴等差数列 { a n} 是“P(3)数列”;( 2 )明:当n ≥ 4 ,因数列{ a n} 是 P( 3 )数列,a n﹣3+a n﹣2+a n﹣1+a n +1+a n+2+a n +3=6a n,①因数列 { a n} 是“P( 2)数列”,所以 a n﹣2+a n﹣1+a n+1+a n+2=4a n,②则a n﹣1+a n+a n+2+a n+3=4a n+1,③,②+③﹣①,得 2a n=4a n﹣1+4a n+1﹣6a n,即 2a n=a n﹣1+a n+1,( n≥ 4),因此 n≥4 从第 3 项起为等差数列,设公差为d,注意到 a2+a3+a5+a6=4a4,所以 a2=4a4﹣a3﹣a5﹣ a6=4(a3+d)﹣ a3﹣( a3+2d)﹣( a3+3d) =a3﹣ d,因为 a1+a2+a4+a5=4a3,所以 a1 =4a3﹣a2﹣ a4﹣a5=4(a2+d)﹣ a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前 3 项满足等差数列的通项公式,所以 { a n} 为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.( 16 分)已知函数 f( x) =x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f ′(x)的极值点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定义域;(Ⅱ)证明: b2> 3a;(Ⅲ)若 f( x),f ′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.【分析】(Ⅰ )通过对 f(x) =x3+ax2+bx+1 求导可知 g( x) =f (′x)=3x2+2ax+b,进而再求导可知 g′(x)=6x+2a,通过令 g′( x) =0 进而可知 f ′(x)的极小值点为 x=﹣,从而 f(﹣)=0,整理可知 b=+ ( a>0),结合 f(x)=x3+ax2+bx+1( a> 0,b∈ R)有极值可知 f ′(x)=0 有两个不等的实根,进而可知 a>3.(Ⅱ)通过( 1)构造函数 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),结合 a> 3 可知 h( a)> 0,从而可得结论;(Ⅲ)通过( 1)可知 f ′(x)的极小值为 f (′﹣)=b﹣,利用韦达定理及完全平方关系可知 y=f( x)的两个极值之和为﹣+2,进而问题转化为解不等式 b﹣ +﹣+2= ﹣≥﹣,因式分解即得结论.【解答】(Ⅰ )解:因为 f (x)=x3+ax2 +bx+1,所以 g(x)=f ′( x) =3x2 +2ax+b,g′(x)=6x+2a,令 g′(x)=0,解得 x=﹣.由于当 x>﹣时g′(x)>0,g(x)=f(′x)单调递增;当x<﹣时g′(x)<0,g(x)=f (′x)单调递减;所以 f ′(x)的极小值点为x=﹣,由于导函数 f ′(x)的极值点是原函数f( x)的零点,所以 f (﹣)=0,即﹣+﹣+1=0,所以 b=+(a>0).因为 f (x) =x3+ax2 +bx+1(a>0,b∈R)有极值,所以 f ′(x)=3x2+2ax+b=0 的实根,所以 4a2﹣12b≥ 0,即 a2﹣+≥0,解得a≥3,所以 b=+(a>3).(Ⅱ)证明:由( 1)可知 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),由于 a>3,所以 h(a)> 0,即 b2>3a;(Ⅲ)解:由( 1)可知 f ′(x)的极小值为 f ′(﹣)=b﹣,设 x1, 2 是y=f ()的两个极值点,则 1 2, 1 2,x x x +x =x x =所以 f (x1)+f ( 2)= +(+)+b( 1 2)+2 x+a x +x=(x1+x2)[ (x1+x2)2﹣3x1x2]+ a[ ( x1 +x2)2﹣2x1 x2]+ b(x1+x2)+2 =﹣+2,又因为 f(x), f ′(x)这两个函数的所有极值之和不小于﹣,所以 b﹣+﹣+2=﹣≥﹣,因为 a>3,所以 2a3﹣63a﹣54≤0,所以 2a(a2﹣36)+9( a﹣6)≤ 0,所以( a﹣6)( 2a2+12a+9)≤ 0,由于 a>3 时 2a2+12a+9>0,所以 a﹣6≤0,解得 a≤6,所以 a 的取值范围是( 3,6] .【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二 .非选择题,附加题( 21-24 选做题)【选修 4-1:几何证明选讲】(本小题满分0分)21.如图, AB 为半圆 O 的直径,直线 PC切半圆 O 于点 C,AP⊥PC,P 为垂足.求证:(1)∠ PAC=∠CAB;(2) AC2 =AP?AB.【分析】( 1 )利用弦切角定理可得:∠ ACP=∠ ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.( 2)由( 1)可得:△ APC∽△ ACB,即可证明.【解答】证明:(1)∵直线 PC切半圆 O 于点 C,∴∠ ACP=∠ABC.∵AB为半圆 O 的直径,∴∠ ACB=90°.∵AP⊥PC,∴∠ APC=90°.∴∠ PAC=90°﹣∠ ACP,∠ CAB=90°﹣∠ ABC,∴∠ PAC=∠CAB.(2)由( 1)可得:△ APC∽△ ACB,∴ = .∴2AC =AP?AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[ 选修 4-2:矩阵与变换 ]22.已知矩阵 A=,B=.(1)求 AB;( 2)若曲线 C1:=1在矩阵AB对应的变换作用下得到另一曲线2,求CC2的方程.【分析】(1)按矩阵乘法规律计算;( 2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点 P( x,y)为曲线 C1的任意一点,点P 在矩阵 AB 的变换下得到点 P′( x0,y0),则=,即x0, 0 ,=2y y =x∴x=y0,y= ,∴,即 x02+y02=8,∴曲线 C2的方程为 x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[ 选修 4-4:坐标系与参数方程 ]23.在平面直角坐标系 xOy 中,已知直线 l 的参数方程为(t 为参数),曲线 C 的参数方程为(s为参数).设P为曲线C上的动点,求点P 到直线 l 的距离的最小值.【分析】求出直线 l 的直角坐标方程,代入距离公式化简得出距离 d 关于参数 s的函数,从而得出最短距离.【解答】解:直线 l 的直角坐标方程为x﹣2y+8=0,∴ P 到直线 l 的距离 d==,∴当 s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修 4-5:不等式选讲]24.已知 a,b,c, d 为实数,且 a2+b2=4,c2+d2=16,证明 ac+bd≤ 8.【分析】a2+b2=4,c2+d2=16,令 a=2cos α,b=2sin α,c=4cos β,d=4sin β代入. ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:( ac+bd )2≤( a2+b2)( c2+d2),即可得出.【解答】证明:∵ a2+b2=4,c2+d2=16,令a=2cosα, b=2sin α,c=4cosβ,d=4sin β.∴ ac+bd=8( cosαcos+sinβ αsin)β=8cos(α﹣β)≤ 8.当且仅当cos(α﹣β) =1时取等号.因此 ac+bd≤ 8.另解:由柯西不等式可得:( ac+bd)2≤( a2+b2)(c2+d2)=4× 16=64,当且仅当时取等号.∴﹣ 8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】第27页(共 31页)AA1=,∠ BAD=120°.(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B﹣A1D﹣ A 的正弦值.【分析】在平面 ABCD内,过 A 作 Ax⊥ AD,由 AA1⊥平面 ABCD,可得 AA1⊥ Ax,AA1⊥ AD,以 A 为坐标原点,分别以Ax、AD、 AA1所在直线为 x、 y、 z 轴建立空间直角坐标系.结合已知求出A, B, C, D,A1,1的坐标,进一步求出,C,,的坐标.( 1)直接利用两法向量所成角的余弦值可得异面直线A1B 与1所成角的余弦AC值;(2)求出平面 BA1D 与平面 A1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角 B﹣A1D﹣ A 的余弦值,进一步得到正弦值.【解答】解:在平面 ABCD内,过 A 作 Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax? 平面ABCD,∴ AA1⊥Ax, AA1⊥ AD,以 A 为坐标原点,分别以 Ax、AD、AA1所在直线为 x、y、z 轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠ BAD=120°,∴ A( 0, 0, 0),B(), C(, 1, 0),D(0,2,0),A ( 0, 0,),C ().11= (),= (),,.( 1)∵ cos<>==.∴异面直 A1B 与 1 所成角的余弦;AC( 2)平面 BA1D 的一个法向量,由,得,取 x=,得;取平面 A1 AD 的一个法向量.∴ cos<>==.∴二面角 B A1A 的余弦,二面角B1A的正弦D A D.【点】本考异面直所成的角与二面角,了利用空向量求空角,是中档.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率 p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明 E( X)<.【分析】(1)法一:事件 A i表示号i 的抽里放的是黑球,( 2)p=p A=P(A 2| A1)P(A1)+P(A2 |)P(),由此能求出号 2 的抽内放的是黑球的概率.法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,由此能求出号 2 的抽内放的是黑球的概率.( 2)X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,从而(E X)=()=,由此能明(EX)<.【解答】解:(1)解法一:事件A i表示号 i 的抽里放的是黑球,p=p(A2)=P(A2| A1)P( A1)+P(A2|)P()===.解法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,∴ 号 2 的抽内放的是黑球的概率p==.明:(2)∵ X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,∴ E( X) =()==<==?()第30页(共 31页)==,∴ E( X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.第31页(共 31页)。

2017年江苏数学高考试卷含答案和解析

2017年江苏数学高考试卷含答案和解析

2017年江苏数学高考试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D 的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且ta nα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠P AC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3 …m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏高考数学参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且ta nα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1].【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f (x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)设P(x0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由Q在椭圆上,则y0=,则y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG 于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠P AC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠P AC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠P AC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n 的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3 …m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2017年高考数学江苏卷(附参考答案及详解)

2017年高考数学江苏卷(附参考答案及详解)
""!0平面 "$&'#且 "$'"''$#""!'槡(#.$"''!$#;! $!%求异面直线 "!$ 与"&! 所成角的余弦值* $$%求二面角 $5"!'5" 的正弦值!
第 $$ 题 图
#"
参考答案与详细解析
"#!$ 年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 江 苏 卷
$$%若直线:!#:$ 的交点 - 在椭圆A 上#求点 * 的坐标!
!9!$本 小 题 满 分 !& 分%对 于 给 定 的 正 整 数?#若 数 列!0%"满 足 &0%)? 10%)?1! 1 ' 10%)! 10%1! 1 ' 10%1?)! 10%1? '$?0%#对 任 意 正 整 数 %$%$?%总 成 立 #则 称 数 列 !0% "是 -*$?%数 列 .! $!%证 明 &等 差 数 列 !0% "是 -*$(%数 列 .* $$%若 数 列 !0% "既 是 -* $$%数 列 .#又 是 -* $(%数 列 .# 证 明 &!0% "是 等 差 数 列 !
写在题中横线上
!!已知集合 "'!!#$"#$'!0#0$1("!若 "%$'!!"#则 实 数0 的
值为!!!!!
$!已知复数.'$!10%$!1$0%#其中0是虚数单位#则. 的模是!!
!!!
(!某工厂生产甲,乙,丙,丁四种不同型号的产品#产 量 分 别 为 $###

2017年度高考数学江苏试题及解析

2017年度高考数学江苏试题及解析

2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年江苏)右图是一个算法流程图,若输入x的值为116,则输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年江苏)若tan(α+π4)=16则tan α= .5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 .6. 32 【解析】设球半径为r ,则V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年江苏)记函数f (x )=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x ∈D 的概率是3-(-2)5-(-4)=59.8. (2017年江苏)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P (31010,3010),则Q (31010,-3010),F 1(-10,0),F 2(10,0),则S=210×3010=2 3.9.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] 3210. (2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年江苏)已知函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是___________.12. (2017年江苏)如图,在同一个平面内,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.若→OC =m →OA +n →OB (m ,n ∈R),则m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎨⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74, 所以m+n=3.13. (2017年江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若→PA ·→PB ≤20,则点P 的横坐标的取值范围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P横坐标的取值范围为 [52,1].14. (2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=1x ln 10=1ln 10<1,则在x=1附近仅有一个交点,因此方程f(x)-lgx=0的解的个数为8.答案:815.(2017年江苏)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD ⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.(2)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴AD ⊥平面ABC .又∵AC ⊂平面ABC ,∴AD ⊥AC .16. (2017年江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又错误!未找到引用源。

(完整版)2017年江苏省高考数学试卷

(完整版)2017年江苏省高考数学试卷

精心整理2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a 的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F (E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f (x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2=AP?AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E (X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017?江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【考点】1E:交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.2.(5分)(2017?江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.3.(5分)(2017?江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【考点】B3:分层抽样方法.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:184.(5分)(2017?江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【考点】EF:程序框图.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.5.(5分)(2017?江苏)若tan(α﹣)=.则tanα=.【考点】GR:两角和与差的正切函数.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.6.(5分)(2017?江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【考点】L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2?2R=2πR3.则==.故答案为:.7.(5分)(2017?江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【考点】CF:几何概型.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:8.(5分)(2017?江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【考点】KC:双曲线的简单性质.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.9.(5分)(2017?江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= 32.【考点】88:等比数列的通项公式.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.10.(5分)(2017?江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【考点】7F:基本不等式.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.11.(5分)(2017?江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【考点】6B:利用导数研究函数的单调性.【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].12.(5分)(2017?江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.【考点】9R:平面向量数量积的运算.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n (m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.13.(5分)(2017?江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1].【考点】9R:平面向量数量积的运算;7B:二元一次不等式(组)与平面区域.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)?(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].14.(5分)(2017?江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【考点】54:根的存在性及根的个数判断.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8二.解答题15.(14分)(2017?江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【考点】LS:直线与平面平行的判定;LO:空间中直线与直线之间的位置关系.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF?平面ABC,AB?平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.16.(14分)(2017?江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【考点】GL:三角函数中的恒等变换应用;9R:平面向量数量积的运算.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.17.(14分)(2017?江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k1=﹣,直线l1的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).18.(16分)(2017?江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【考点】LF:棱柱、棱锥、棱台的体积.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC 于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC?平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.19.(16分)(2017?江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k +a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.﹣1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【考点】8B:数列的应用.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;﹣1(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.20.(16分)(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【考点】6D:利用导数研究函数的极值.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f (x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017?江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2=AP?AB.【考点】NC:与圆有关的比例线段.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2=AP?AB.[选修4-2:矩阵与变换]22.(2017?江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【考点】OE:矩阵与矩阵的乘法的意义.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.[选修4-4:坐标系与参数方程]23.(2017?江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【考点】QH:参数方程化成普通方程.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.[选修4-5:不等式选讲]24.(2017?江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【考点】7F:基本不等式;R6:不等式的证明.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【必做题】25.(2017?江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【考点】MT:二面角的平面角及求法;LM:异面直线及其所成的角.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax?平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.26.(2017?江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E (X)<.【考点】CH:离散型随机变量的期望与方差.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P (A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==?()==,∴E(X)<.参与本试卷答题和审题的老师有:zlzhan;沂蒙松;whgcn;cst;qiss;maths;双曲线;danbo7801;豫汝王世崇;铭灏2016;zhczcb;sxs123(排名不分先后)菁优网2017年6月11日。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
AUB={xl lx<2) ,故 C, D 错误; 故选: A. 【点评】 本题考查的知识点梨合的父生和并炊运算,难度小大,屈千基础题.
2. 【觥答】 解:在 A 中,平均数是表不一组数据仗中趋势的址数,它是反映数据梊中趋势的一项指标, 故 A 不可以用来评估这种农什物由产量稳定程度; 在 B 中,标准差能反映一个数据集的离散程度,故 B 可以用来评估这种农作物亩产量稳定程度; 在 C 中,最大值是一组数据最大的量,故 C 不可以用来评估这种农作物亩产量稳定程度; 在 D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的"中等水平”, 故 D 不可以用来评估这种农作物亩产量稳定程度. 故选: B.
尺寸的均值与标准差.(精确到 0.01) n
区 ( xi-x) ( yi-y)
:n11(=:1 云) 2荨了 ' 三=0.09. 附:杆本 (x;, y;) (i=l, 2,..., n) 的相关系数 r=
21. (12 分)已知函数 f (x) =e'(e•-a) -a奴
( 1) 讨论 f (x) 的单调性; ( 2) 若 f (x) ?co, 求 a 的取值范围.
I: (x, - x) (i - 8.5) = - 2.78, 其中 x 为抽取的第 i 个零件的尺寸, i=l, 2,..., 16.
1=1
( 1) 求 (x;, i) (i=l, 2,..., 16) 的相关系数 r, 并回答是否可以认为这一天生产的零件尺寸不随生 产过程的进行而系统地变大或变小(若 I rl <o.2s, 则可以认为零件的尺寸不随生产过程的进行而
-冗
x
-冗
X
A. 1-4
B. 千
c. 1_2
D. 于

高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)

高考数学(理)之平面向量 专题04  平面向量在平面几何、三角函数、解析几何中的应用(解析版)

平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。

高考数学总复习选做矩阵试题含解析

高考数学总复习选做矩阵试题含解析

由xy′ ′=10 21xy=x+y2y,得xy′′= =xy+ . 2y, 又点 M′(x′,y′)在 l′上,所以 x′+by′=1, 即 x+(b+2)y=1,
依题意得ab= +12, =1, 解得ab= =1-,1.
(2)由 Ayx00=xy00,得xy00= =xy00+ ,2y0,
解得 y0=0.
3.特征值和特征向量
设矩阵 A=ac bd,如果存在数 λ 以及非零向量 ξ,使得 Aξ=λξ,则称 λ 是矩阵 A 的一 个特征值,ξ 是矩阵 A 的属于特征值 λ 的一个特征向量.
4.特征向量的性质 设 λ1,λ2 是二阶矩阵 A 的两个不同特征值,ξ1,ξ2 是矩阵 A 的分别属于特征值 λ1,λ2 的 特征向量,对于任意的非零平面向量 α,设 α=t1ξ1+t2ξ2(t1,t2 为实数),则对任意的正 整数 n,有 Anα=t1λn1ξ1+t2λn2ξ2.
【解析】由题意得
2 2y 2 xy 4
2
y
y
,解得
x y
4
1 2
.∴
x
y
7 2
.
5.【2013
江苏,理
21B】[选修
4-2:矩阵与变换](本小题满分
10
分)已知矩阵
A=
1 0
0 2

B=
1 0
2 6
,求矩阵
A-1B.
【答案】
1 0
2 3

【解析】解:设矩阵
A
的逆矩阵为
a c
b
专题 2 矩 阵
【三年高考全收录】
1.【2017
年高考江苏】已知矩阵
A
0 1
1 0
,

2017年高考数学—圆锥曲线(解答+答案)

2017年高考数学—圆锥曲线(解答+答案)

2017年高考数学—圆锥曲线(解答+答案)1.(17全国1理20.(12分))已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。

若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.2.(17全国1文20.(12分))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.3.(17全国2理20. (12分))设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.(17全国3理20.(12分))已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程.5.(17全国3文20.(12分))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.6.(17北京理(18)(本小题14分))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.7.(17北京文(19)(本小题14分))已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x . (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点,M N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.8.17山东理(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为22,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.9.(17天津理(19)(本小题满分14分))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程.10.(17天津文(20)(本小题满分14分))已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(ⅰ)求直线FP 的斜率; (ⅱ)求椭圆的方程.11.(17浙江21.(本题满分15分))如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13()()22P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求AP PQ ⋅的最大值.12.(17江苏17.(本小题满分14分))如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线12,l l 的交点Q 在椭圆E 上,求点P 的坐标.参考答案:1.解:(1)由于34,P P 两点关于y 轴对称,故由题设知C 经过34,P P 两点又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上 因此22211,1314b a b ⎧=⎪⎪⎨⎪+=⎪⎩解得2241a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y += (2)设直线2P A 与直线2P B 的斜率分别为12,k k如果l 与x 轴垂直,设:l x t =,由题设知0t ≠,且||2t <,可得,A B的坐标分别为(,t t则1222122k k t t+=-=-,得2t =,不符合题设从而可设:(1)l y kx m m =+≠,将y kx m =+代入2214x y +=得 222(41)8440k x kmx m +++-=由题设可知2216(41)0k m ∆=-+>设1122(,),(,)A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++而 12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=即222448(21)(1)04141m kmk m k k --++-=++ 解得12m k +=-当且仅当1m >-时,0∆>,于是1:2m l y x m +=-+, 所以l 过定点(2,1)-3.解:(1)设(,)P x y ,00(,)M x y ,则000(,0),(,),(0,)N x NP x x y NM y =-=u u u r u u u u r由NP =u u u r u u u r得00,x x y y ==因为00(,)M x y 在C 上,所以22122x y += 因此点P 的轨迹方程为222x y += (2)由题意知(1,0)F -设(3,),(,)Q t P m n -,则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---=+-u u u r u u u r u u u r u u u rg , (,),(3,)OP m n PQ m t n ==---u u u r u u u r由1OQ PQ =u u u r u u u r g 得2231m m tn n --+-=又由(1)知222m n +=,故330m tn +-=所以0OQ PF =u u u r u u u r g ,即OQ PF ⊥u u u r u u u r .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.解:(1)设1122(,),(,),:2A x y B x y l x my =+由22,2x my y x=+⎧⎨=⎩可得2240y my --=,则124y y =- 又221212,22y y x x ==,故21212()44y y x x ==因此OA 的斜率与OB 的斜率之积为1212414y y x x -==-g ,所以OA OB ⊥ 故坐标原点O 在圆M 上(2)由(1)可得21212122,()424y y m x x m y y m +=+=++=+故圆心M 的坐标为2(+2,)m m ,圆M的半径r =由于圆M 过点(4,2)P -,因此0AP BP ⋅=u u u r u u u r, 故1212(4)(4)(2)(2)0x x y y --+++=, 即121212224()2()200x x x x y y y y -+++++= 由(1)可得12124,4y y x x =-= 所以2210m m --=,解得1m =或12m =-当1m =时,直线l 的方程为10x y --=,圆心M 的坐标为(3,1),圆M的半径为M 的方程为22(3)(1)10x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=5.解:(1)不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 (2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5 分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n 的平均数B.x1,x2,…,x n 的标准差C.x1,x2,…,x n 的最大值D.x1,x2,…,x n 的中位数3.(5 分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5 分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F 是双曲线C:x2﹣=1 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为()A.B.C.D.6.(5 分)如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是()A.B.C.D.7.(5 分)设x,y 满足约束条件,则z=x+y 的最大值为()A.0 B.1 C.2 D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5 分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1 对称D.y=f(x)的图象关于点(1,0)对称10.(5 分)如图程序框图是为了求出满足3n﹣2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000 和n=n+1 B.A>1000 和n=n+2C.A≤1000 和n=n+1 D.A≤1000 和n=n+211.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5 分)设A,B 是椭圆C:+=1 长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1] ∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4 小题,每小题5 分,共20 分。

2017年高考数学江苏卷第17题解法赏析

2017年高考数学江苏卷第17题解法赏析

面 直 角 坐 标 系 工 Q y 中, 椭 圆 & = 1 (a >
心> 0 ) 的左、 右焦点分别 为 F1 , 只 2 , 离心率为 2 图1 P F 2 的方程为 y = 犽 2(狓一 1 ) , 则 直 线 A 的方程为 y = — (狓— 1 ).
P
两 准 线 之 间 的 距 离 为 8. 点 P 在椭圆上, 且位于第一象限, 过 点 F 1 作直线 的 垂 线 Z1 , 过 点 R 作 直 线 的 垂 线 Z2 . (1) 求 椭 圆 E 的标准方程; (2) P 的坐标.
狓2 - 1 对 称 性 得 -狓 一 = 士y 。 , 即狓2 + y 0 = 1 ① , 或者
y0
2017年 第 9 期
中学数学月刊
^ 2 = 1 ② .又因为 P 在椭圆上, 所 以 4; y2 = 1 2 一 3: r 2 ,分 别 代 人 ① , ②, 前者无解 ,由 后 者 得 ^。 =
— k 2 k 2 — k 1) .
将此坐标代入椭圆方程, 化简得 9k 1 + 9 k2 — 30k 1k 2 一 1 6 = 0 •① 设 P (T 0 , y。 ) , 则 k1 y0 , _ 狓 0+ 1 y0
狓0 — 1
第一象限内的点, 所以狓。 > 0, y。 > 0, 则〒 P = ---^ ---^ ( 狓 〇+ 1 y 0 ) F 1Q =(狓 1 + 1 y 1) F 2P =(狓 〇 —1 , y 0^ —1Q = (狓1 — 1 ?y 1). 又因为— Q 以— Q 因此丨 丄— Q , —Q Q = 0. 丄— Q , 所
中学数学月刊
2017年 第 9 期

2017版高考数学(江苏专用、理科)一轮复习习题:第十三章 选修四选考部分 第4讲 含答案

2017版高考数学(江苏专用、理科)一轮复习习题:第十三章 选修四选考部分 第4讲 含答案

1.(2012·江苏卷)已知实数x,y满足:|x+y|<错误!,|2x-y|〈错误!,求证:|y|〈错误!.证明因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,由题设知|x+y|〈13,|2x-y|〈错误!,从而3|y|〈错误!+错误!=错误!,所以|y|〈错误!。

2。

(2011·江苏卷)解不等式x+|2x-1|<3.解原不等式可化为错误!或错误!解得错误!≤x<错误!或-2<x<错误!.∴原不等式的解集是错误!.3。

(2015·全国Ⅰ卷)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围。

解(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得错误!<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2。

所以f(x)>1的解集为错误!.(2)由题设可得,f(x)=错误!所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A错误!,B(2a+1,0),C(a,a+1),△ABC的面积为错误!(a+1)2。

由题设得错误!(a+1)2>6,故a>2。

所以a的取值范围为(2,+∞).4。

(2015·陕西卷)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}. (1)求实数a,b的值;(2)求错误!+错误!的最大值。

解(1)由|x+a|<b,得-b-a<x<b-a,则错误!解得a=-3,b=1。

(2)错误!+错误!=错误!错误!+错误!≤错误!=2错误!=4,当且仅当错误!=错误!,即t=1时等号成立,故(错误!+错误!)max=4。

5。

(2010·江苏卷)已知实数a,b≥0,求证:a3+b3≥错误!(a2+b2)。

历年高考数学真题电子版

历年高考数学真题电子版

历年高考数学真题电子版本文介绍了历年高考数学真题电子版:一、2019年湖北高考数学真题电子版1. 已知函数y=log2(x+3)+1,则y=2时x=________。

2. 在△ABC中,若∠A=90°,a=2,b=7,c=5,则△ABC的面积为________。

3. 设全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则A∪B=________、A∩B=________。

二、2018年北京高考数学真题电子版1. 已知函数y=|2x+1|,x=-3时,y=________。

2. 已知△ABC中,∠=30°,a=3,b=4,D是BC的中点,AD的长等于b的长,△ABC的面积为S,则S=________。

3. 设全集U={1,2,3,4,5,6}, 集合A={1,2,3,4},B={3,4,5,6},则A∪B=________、A∩B=________。

三、2017年江苏高考数学真题电子版1. 已知函数y=(x+1)(x-1),则y=2时x=________。

2. 已知△ABC中,∠A=45°,a = 1,b = 3,c = 5,△ABC的面积为S,则S=________。

3. 设全集U={1,2,4,5}, 集合A={1,2},B={2,4,5},则A∪B= ________,A∩B=________。

四、2016年山东高考数学真题电子版1. 已知函数y=lg(x+3),则y=2时x=________。

2. 已知△ABC中,∠A=60°,a = 3,b = 5,c = 6,△ABC的面积为S,则S=________。

3. 设全集U={1,2,3,4,5,6}, 集合A={1,2},B={3,4,5,6},则A∪B=________、A∩B=________。

以上就是历年高考数学真题电子版的有关介绍,从这里可以看出,历年高考数学真题电子版涵盖了所有的高考数学考题,全面检验学生们的数学水平。

解法诚可贵 计算价更高——2017年江苏高考数学试卷第18题应用题教学反思

解法诚可贵 计算价更高——2017年江苏高考数学试卷第18题应用题教学反思


解 题 技 巧 与方 法
·
·
● 静

化 得 25x 一98x0—13175=0. 同样地 ,学生算 到这个方程不敢往下算或算 不下去了. 3.策略三 :以“角”为变量 建立 方程. 解 法四 正弦定理——直接 求 sinLMEG的值.
 ̄:AEGM 中,由 c。sLEGM =一c。s = 一啊3_
24 = 8 ×3.
注 意 到 勾 三股 四 弦 五 ,Gl G=8×5=40,
由 于 tan =
=4

,可设
=4 ,GR=3 ,
由勾 股定 理得 职 +MR =EM2, 所 以 (14+3x)。+(4x)。=40 ,
由勾 三股 四弦五知 ,40 =32 +24 , 易 得 14+3x=32,4x=24( =6),即 MR=24,
所以监 一÷,
得 至0 5GM2+84GM 一7020:0.
学 生 在 解 这 个 一 元 二 次 方 程 的 根 时 会 出现 问题 .由 于
数据太大 ,要 么以为 自己算错 了不敢往 下算 ,要 么 由于 太紧 张算 不到正确结果.
解法二 勾股定理——求 MR的长度.
因为 四边形 E】EGG,是等腰梯形 ,G S=32=8×4,GS=
· GG
记 G GS= ,则 COS0 GS = 24=了3

LrLr1 叶 U

1.策 略一 :以“边 ”为变量 建立方程. 解法一 余弦定理—— 直接寻找关于 GM 的等量关系.
在 △嬲 中 ,c。s/EGM =一c。s =一了3 ,
cos/EGM =丽EG2+GM2-EM2 监 = ,

(完整版)2017年江苏数学高考试卷含答案和解析

(完整版)2017年江苏数学高考试卷含答案和解析

2017年江苏数学高考试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα= .6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= .10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a 的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且ta nα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= .13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n (n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列";(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21—24选做题)【选修4—1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s 为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏高考数学参考答案与试题解析一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.如图, 在同一个平面内, 向量 OA , OB , OC ,的模分别为 1,1, 2 ,OA 与 OC 的夹角为 , 且 tan =7,


=m OA


OB

与 OC

的夹角为 45°。若 OC


+n OB

(m,n R) ,则 m+n=
1 ,则输出的 y 的值是 16

1 = ,则 tan = 4 6
6.如图,在圆柱 O1 O2 内有一个球 O,该球与圆柱的上、下面及母线均相切。 记圆柱 O1 O2 的体积为 V1 ,球 O 的体积为 V2 ,则
V1 的值是 V2
7.记函数 f ( x) 6 x x 2 的定义域为 D.在区间[-4,5]上随机取一个数 x, 则 x D 的概率是 8.在平面直角坐标系 xoy k ,双曲线
x2 y 2 1的右准线与学科&网它的两条渐近线分 3
别交于点 P,Q,其焦点是 F1 , F2 ,则四边形 F1 P F2 Q 的面积是
第 1 页 共 1 页
9.等比数列 an 的各项均为实数,其前 n 项的和为 Sn,已知 S3

7 63 ,S 6 ,则 a 8 = 4 4
10.某公司一年购买某种货物 600 吨,每次购买 x 吨,运费为 6 万元/次,一年的总存储费用为 4x 万元,要 使一年的总运费与总存储之和最小,则 x 的值是
11.已知函数
f x = x3 2x+ex -
1 ex
,其中 e 是自然数对数的底数,若
f a-1 +f 2a2 0 ,则实数 a 的取值范围是。

x
这两个函数的所有极值之和不小于 -
7 ,求 a 的取值范围。 2
第 5 页 共 5 页
2017 年普通高等学校招生全国统一考试(江苏卷) 数学 II(附加题)
注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 2 页,均为非选择题(第 21 题 ~第 23 题) 。本卷满分为 40 分,考试时间为 30 分钟。考试结束 后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需改动,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗
13.在平面直角坐标系 xOy 中,A(-12,0),B(0,6),点 P 在圆 O:x2+y2=50 上, 14.若 · 20,则点 P 的横坐标的取值范围是 .
x 2 ,x D 其中集合 D= x ,x D
14.设 f(x)是定义在 R 且周期为 1 的函数,在区间 页
23. (本小题满分 10) 已知一个口袋有 m 个白球,n 个黑球(m,n N ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的
2
逐个取出,并放入如图所示的编号为 1,2,3,„„,m+n 的抽屉内,其中第 k 次取球放入编号为 k 的抽屉 (k=1,2,3,„„,m+n).
17.(本小题满分 14 分)
x2 y2 (a>b>0)的左、右焦点分别为 F1,F2,离心率 如图,在平面直角坐标系 xOy 中,椭圆 E : 2 2 1 a b

1 ,两准线之间的距离为 8.点 P 在椭圆 E 上,且位于第一象限,过点 F1 作直线 PF1 的垂线 l1,过点 F2 作直 2
D. [选修 4-5:不等式选讲] (本小题满分 10 分) 已知 a,b,c,d 为实数,且 a2+b2=4,c2+d2=16,证明 ac+bd 8.
2 x 2s , y 2 2s
22.(本小题满分 10 分) 如图,在平行六面体 ABCD-A1B1C1D1 中,AA1⊥平面 ABCD,且 AB=AD=2,AA1= 3 ,∠BAD=120º. (1)求异面直线 A1B 与 AC1 所成角的余弦值; (2)求二面角 B-A1D-A 的正弦值。
第 6 页 共 6 页
C.[选修 4-4:坐标系与参数方程](本小题满分 10 分)
x 8 t 在平面坐标系中 xOy 中,已知直线 l 的参考方程为 ( t 为参数) ,曲线 C 的参数方程为 t y 2
x 2s2 , (s 为参数) 。设 p 为曲线 C 上的动点,求点 P 到直线 l 的距离的最小值 y 2 2s
(1)试求编号为 2 的抽屉内放的是黑球的概率 p; ( 2 ) 随 机 变 量 x 表 示 最 后 一 个 取 出 的 黑 球 所 在 抽 屉 编 号 的 倒 数 , E(x) 是 x 的 数 学 期 望 , 证 明
第 8 页 共 8 页
第 9 页 共 9 页
1611
第 10 页 共 10 页
2017 年普通高等学校招生全国统一考试(江苏卷) 数学 I
注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,包含非选择题(第 1 题 ~第 20 题,共 20 题).本卷满分为 160 分,考试时间为 120 分钟。 考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需改动,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗
第 2 页 共 2 页
16. (本小题满分 14 分) 已知向量 a=(cosx,sinx),������ = (3, − 3),������ ∈ [0, ������]. (1)若 a∥b,求 x 的值; (2)记������ ������ = ������ ∙ ������,求f x 的最大值和最小值以及对应的 x 的值
线 PF2 的垂线 l2. (1)求椭圆 E 的标准方程; (2)若直线 l1,l2 的交点 Q 在椭圆 E 上,求点 P 的坐标.
第 3 页 共 3 页
18. (本小题满分 16 分) 如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm, 容器Ⅰ的底面对角线 AC 的长为 10 7 cm,容器Ⅱ的两底面对学科*网角线 EG,E1G1 的长分别为 14cm 和 62cm. 分别在容器Ⅰ和容 器Ⅱ中注入水,水深均为 12cm. 现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将 l 放在容器Ⅰ中,l 的一端置于点 A 处,另一端置于侧棱 CC1 上,求 l 没入水中部分的长度; (2)将 l 放在容器Ⅱ中,l 的一端置于点 E 处,另一端置于侧棱 GG1 上,求 l 没入水中部分的长度.
第 4 页 共 4 页
19.(本小题满分 16 分) 对于给定的正整数 k,若数列 lanl 满足 an k an k 1 ... an 1 an 1 ... an k 1 an k 2k an =2kan 对任意正整数 n(n> k) 总成立,则称数列 lanl 是“P(k)数列”. (1)证明:等差数列 lanl 是“P(3)数列”; (2)若数列 lanl 既是“P(2)数列”,又是“P(3)数列”,证明:lanl 是等差数列.
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分,请把答案填写在答题卡相应位置上 1.已知集合 A 1,2 , B

a,a
2
3 ,若 A B={1} 则实数 a 的值为________

2.已知复数 z=(1+i) (1+2i),其中 i 是虚数单位,则 z 的模是__________ 3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为 200,400,300,100 件,为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取 件 4.右图是一个算法流程图,若输入 x 的值为 5.若 tan
n 1 ,n N ,则方程 f(x)-lgx=0 的解的个数是 x x n
.
15.(本小题满分 14 分) 如图,在三棱锥 A-BCD 中,AB⊥AD,BC⊥BD,平面 ABD⊥平面 BCD,点 E、F(E 与 A、D 不重合)分 别在棱 AD,BD 上,且 EF⊥AD。 求证: (1)EF∥平面 ABC; (2)AD⊥AC
21.【选做题】本题包括 A、B、C、D 四小题,请选定其中两小题 ,并在相应的答题区域内作答 。若多做, ........ ............ 则按作答的前两小题评分。解答时应写出文字说明、证明过程或演算步骤。 A.【选修 4-1:几何证明选讲】 (本小题满分 10 分) 如图,AB 为半圆 O 的直径,直线 PC 切半圆 O 于点 C,AP⊥PC,P 为垂足。
第 11 页 共 11 页
第 12 页 共 12 页
第 13 页 共 13 页
第 14 页 共 14 页
第 15 页 共 15 页
第 16 页 共 16 页
第 17 页 共 17 页
第 18 页 共 18 页
第 19 页 共 19 页
第 20 页 共 20 页
第 21 页 共 21 页
20.(本小题满分 16 分) 已知函数 f
x
= x3 a x2 bx 1 (a 0,b R) 有极值,且导函数 f
相关文档
最新文档