美国FDA发布6大指南,高调护航基因疗法

合集下载

科学技术对医疗行业的影响的辩论辩题

科学技术对医疗行业的影响的辩论辩题

科学技术对医疗行业的影响的辩论辩题正方,科学技术对医疗行业的影响是积极的。

科学技术的发展对医疗行业有着深远的影响,首先,科学技术的进步使得医疗设备和药品的研发水平不断提高,为医生提供了更多更先进的工具和药物,从而提高了医疗水平和治疗效果。

例如,随着基因技术的发展,个性化医疗成为可能,医生可以根据患者的基因信息制定个性化的治疗方案,提高了治疗的针对性和有效性。

其次,科学技术的进步也为医疗行业带来了更多的便利和效率。

通过信息技术的应用,医疗信息化得到了推广,医生可以更方便地获取患者的病历和检查结果,提高了诊断和治疗的效率。

同时,远程医疗技术的发展也使得患者可以足不出户就能得到专家的诊断和治疗建议,解决了医疗资源不均衡的问题。

最后,科学技术的发展也为医疗行业带来了更多的创新和突破。

例如,人工智能技术的应用使得医疗影像的诊断更加准确和快速,大大提高了医疗诊断的水平。

另外,生物技术的发展也为新药的研发提供了更多可能,为医疗行业带来了更多的希望。

综上所述,科学技术对医疗行业的影响是积极的,它提高了医疗水平,提高了医疗效率,同时也为医疗行业带来了更多的创新和突破。

反方,科学技术对医疗行业的影响是消极的。

尽管科学技术的发展为医疗行业带来了一些积极的影响,但也不可否认它带来的一些消极的影响。

首先,随着医疗设备和药品的不断更新换代,医疗成本不断攀升,使得很多患者难以承担高昂的医疗费用。

这导致了医疗资源的不均衡分配,使得一些患者无法及时得到有效的治疗。

其次,信息技术的应用虽然提高了医疗效率,但也带来了一些安全隐患。

医疗信息的泄露和篡改成为了一个严重的问题,可能导致患者的隐私泄露和医疗事故的发生。

最后,科学技术的发展也带来了一些伦理和道德上的问题。

例如,基因技术的发展可能导致一些伦理问题的出现,例如基因歧视和基因改造等问题。

综上所述,科学技术对医疗行业的影响并不完全是积极的,它也带来了一些消极的影响,需要我们认真思考和解决。

美国FDA批准Lenmeldy(atidarsagene_autotemcel)用于儿童治疗异染性脑

美国FDA批准Lenmeldy(atidarsagene_autotemcel)用于儿童治疗异染性脑

第2期张化,等.依托咪酯调节AMPK/NLRP3信号通路对急性心肌梗死大鼠心肌损伤的影响[8]ZOU Haibo,SUN Xiaofeng.Effects of cyclosporin A pre-treatmentcombined with etomidate post-treatment on lung injury induced by limb ischemia-reperfusion in rats[J].J Int Med Res,2020, 48(7):300060520934627-300060520934636.[9]XIE Dili,LI Min,YU Kang,et al.Etomidate alleviates cardiacdysfunction,fibrosis and oxidative stress in rats with myocardial ischemic reperfusion injury[J].Ann Transl Med,2020,8(18): 1181-1189.[10]杨帆,卞海,倪子婷,等.益气养阴化痰通络方对大鼠急性心肌梗死的保护作用[J].中成药,2023,45(4):1328-1331. [11]马蒂达,吴洋,王显,等.桃叶珊瑚苷通过AMPK/NLRP3通路对心肌梗死大鼠心功能的影响及机制[J].贵州医科大学学报,2021,46(7):773-780.[12]GAUTADOTTIR K,GUDMUNDSDOTTIR I J,SIGURDSSON M I,et al.Acute myocardial infarction in young adults:incidence,risk factors and prognosis[J].Laeknabladid,2022,108(10):439-445.[13]SCHÄFER A,KÖNIG T,BAUERSACHS J,et al.Noveltherapeutic strategies to reduce reperfusion injury after acute myocardial infarction[J].Curr Probl Cardiol,2022,47(12): 101398-101416.[14]BLAS-VALDIVIA V,MORAN-DORANTES D N,ROJAS-FRANCO P,et al.C-Phycocyanin prevents acute myocardial infarction-induced oxidative stress,inflammation and cardiac damage[J].Pharm Biol,2022,60(1):755-763.[15]ZHAO Di,LIU Ketong,WANG Jian,et al.Syringin exertsanti-inflammatory and antioxidant effects by regulating SIRT1 signaling in rat and cell models of acute myocardial infarction[J].Immun Inflamm Dis,2023,11(2):e775-e788.[16]JAFAROVA DEMIRKAPU M,KARABAG S,AKGUL H M,et al.The effects of etomidate on testicular ischemia reperfusion injury in ipsilateral and contralateral testes of rats[J].Eur Rev Med Pharmacol Sci,2022,26(1):211-217.[17]LYU Zhenqian,WANG Feng'e,ZHANG Xingfeng,et al.Etomidate attenuates the ferroptosis in myocardial ischemia/ reperfusion rat model via Nrf2/HO-1pathway[J].Shock, 2021,56(3):440-449.[18]PU J L,HUANG Z T,LUO Y H,et al.Fisetin mitigates hepaticischemia-reperfusion injury by regulating GSK3β/AMPK/ NLRP3inflammasome pathway[J].Hepatobiliary Pancreat Dis Int,2021,20(4):352-360.[19]ZHANG Jing,HUANG Lelin,SHI Xing,et al.Metforminprotects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3inflammasome pathway[J].Aging(Albany NY),2020,12(23):24270-24287.[20]YIN Miaomiao,XU Yinmei.The protective effects ofetomidate against interleukin-1β(IL-1β)-induced oxidative stress,extracellular matrix alteration and cellular senescence in chondrocytes[J].Bioengineered,2022,13(1):985-994.(责任编辑:幸建华)美国FDA批准Lenmeldy(atidarsagene autotemcel)用于儿童治疗异染性脑白质营养不良美国FDA于2024年3月18日批准Lenmeldy(atidarsagene autotemcel)用于儿童治疗异染性脑白质营养不良(metachromatic leukodystrophy,MLD),适用于症状前晚期婴儿型MLD、症状前早期幼年型MLD、早期症状性早期幼年型MLD的患者。

6 FDA细胞与基因治疗制品早期临床试验设计考量行业指南

6 FDA细胞与基因治疗制品早期临床试验设计考量行业指南

Guidance for Industry Considerations for the Design ofEarly-Phase Clinical Trials of Cellular and Gene Therapy ProductsDRAFT GUIDANCEThis guidance document is for comment purposes only.Submit one set of either electronic or written comments on this draft guidance by the date provided in the Federal Register notice announcing the availability of the draft guidance. Submit electronic comments to . Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), (HFM-40), 1401 Rockville Pike, Suite 200N, Rockville, MD 20852-1448, or by calling 1-800-835-4709 or 301-827-1800, or e-mail ocod@, or from the Internet at/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida nces/default.htm.For questions on the content of this guidance, contact OCOD at the phone numbers or e-mail address listed above.U.S. Department of Health and Human ServicesFood and Drug AdministrationCenter for Biologics Evaluation and ResearchJuly 2013Table of ContentsI.INTRODUCTION (1)II.BACKGROUND (2)III.FEATURES OF CGT PRODUCTS THAT INFLUENCE CLINICAL TRIAL DESIGN (3)A.Product Characteristics (3)B.Manufacturing Considerations (5)C.Preclinical Considerations (5)IV.CLINICAL TRIAL DESIGN (6)A.Early-Phase Trial Objectives (6)B.Choosing a Study Population (7)C.Control Group and Blinding (10)D.Dose Selection (11)E.Treatment Plan (12)F.Monitoring and Follow-up (14)V.MEETINGS WITH OCTGT (18)VI.GUIDANCE ON SUBMITTING AN IND (18)V.REFERENCES (21)Guidance for IndustryConsiderations for the Design of Early-Phase Clinical Trials ofCellular and Gene Therapy ProductsI.INTRODUCTIONThe Center for Biologics Evaluation and Research (CBER)/Office of Cellular, Tissue, and Gene Therapies (OCTGT) is issuing this guidance to assist sponsors of Investigational New Drug Applications (INDs) for cellular therapy (CT) and gene therapy (GT) products. CT and GT products will be referred to collectively as CGT products. This guidance provides recommendations to assist in designing early-phase clinical trials of CGT products. When this guidance is finalized, we believe it will clarify OCTGT’s current expectations regarding clinical trials in which the primary objectives are the initial assessments of safety, tolerability, or feasibility of administration of investigational products. Such trials include most Phase 1 trials, including the initial introduction of an investigational new drug into humans, and some Phase 2 trials of CGT products.The scope of this guidance is limited to products for which OCTGT has regulatory authority. CGT products within the scope of this guidance meet the definition of “biological product” in section 351(i) of the Public Health Service (PHS) Act (42 U.S.C. 262(i)). This guidance does not apply to those human cells, tissues, and cellular-and tissue-based products (HCT/Ps) regulated solely under section 361 of the PHS Act (42 U.S.C. 264), as described in Title 21 Code of Federal Regulations (CFR) Part 1271 (21 CFR Part 1271), to products regulated as medical devices under the Federal Food, Drug, and Cosmetic Act, or to therapeutic biological products for which the Center for Drug Evaluation and Research (CDER) has regulatory responsibility. There is increasing interest and activity in the development of CGT products because of their potential to address unmet medical needs. This guidance is intended to facilitate such development by providing recommendations regarding selected aspects of the design of early-phase clinical trials of these products. This guidance does not provide detailed information about the preclinical and chemistry, manufacturing, and controls (CMC) components of an IND, as we have previously provided recommendations in connection with these components (Refs. 1, 2)(Ref. 3, when finalized, will reflect our current thinking on that topic). When finalized, this guidance is intended to complement the information in those guidances.FDA’s guidance documents, including this guidance, do not establish legally enforceable responsibilities. Instead, guidances describe the FDA’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in FDA’s guidances means that something is suggested or recommended, but not required.II.BACKGROUNDThe design of early-phase clinical trials of CGT products often differs from the design of clinical trials for other types of pharmaceutical products. Differences in trial design are necessitated by the distinctive features of these products, and also may reflect previous clinical experience. Early experiences with CGT products indicate that some CGT products may pose substantial risks to subjects. These experiences include multi-organ failure and death of a subject who received a GT product for ornithine transcarbamylase deficiency (Ref. 4), late-onset T-cell leukemia in subjects who received a GT product for X-linked severe combined immunodeficiency (X-SCID) (Ref. 5), and development of tumors in the brain and spinal cord of a patient who received intrathecal allogeneic stem cells for ataxia telangiectasia (Ref. 6). These events illustrate that the nature of the risks of CGT products can be different from those typically associated with other types of pharmaceuticals.Features of some CGT products that may contribute to their risks include the potential for prolonged biological activity after a single administration, a high potential for immunogenicity, or the need for relatively invasive procedures to administer the product. Unlike many small molecule pharmaceuticals, the logistics and feasibility of manufacturing a CGT product sometimes influence the design of the clinical trials. In addition, the preclinical data generated for CGT products may not always be as informative as for small molecule pharmaceuticals, particularly since it usually is not feasible to conduct traditional preclinical pharmacokinetic (PK) studies with CGT products.Thus, the design of early-phase clinical trials of CGT products often involves consideration of clinical safety issues, preclinical issues, and CMC issues that are encountered less commonly or not at all in the development of other pharmaceuticals. Section III of this guidance describes some distinctive features of CGT products and their development. Section IV discusses specific aspects of the design of early-phase trials of CGT products, based on consideration of the issues presented in Section III. Therefore, Section IV focuses on elements of trial design that may be different for CGT products than for other types of pharmaceuticals. Finally, Sections V and VI offer brief recommendations regarding IND submissions and meetings with OCTGT.III.FEATURES OF CGT PRODUCTS THAT INFLUENCE CLINICAL TRIAL DESIGNThe design of early-phase clinical trials of CGT products is influenced by their many distinctive features. These features include product characteristics and manufacturing considerations, some of which are unique to CGT products, and these can dictate critical elements of the clinical trial design. In addition, the preclinical studies conducted in support of the clinical trial design are often different from those for other types of products.A.Product Characteristics1.Characteristics of both CT and GT ProductsIn contrast with some well-studied classes of small molecules, there is a relative lackof clinical experience with some CGT products. In the absence of substantialexperience across a broad population, there can be considerable uncertainty about thenature and frequency of safety problems that might be associated with specific typesof CGT products.Also, some CGT products can persist in humans for an extended period after a singleadministration, or have an extended duration of effect even after the product itself isno longer present. The effects of the product might evolve over time (e.g., stem cellsthat proliferate and differentiate). Therefore, evaluation of safety might requireobservation of subjects for a substantial period of time to understand the safetyprofile.CGT products may require surgery or other invasive procedures for delivery to thetarget site. The risks added by the use of an invasive procedure might be a substantialcomponent of the overall risk of treatment, particularly when the product isadministered into a relatively sensitive site. In some cases, product delivery mayrequire use of an investigational device. The use of an existing, legally marketeddevice for administering a CGT product may be investigational, as well, and, asindicated in Section V of this guidance, it is appropriate to discuss clinical issuesrelated to this usage in the pre-IND meeting. Furthermore, when surgery or otherinvasive procedures are required, the training of those responsible for administeringthe product might affect the safety and reliability of the administration procedure, andwe refer you to Section IV.E.4. of this guidance in connection with this issue.Allogeneic CT products, GT vectors, and proteins that might be produced by CGTproducts have the potential to elicit an immune response (immunogenicity).Immunogenicity may be significant in one of the two following ways. First, pre-existing antibodies, or antibodies that develop after administration of the product,could reduce or extinguish a beneficial effect, cause an adverse reaction (e.g., anautoimmune syndrome), or influence safety or efficacy if there are any subsequentadministrations. Second, in patients who have a condition that could be treated with acellular, tissue, or organ transplant in the future, the development of antibodies to an allogeneic CGT product might jeopardize the prospect for successful transplantation.2.Characteristics of CT ProductsCT products have unique complexities due to the dynamic nature of living cells. For example, cells may present a variety of molecules on their membranes and express a variety of factors. These molecules and factors may be affected by the microenvironment and change over time. Cells may differentiate in vivo into undesired cell types. Cells might also develop undesired autonomous functions, such as cells with the characteristics of cardiomyocytes forming a focus that generates electrical activity uncoordinated with the rest of the heart (Ref. 7). Stem cells, which have the potential to develop into a variety of mature tissue types, may undergo transformation and begin forming tumors. In addition, a CGT product may include a variety of cell types, and it may be unclear which cell type or types are responsible for any specific toxicity or therapeutic effect.Another distinctive feature of cells is the ability to migrate. Systemic delivery of CT products may result in cells being distributed to a variety of tissues in the body; even cells delivered to a specific tissue or organ may migrate to unintended locations (Ref.8).The source of the cells or tissue may be the subject to be treated (autologous), or another individual (allogeneic). In some cases, the donor may receive a treatment prior to the harvest of source material. If the donor is also the trial subject, such pre-treatment may add to the overall risk to the subject.3.Characteristics of GT ProductsSeveral characteristics of GT products can influence trial design. For example, expression of a delivered gene may be uncontrolled and interfere with normal function of a critical enzyme, hormone, or other biological process in the recipient. Some GT products are designed to integrate into the DNA of the recipient’s cells to allow for long-term expression of the integrated genes. This genomic alteration could cause activation or inactivation of neighboring genes and give rise to benign or malignant tumors. In addition, GT products present the possibility of viral or bacterial shedding, i.e., excretion/secretion of viral particles or bacteria that could be transmitted to other individuals.4.Characteristics of Gene-Modified Cellular ProductsGene-modified cells, or ex vivo GT products, are products in which a gene is introduced into cells ex vivo, and then the modified cells are administered to the subjects. Products of this type have features, and potential risks, of both GT and CTproducts. Therefore, clinical trial design considerations of both GT and CT products apply to gene-modified cells.B.Manufacturing ConsiderationsThe scientific or logistical complexities of manufacturing CGT products may impose practical limits on the dose of the product that can be produced, or may limit the concentration or volume of product that can be delivered. These factors might therefore restrict the range of doses that are feasible in an early-phase trial. In addition, cell viability and potency may decline rapidly from the time of formulation. Therefore, “fresh” cells that are not cryopreserved may need to be administered within hours of manufacturing.For autologous products or patient-specific allogeneic donor products, unique product lots are manufactured for each subject, and potentially for each dose a subject receives. For such products, the inability to control factors such as subject-to-subject variability can contribute to product complexity. Some CGT products may take several weeks to months to produce. A failure or delay in manufacturing could prevent a subject from being treated as intended.C.Preclinical ConsiderationsPreclinical in vitro and in vivo proof-of-concept (POC), pharmacology, and toxicology studies are conducted to characterize the safety profile of investigational products. These studies also provide the scientific basis to support the conclusion that it is reasonably safe to conduct the proposed clinical investigations (21 CFR 312.23(a)(8)). Due to the diverse biology and scientific issues associated with CGT products, it is important to conduct a careful risk-benefit analysis, performed in the context of the particular clinical indication under study. Preclinical data generated from studies conducted in appropriate animal species and animal models of disease contribute to defining reasonable risk for the investigational CGT product.The extrapolation of a potentially safe and possibly bioactive starting clinical dose from the animal data can depend on various factors, such as the animal models used, the anatomic site of product administration, the biodistribution profile, and any immune response to the administered CGT product. However, traditional PK study designs are generally not feasible for CGT products; thus, such data are not available to guide clinical trial design. Due to various issues, such as species specificity and immunogenicity, extrapolation from a CGT product dose administered in animals to a clinical dose can be less reliable than the customary allometric scaling typically used for small molecule pharmaceuticals. These issues can limit the ability of the preclinical data to guide various aspects of the design of the early-phase clinical trial.For additional information about preclinical program objectives, selection of suitable animal species and animal models of disease, and overall considerations for the design ofpreclinical studies to support early-phase clinical trials, we note that FDA has published the draft guidance entitled “Guidance for Industry: Preclinical Assessment ofInvestigational Cellular and Gene Therapy Products”(dated November 2012) (Ref. 3).This guidance, when finalized, will represent FDA’s current thinking on this topic.IV.CLINICAL TRIAL DESIGNThis section describes specific elements of the design of an early-phase trial for a CGT product. For the most part, this guidance does not discuss elements of the trial design, such as efficacy endpoints and the analysis plan, that are generally the same for CGT products and other types of products. Instead, the discussion focuses on aspects of early-phase clinical trial design that are often different for CGT products than for other types of products.A.Early-Phase Trial ObjectivesThe IND regulations in 21 CFR Part 312 emphasize the importance of the assessment of trial risks and the safeguards for trial subjects. For early-phase clinical trials, especially first-in-human trials, the primary objective should be an evaluation of safety (21 CFR312.21). Safety evaluation includes an assessment of the nature and frequency ofpotential adverse reactions and an estimation of the relationship to dose. For CGTproducts, these early-phase trials often assess not only safety of specific dose levels, but also other issues, such as feasibility of administration and pharmacologic activity.1.Dose ExplorationFor some products and indications, including many uses of CGT products for life-threatening diseases, some toxicities may be expected and acceptable. In thesesituations, a major trial objective might be to identify the maximum tolerated dose(MTD), the highest dose that can be given with acceptable toxicity. To achieve thisobjective, some trials use a well-defined dose-escalation protocol.For some CGT products, toxicity is not expected to be substantial in the predictedtherapeutic range. In this situation, the objective of dose exploration may be todetermine the range of biologically active or optimal effective doses. In some cases,indicators of potential benefit may plateau above a certain dose, so that further doseescalation to reach an MTD may be unnecessary.For many CGT products, there are significant practical limits on the dose of theproduct that can be produced or delivered. In such cases, the trial objectives mayfocus on characterizing the safety profile of the feasible dose or doses, rather thanfinding the MTD.2.Feasibility AssessmentsCGT products sometimes require specialized devices or novel procedures foradministration, customized preparation of products, special handling of products (e.g., very short expiration time), or adjunctive therapy. In these cases, sponsors should consider designing early-phase trials to identify and characterize any technical or logistic issues with manufacturing and administering the product. Such issues may need to be addressed before proceeding with further product development.3.Activity AssessmentsA common secondary objective of early-phase trials is to obtain preliminaryassessments of product activity, using either short-term responses or longer-termoutcomes that could suggest potential for efficacy. For CGT products, theseoutcomes might include specialized measures such as gene expression, cellengraftment, or morphologic alterations, as well as more common measures such as changes in immune function, tumor shrinkage, or physiologic responses of various types.B.Choosing a Study PopulationChoice of the subjects to include in the trial depends on the expected risks and potential benefits, recognizing that there will be considerable uncertainty about those expectations in an early-phase trial. Expected risks may be estimated by the nonclinical data and any previous relevant human experience, but the clinical significance of those risks can depend on the population that receives the product. Similarly, the potential for benefit might depend on the choice of study population. In addition, the choice of study population may affect the ability to detect the product’s activity, either adverse or beneficial. For example, a biomarker that may be indicative of risk or benefit might be more sensitive, meaningful, or interpretable in one population versus another. Some populations may offer advantages (e.g., higher cell numbers or viability) as sources for autologous products. The objective is to select a trial population with an acceptable balance between the anticipated risks and potential benefits for the study subjects, while also achieving the study’s scientific objectives. As discussed below in Section IV.E.5 of this guidance, there are special considerations regarding selection of the study population for patient-specific products.1.Healthy VolunteersStudy of healthy adult volunteers may be reasonable for an early-phase trial forproducts with short duration of action or in a class with a well understood safetyprofile. However, the risks of most CGT products include the possibility of persistent or permanent effects, along with the risks of any invasive procedures necessary for product administration. Therefore, for most CGT trials, the risk-benefit profile is not acceptable for healthy volunteers.2.Disease Stage or SeveritySelection of the most appropriate study population for an early-phase trial involves several considerations, including not only the potential risks, but also the potential benefits and the ability of the study population to provide interpretable data. Subjects with more severe or advanced disease may be more willing to accept the risks of an investigational CGT product, or they may be in a situation where the risks can be more readily justified. Therefore, sponsors sometimes propose to limit enrollment in early-phase trials to subjects with more severe or advanced disease. However, in some cases, selection of patients with less advanced or more moderate disease may be more appropriate.Subjects with minimal reserve of physiological function due to severe or advanced disease may be less able than subjects with less severe disease to tolerate additional loss, which could leave them with no function. For example, the risk of a decrease in visual acuity might be more acceptable in a subject with some visual reserve than in a subject for whom that same decrement might result in loss of all functional vision. Similarly, a risk of pulmonary or cardiovascular toxicity might be more acceptable in a subject with early lung disease than in a subject with more advanced disease and less pulmonary reserve. Thus, the decision about the severity of disease to be studied in an early-phase trial should be made only after considering the estimated nature and magnitude of the risks to the subjects, and the implications of those risks, for various stages or severity of the disease.In addition to considerations regarding risks, assessment of the overall risk-benefit profile should take into account any potential for individual subject benefit. In some situations, such as trials in children or trials that involve high-risk procedures, the prospect for individual benefit may be an important factor in making the risk-benefit assessment for the selected study population. The estimated prospect for benefit may depend on the severity or stage of disease. Although subjects with more severe or advanced disease may have the greatest need for benefit, there can be situations in which a greater potential for benefit might be expected for subjects who are less severely affected. Further, the ability to detect evidence of any benefit could depend on the severity or stage of disease in the study population, and the anticipated effects of the product might be more clearly discernible in subjects with milder disease. This could be a significant consideration if detecting evidence of treatment activity is important to the objectives of the study.Also, the study population should be chosen with consideration of the potential interpretability of study outcomes. Subjects with severe or advanced disease might have confounding adverse events, due to underlying disease, that could make the safety or effectiveness data difficult to interpret. If the ultimate target population is patients with milder disease, a trial in severe or advanced disease could be essentiallyuninformative regarding relevant safety information and might also have a smaller prospect for benefit to offset risks.Thus, while severely affected subjects are often included in early-phase CGT trials, they should not be an automatic choice. Several factors should be taken into account when selecting the appropriate subjects to include in the study for a specific indication. The study population should be chosen in light of the above considerations, and the choice should be discussed and justified in the IND submission.ck of Other Treatment OptionsEarly-phase studies of CGT products typically present significant risks and an uncertain potential for benefits. Therefore, for any specific target indication, early-phase CGT trials sometimes enroll only the subset of subjects who have not had an adequate response to available medical treatment or who have no treatment options. When subjects are selected because no other treatment options are available or tolerable, the trial should include procedures to ensure that the lack of treatment options is adequately evaluated, and the protocol should be designed to capture the pertinent information regarding that evaluation.4.Pediatric SubjectsSome CGT products are developed specifically for pediatric indications. For example, GT products might be intended to correct childhood genetic diseases by replacing a defective or missing gene. CT products might be intended as regenerative medicine to correct congenital deformities or as treatments for genetic diseases, such as hematologic or immunologic disorders, that result in abnormal cellular function. Title 21 CFR Part 50, Subpart D provides additional safeguards to children in clinical investigations. A discussion of the individual provisions of Subpart D is beyond the scope of this guidance, and FDA directs you to other documents for this purpose. (Refs. 9, 10) We highlight the following principles for sponsors who wish to conduct studies of CGT products in pediatric subjects.Before a trial may proceed, Subpart D requires an assessment of the level of risk that the clinical trial would pose to pediatric subjects (minimal risk, slightly more than minimal risk, or greater than minimal risk) and of the outcome or consequence of the trial (the prospect of direct benefit to subjects, the development of generalizable knowledge about the subjects’ disorder or condition, or an opportunity to understand, prevent, or alleviate a serious problem affecting the health or welfare of children). Under 21 CFR 50.50, an Institutional Review Board (IRB) is authorized to approve a clinical trial in children only after assessing the risks and outcome of the planned trial, and finding that the trial meets the requirements of Subpart D. In someinstances, an IRB may determine that additional data from studies in animals or inadults are needed, either as safety data or to support a prospect of direct benefit,before the study may be conducted in children consistent with Subpart D.1FDA also has a responsibility to determine whether the study presents anunreasonable risk to subjects (21 CFR 312.42(b)(1)(i) and (b)(2)(i)). When reviewingstudies of CGT products proposed to be conducted in pediatric subjects, we intend toassess the reasonableness of the risks presented within the context of the Subpart Dsafeguards. Accordingly, the investigational plan submitted under 21 CFR 312.23should provide adequate information to permit FDA to make this assessment. Forexample, when the study would present greater than minimal risk to pediatricsubjects, the sponsor should submit to the IND the proof-of-concept data used insupport of the prospect of direct benefit. Evidence of a prospect of direct benefitmight come from studies in animal models of the disease or condition, or from initialclinical studies in adults.C.Control Group and BlindingIn early phases of clinical development, a control group can be useful to facilitateinterpretation of the safety data and provide a comparator for preliminary assessments of activity. A concurrent control group may be particularly valuable for CGT trials indiseases for which the natural history is not well-characterized or for trials that enrollsubjects with a wide range of disease severity. For trials that include a concurrent control group, blinding of subjects, investigators, and assessors can be useful to minimize the risk of bias in the study results.However, some CGT products require invasive procedures for administration or forcollection of starting materials. In such cases, rigorous blinding in early-phase trials may not be desirable if it cannot be done simply and with minimal risk to control subjects.The primary objective for an early-phase trial should be preliminary assessment of safety, for which rigorous inference regarding comparison to placebo is not usually necessary.Conclusions about efficacy, if any are to be made, are at best exploratory. Therefore, in early-phase trials, blinding is generally not as critical as for a confirmatory efficacy trial.For example, an invasive procedure such as cardiac catheterization may be required toadminister the investigational product. Using a similar invasive procedure to administera placebo to the control group for purposes of blinding could represent an unacceptablerisk for an early-phase trial, even if it might be considered for a later confirmatory trial.The risk of the administration procedure is also an aspect of the overall treatment thatneeds to be evaluated, so a noninvasive control group might be more appropriate in early-1 If an IRB cannot conclude that a study meets the requirements of 21 CFR Part 50, specifically 21 CFR 50.51, 50.52, or 50.53, under certain circumstances, the IRB may refer the clinical protocol to FDA’s Office of Pediatric Therapeutics for review under 21 CFR 50.54. For additional information on this issue, please refer to the FDA guidance entitled “Guidance for Clinical Investigators, Institutional Review Boards and Sponsors - Process for Handling Referrals to FDA Under 21 CFR 50.54 - Additional Safeguards for Children in Clinical Investigations”; dated December 2006, /RegulatoryInformation/Guidances/ucm127541.htm。

FDA关于基因毒性杂志的指南

FDA关于基因毒性杂志的指南

FDA关于基因毒性杂志的指南这是FDA关于基因毒性杂志的指南,或许对你有帮助FDA guidance on genotoxic impuritiesBy Nick Taylor, 16-Dec-2008Related topics: Materials & Formulation, QA/QC & validationThe FDA has issued draft guidance on how manufacturers shouldevaluate the safety of products that contain genotoxic and carcinogenic impurities.Genotoxic and carcinogenic properties can be acceptable traits of active pharmaceutical ingredients (APIs) but when these are impurities, which generally do not have a beneficial effect, their presence shouldbe minimised.To help manufacturers achieve the lowest technically feasible levelsof these impurities, or reduce them to quantities that convey no significant cancer risk, the US Food and Drug Administration (FDA) has issued guidance on the subject.By following the guidelines manufacturers should understand what the FDA requires to approve applications at various developmental stages and how these standards can be achieved.One recommendation is that manufacturers change the synthetic or purification routes to reduce impurity formation or increase its removal.The FDA regards 1.5μg per day as an acceptable level for impurities but this may not be appropriate in every case. In addition, higher levels may be allowed during clinical development.Further characterisation of the risks posed by the impurities by studying the mechanism of action or performing weight-of-evidence approaches can also add support to impurity specifications.Products released prior to the issuing of the guidance are covered by it if a specific safety signal highlighting increased risk is detected.Supplemental applications in previously approved products are also covered if they require a significant change to the labelling that suggests potential for increased carcinogenic risk.The complete guidance can be found here.本文转自诺贝尔学术资源网 ,?文献互助、学术交流和学术资源基因毒性杂质:基因毒性化合物指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质。

美国生物药上市后风险管理及对我国的启示

美国生物药上市后风险管理及对我国的启示

美国生物药上市后风险管理及对我国的启示作者:李梦颖王峻霞蒋蓉来源:《中国药房》2021年第07期摘要目的:借鉴美国生物药上市后风险管理经验,为我国生物药上市后风险管理提供参考。

方法:通过研究美国FDA发布的指南文件、网站信息等资料,对美国生物药上市后风险管理进行分析,并以英夫利昔单抗为例介绍其具体实施情况,总结其管理特点并提出对我国生物药上市后风险管理的启示及相关建议。

结果与结论:美国生物药上市后的风险管理主要包括“风险评估与降低策略(REMS)”“上市后研究和临床试验制度”两方面,其中后者包括上市后要求(PMR)和上市后承诺(PMC)两类。

以英夫利昔单抗为例,该药自1998年8月被美国FDA批准上市后,其生产厂家于2009年向FDA提交了REMS并获批,并先后5次提出上市后研究和临床试验。

可知美国生物药上市后风险管理是由FDA通过出台具体指南,鼓励多角色参与风险管理,实现与患者的有效沟通,对生物药风险进行持续监管,以降低生物药的使用风险。

对于生物药而言,我国尚未制定系统、具体的实施细则和指南,在上市后风险管理方面仍存在欠缺。

建议我国可借鉴美国对生物药上市后风险管理的措施和制度,尽可能吸纳利益相关方参与上市后管理,通过与患者进行有效沟通以提升患者用药风险意识,并且进一步完善上市后研究管理制度,保障患者用药安全。

关键词美国;生物药;上市后风险管理;启示中图分类号 R951;S859.79+7 文献标志码 A 文章编号 1001-0408(2021)07-0776-06ABSTRACT OBJECTIVE: To learn from the experience of post-marketing risk management of biopharmaceuticals in the United States, and to provide reference for post-marketing risk management of biopharmaceuticals in China. METHODS: By studying guidance documents and website information issued by FDA, the risk management of biopharmaceuticals after marketing in the United States was analyzed. Taking infliximab as an example, the specific implementation situation was introduced, the management characteristics were summarized, and the enlightenment and relevant suggestions were put forward for the risk management of biopharmaceuticals after marketing in China. RESULTS & CONCLUSIONS: The post-marketing risk management of biopharmaceuticals in the United States mainly includes two aspects as “risk evaluation and mitigation strategy (REMS)” and “post-marketing study and clinical trials system”. The latter includ ed post-marketing requirement (PMR) and post-marketing commitment (PMC). Taking infliximab as an example, since it was approved by FDA in August 1998, its manufacturer submitted REMS to FDA in 2009 and obtained approval, and proposed post-marketing studies and clinical trials for five times. It can be seen that FDA has issued specific guidelines for post-marketing risk management of biopharmaceuticals to encourage multi-role participation in risk management, realize effective communication with patients, and continuously supervise the risk of biopharmaceuticals, so as to reduce the risk of the use of biopharmaceuticals. For biopharmaceuticals, China has not yet formulated systematic and specific implementation rules and guidelines, and there is still lack in post-marketing risk management. It is suggested that China can learn from the measures and system of post-marketing risk management of biopharmaceuticals in the United States, involve stakeholders in post-marketing management,enhance patients’ awareness of drug use risks through effective communication, and further improve the post-marketing research management system to guarantee patients’ safety of drug use.KEYWORDS United States; Biopharmaceuticals; Post-marketing risk management; Enlightenment自1982年全球首个生物技术药物重组胰岛素上市以来,经过近40年的发展,目前已有细胞因子、重组酶和激素、单克隆抗体、融合蛋白、基因治疗药、细胞治疗产品和基因工程疫苗等200多种生物药上市[1],这些生物药在癌症和遗传性疾病等诸多严重疾病的治疗中发挥着重要且关键的作用。

《基因治疗产品长期随访临床研究技术指导原则(征求意见稿)解读

《基因治疗产品长期随访临床研究技术指导原则(征求意见稿)解读

一、为何制定基因治疗产品长期随访专门指南?基因治疗:是指通过修饰或操纵基因的表达或改变活细胞的生物学特性以达到治疗目的的治疗手段,主要作用机制有正常基因替换致病基因、使不能正常工作的基因失活或者引入新的或修饰的基因等方式。

活细胞的生物学特性这些变化在体内长期存在,可能增加不可预测的风险。

为了评估和降低这类风险,并了解治疗效果随时间延长的变化,有必要对参加基因治疗临床试验的受试者开展长期随访。

基因治疗产品长期随访的主要目的是收集受试者的迟发性不良反应,了解基因治疗产品在体内的存续情况,从而识别并降低接受基因治疗产品的患者的长期风险。

此外,考虑到基因治疗产品长期作用的特点,观察疗效随时间的变化情况也是长期随访的重要目的。

目前,美国FDA和欧盟EMA均已发布相关技术指导原则,经查询,欧盟EMA于2010年发布的《有关基因治疗产品给药后患者随访的指南(Guideline on follow-up of patients administered with gene therapy medicinal products)》指南;美国FDA于2020年1月发布的《人类基因治疗产品给药后的长期随访(Long-term Follow-up After Administration of Human Gene Therapy Products)》指南,考虑到国内尚无相关指导原则对基因治疗产品长期随访临床试验设计进行规范指导,CDE在充分调研国内外同品种研发情况以及相关临床试验技术要求基础上,起草了《基因治疗产品长期随访临床研究技术指导原则(征求意见稿)》。

二、基因治疗产品长期随访观察时间梳理长期随访的持续时间应确保足以观察到受试者因产品特性、暴露情况(生物分布和给药途径)等导致的风险,应不短于迟发性不良反应的预期发生时间。

具体产品的随访时间取决于产品的特性和体内存在时间、转基因表达时间、迟发性不良反应的预期时间及发生率、受试者适应症和预期生存期、给药途径、以及长期随访的其他观察目的。

fda关于六大系统的介绍的指南

fda关于六大系统的介绍的指南

fda关于六大系统的介绍的指南英文回答:The FDA (Food and Drug Administration) provides guidelines and regulations for various systems to ensure the safety and efficacy of products in the market. These six major systems are:1. Food Safety: The FDA sets standards and regulations to ensure that the food we consume is safe and free from contamination. This includes monitoring food production, labeling, and handling practices to prevent foodborne illnesses.2. Drug Safety: The FDA regulates the safety and effectiveness of prescription and over-the-counter drugs. They review clinical trial data and conduct inspections to ensure that drugs meet quality standards and do not pose significant risks to consumers.3. Medical Device Safety: The FDA oversees the safety and performance of medical devices, such as pacemakers, implants, and diagnostic equipment. They evaluate the design, manufacturing, and labeling of these devices to ensure they meet safety standards and are effective intheir intended use.4. Biologics Safety: Biologics are products derived from living organisms, such as vaccines, blood products, and gene therapies. The FDA regulates the safety, purity, and potency of these products to protect public health. They review clinical trial data and manufacturing processes to ensure their quality and effectiveness.5. Cosmetics Safety: The FDA regulates cosmetics to ensure they are safe for consumers. They monitor the labeling, ingredients, and manufacturing practices of cosmetics to prevent adverse reactions and protect public health.6. Tobacco Product Regulation: The FDA regulates the manufacturing, marketing, and distribution of tobaccoproducts to protect public health. They enforce regulations on labeling, advertising, and product standards to reducethe harm caused by tobacco use.中文回答:FDA(食品药品监督管理局)提供了关于六大系统的指南和规定,以确保市场上的产品安全有效。

高科技行业的生物技术和生命科学研究进展

高科技行业的生物技术和生命科学研究进展

高科技行业的生物技术和生命科学研究进展在当今科技高速发展的时代,生物技术和生命科学作为高科技行业的重要领域,得到了广泛的关注和研究。

本文将探讨最新的生物技术和生命科学研究进展,涵盖基因编辑、生物医药、精准医学等课题。

一、基因编辑的突破基因编辑是生物技术领域的一个重要分支,它通过人为干预生物的基因组,修改目标基因序列,从而实现特定功能的改造。

近年来,CRISPR-Cas9技术的出现极大地推动了基因编辑的发展。

CRISPR-Cas9技术可以精确定位到基因组的特定位置,并准确地剪切、粘贴DNA序列。

这种技术的突破性在于其简便易行、高效准确的特点,使得基因编辑变得更加精确和高效。

科研人员利用CRISPR-Cas9技术已经实现了在多种生物体中编辑基因,包括植物、动物和人类细胞。

这种技术的广泛应用在农业、医学和生命科学研究中具有巨大的潜力。

二、生物医药的创新突破生物医药作为高科技行业的重要领域,不断涌现出新的创新突破。

基因疗法、生物制药和干细胞研究等都是生物医药领域的热点。

基因疗法是利用基因工程技术对疾病进行治疗的方法。

它通过将正常基因导入患者的细胞中,来修复缺陷或恢复功能。

近年来,基因疗法在一些遗传性疾病和癌症治疗中取得了重大突破。

例如,美国FDA批准了一种用于治疗罕见遗传性疾病的基因疗法,取得了显著的治疗效果。

生物制药是利用生物技术生产的药物,具有高效、高特异性和低副作用的优势。

蛋白质药物是其中的重要成员。

近年来,通过基因工程技术和生物制药技术,科研人员成功地生产了许多高效的蛋白质药物,如生物类似物、单克隆抗体等。

这些药物在治疗癌症、自身免疫性疾病和罕见病等方面发挥着重要作用。

干细胞研究是一项正在迅速发展的生命科学领域,它具有广泛的应用前景。

干细胞可以通过分化为不同类型的细胞来修复和替代受损组织。

目前,科研人员已经成功地利用干细胞治疗了一些慢性疾病,并在再生医学领域取得了一定的突破。

然而,干细胞研究仍面临一些伦理和技术上的挑战,需要进一步深入研究。

{史上最全的总结}免疫抑制剂的最全指南总结

{史上最全的总结}免疫抑制剂的最全指南总结

{史上最全的总结}免疫抑制剂的最全指南总结PD-1/PD-L1免疫疗法(immunotherapy)是当前备受全世界瞩⽬、正掀起肿瘤治疗的⾰命,引领癌症治疗的变⾰,为患者带来新的希望的新⼀类抗癌免疫疗法,旨在充分利⽤⼈体⾃⾝的免疫系统抵御、抗击癌症,通过阻断PD-1/PD-L1信号通路使癌细胞死亡,具有治疗多种类型肿瘤的潜⼒,实质性改善患者总⽣存期。

如在⿊⾊素瘤患者的临床试验中,50%的患者在12个⽉内死亡,使⽤PD-1和CTLA-4的的患者70%能存活3年以上。

已上市的PD-1截⽌⽬前,已有6种PD-1抑制剂在欧美⼏⼗个国家上市,包括3种PD-1抗体和3种PD-L1抗体。

分别是:Nivolumab(商品名Opdivo,简称O药);Pembrolizumab(商品名Keytruda,简称K药);Cemiplimab-rwlc(Libtayo);Atezolizumab(商品名Tecentriq,简称T药);Avelumab(商品名Bavencio,简称B药);Durvalumab(商品名Imfinzi,简称I药)。

在国内上市的分别是Opdivo和keytruda。

2018年是振奋⼈⼼的⼀年,两⼤PD-1治疗药物欧狄沃(Opdivo)、可瑞达(Keytruda)进⼊中国,并且在国内的价格已经有所下降,紧接着两⼤国产PD-1药物--特瑞普利单抗(拓益)、信迪利单抗(达伯舒)上市,7200元/⽀的价格可谓全球最低,让国内患者真正的看到了希望,中国的患者终于迎来了真正的免疫治疗元年!全球肿瘤医⽣⽹医学部将药物⽤药信息总结如下,供病友们参考。

药品名称⽣产商作⽤靶点FDA批准的适应症上市时间使⽤周期使⽤剂量剂型规格全球⽐价国内上市PD-1通⽤名帕博利珠单抗纳武利尤单抗特瑞普利单抗信迪利单抗商品名可瑞达欧狄沃拓益达伯舒上市时间2018年7⽉2018年6⽉2018年12⽉2018年12⽉适应症⿊⾊素瘤⾮⼩细胞肺癌⿊⾊素瘤经典型霍奇⾦淋巴瘤价格17918元9260元7200--关于PD-1癌症患者必须要知道的七点!⼀、PD-1抑制剂的疗效如何?在绝⼤多数、未经挑选的实体瘤中,单独使⽤PD-1抑制剂的有效率,其实并不⾼:10%-30%左右。

基因重要性

基因重要性

工业中基因技术应用
基因技术在生物制造中 应用
基因技术在制药工业中 应用
基因技术在食品工业中 应用
基因技术在纺织工业中 应用
基因技术在化工产业中 应用
基因技术在生物制造领域具有广泛应用,包括生产 工业酶、抗生素和生物燃料。通过基因编辑技术如 CRISPR/Cas9,可以高效、精准地改造微生物,提 高其生产力和抗性,从而降低生产成本并减少环境 影响。
品质水果的需求。
改良抗病性
基因编辑可以增强作物对病虫害的抵抗力 ,减少农药的使用。通过敲除或修饰与疾 病相关的基因,基因编辑技术培育出抗病 性强的作物品种,如抗稻瘟病的水稻,这 不仅提高了产量,还减少了农业成本。
缩短育种周期
传统育种方法需要多年时间才能育出新品 种,而基因编辑技术大大缩短了这一周期 。借助高效的基因编辑工具,科学家可以 在较短时间内完成基因的定向修改和验证 ,快速培育出符合市场需求的新品种,加 速农业技术的更新换代。
吸收能力,从而提高作物产量。例如, CRISPR-Cas9系统能够精准地在植物基因 组中引入所需变化,显著提升作物的单位
面积产量。
优化品质
基因编辑技术在改善农产品品质方面具有 重要作用。通过对特定基因的编辑,可以 改变果实的甜度、口感和营养价值。例如 ,通过编辑柑橘类基因,成功培育出更甜 、更富含维生素C的品种,满足市场对高
单分子实时测序 技术发展
2007年,单分子实时测序技术的突破使得基因组测序成本大 幅降低。这一技术不仅提高了测序的准确性,还极大地加速了 基因组研究的进程。
人类基因组序列 草图公布
2010年,国际科学家团队宣布完成了人类基因组序列的初步 草图。这一成果展示了人类基因组的基本构成,并揭示了许多 重要基因和遗传特征。

深度!美国首次发布新冠疾病治疗指南(全)

深度!美国首次发布新冠疾病治疗指南(全)

深度!美国首次发布新冠疾病治疗指南(全)4月21日,美国国立卫生研究院发布了新冠疾病的治疗指南。

这是美国医疗官方机构首次就新冠疾病发布治疗指南,在此之前,中国就此发布了7个版本的治疗指南。

我们可友团队第一时间将美国指南翻译出来,和大家分享。

指南分为如下几个部分:1、介绍2、概览3、重症治疗4、处于研究中的治疗方案5、伴随疾病和药物6、指南制定委员会7、商业利益声明介绍我们制定这些指南的目的是,告诉临床医生怎样来治疗新冠病人。

关于本疾病的最优治疗的信息变化的非常快,所以该指南也会随着出版的数据和其他权威信息的发布而快速更新。

本指南推荐的治疗建议,是基于科学的证据以及专家意见。

任何一个建议包括两个评分部分,第一个部分用拉丁字母表示,第二个部分用罗马字母表示。

拉丁字母表示,这个建议的推荐强度,是强推荐还是弱推荐,由强到弱,分别由A/B/C 表示。

罗马字母则表示证据质量,高还是低,由高到低,分别由I,II,III表示。

专家小组组成小组成员由指南委员会联合主席任命,选择他们主要是基于他们的临床经验和专业水准、他们的科学研究水平、还有制定指南方面的经验。

小组成员来自联邦机构、医疗学术机构、还有学术组织。

主要有:•美国胸科医生协会••美国急诊医生学会••美国胸科学会••生物医学高等研究和发展组织••美国疾病控制与预防中心••国防部••美国退伍老兵事务部••美国国立卫生研究院••美国食品药品监督管理局••美国感染病学会••美国儿童感染学会••美国重症医学学会••美国感染疾病药师学会•纳入上述协会的代表,并不表示他们所在的组织同意本指南所有条款的信息。

具体小组成员的信息,可以见指南的后半部分。

指南的制定过程指南的每个部分由一个工作组完成。

每个工作组负责查找和识别相关的信息和已经出版的科学文献,同时对这些信息和文献进行系统、综合的评估。

将来,这个工作组也会进行指南的更新。

整个指南编写小组也会审读指南的每个部分,必要时也需要修改,然后进行投票。

FDA指南草案(中文)

FDA指南草案(中文)

基于下一代测序技术的传染病诊断设备:微生物鉴定及抗生素抗性和毒力标志物的检测工业和食品药品管理局工作人员指南草案Document issued on: May 13, 2016U.S. Department of Health and Human ServicesFood and Drug AdministrationCenter for Devices and Radiological HealthOffice of In Vitro Diagnostics and Radiological HealthDivision of Microbiology Devices目录I.简介 (1)II.背景 (1)A.传染病NGS Dx设备的系统方法 (2)B.FDA-ARGOS: FDA监管级微生物序列数据库 (2)III.范围 (3)IV.利弊分析 (5)V.设备描述 (5)A.预期用途 (5)B.测试方法学 (6)C.辅助试剂 (7)D.控制 (8)(1)阴性对照 (8)(2)阳性对照 (9)(3)内部对照 (9)E.试验结果和报告的解释 (10)VI.设备验证 (10)A.预分析因素 (11)(1)样本收集和处理 (11)(2)样本准备和测序 (12)(3)测序、化学过程和数据收集 (12)(4)数据储存 (13)(5)临床决策要求 (13)B.感染性疾病NGS Dx设备性能指标 (13)(1)感染性疾病NGS Dx设备数据集 (14)(2)测序策略 (14)(3)用于靶向鉴定的参考序列和所选的靶标 (14)(4)临床识别信息学工序流程 (15)(5)减法原理 (15)(6)质量控制 (15)(7)测序及序列比对 (15)(8)污染分析 (15)(9)感染性疾病NGS Dx设备应当提供从样本到结果的周期 (16)(10)数据存储 (16)C.分析性能 (17)(1)检测极限 (17)(2)包容性 (17)(3)干扰物质 (18)(4)精确(可重现性及可重复性) (19)(5)携带及交叉污染 (19)(6)稳定性 (19)(7)其他分析性实验 (19)D.仪器和软件 (19)E.临床评估 (21)(1)阴性百分比一致性评价 (21)(2)阳性百分比一致性评价 (22)(3)数据展示 (23)(4)样本研究和样本类型 (23)Ⅶ设备调试 (24)基于下一代测序技术的传染病诊断设备:微生物鉴定及抗生素抗性和毒力标志物的检测工业和食品药品管理局工作人员指南草案I.简介美国食品药品监督管理局(FDA)发布该指南草案是为工业和机构工作人员提供建议,以研究建立基于下一代测序的用于分析传染病临床表现特征的微生物鉴定及抗生素耐药性和毒力标志的检测设备(以下简称“传染病NGS Dx设备”)。

FDA基因检测用药的指南

FDA基因检测用药的指南

FDA基因检测用药的指南基因检测用药是一种个体化医疗策略,它通过检测患者的基因信息,为医生提供个性化的用药指导。

FDA(美国食品药品监督管理局)在这一领域发挥着重要的作用,其制定的指南对于基因检测用药的规范和安全性评估至关重要。

下面将详细介绍FDA在基因检测用药方面的指南。

首先,FDA在基因检测用药方面制定的指南包括了整个流程的规范。

从检测方法的选择到报告的解释和使用,FDA都提供了详细的指导。

在基因检测方法选择方面,FDA要求科研和开发人员要选择经过严格验证和认证的方法,以确保检测结果的准确性和可靠性。

在报告的解释和使用方面,FDA要求提供清晰、详细的结果解读,包括对药物相互作用、适应症、剂量调整等方面的指导。

其次,FDA的指南还强调了基因检测用药的安全性评估。

基因检测用药涉及到个体化用药和新兴的治疗策略,因此其安全性评估尤为重要。

FDA要求科研和开发人员应开展临床实验以评估基因检测用药的安全性和有效性。

在药物治疗方面,FDA要求进行临床试验来评估不同基因型患者的用药反应和不良反应风险。

在基因检测方法方面,FDA要求开发人员评估基因检测方法的准确性、重复性和可靠性,并提供相关数据以支持其使用。

此外,FDA的指南还涉及基因检测用药的数据分析和解读。

基因检测用药的数据分析复杂且具有个体差异性,因此需要科研和开发人员具备相关的专业知识和经验。

FDA要求科研和开发人员在数据分析和解读过程中要严格遵守标准化的操作程序,并提供相关的技术规范和标准。

此外,FDA还鼓励科研和开发人员进行数据共享和合作,以促进基因检测用药领域的发展和进步。

最后,为了保障基因检测用药的准确性和可靠性,FDA还制定了相关的质量控制标准。

基因检测用药是一项高科技的医疗技术,需要严格的质量控制来确保结果的准确性和可靠性。

FDA要求科研和开发人员对基因检测用药的每个环节进行质量控制,并保留相关的质量控制记录和数据。

此外,FDA还对基因检测用药的设备和试剂品质量标准进行了规定,以确保基因检测用药的质量和安全性。

国内外基因治疗的现状和发展趋势

国内外基因治疗的现状和发展趋势

国内外基因治疗的现状和发展趋势基因治疗是一种新兴的医疗技术,利用基因工程技术来修复或替代人体细胞中的缺陷基因,以达到治疗疾病和改善健康的目的。

这项技术具有巨大的潜力,被广泛认为是未来医学领域的一个重要突破。

本文将探讨国内外基因治疗的现状和发展趋势。

在国内,基因治疗技术的研究和应用取得了一些积极进展。

例如,中国科学家曾成功地利用基因治疗技术治愈了一名患有非典型严重复合型免疫缺陷病的婴儿。

这个案例使得基因治疗技术引起了广泛的关注和期待。

此外,中国的科研机构也在不断探索基因治疗技术在治疗癌症、遗传疾病和罕见病等方面的应用。

虽然国内的研究仍处于起步阶段,但由于政府的支持和科技人才的积极参与,国内基因治疗的发展前景仍然是十分乐观的。

在国外,美国一直是基因治疗技术研究的领先者。

美国食品和药物管理局(FDA)已经批准了几种基因治疗产品的上市销售,其中最有代表性的是用于治疗某种类型的遗传性视网膜病变的基因治疗药物。

此外,在欧洲和其他一些发达国家,基因治疗技术的研究和应用也在不断进行。

例如,欧洲基因治疗协会(European Society of Gene and Cell Therapy)每年都举办国际会议,汇集来自世界各地的科学家和专家,分享最新的研究成果和技术进展。

虽然基因治疗技术在某些领域取得了一些成功的应用,但是仍然面临着一些挑战和困难。

首先,基因治疗技术的安全性和有效性仍然需要进一步验证。

一些研究显示,基因治疗可能会引发意外的副作用,例如免疫反应或基因导致的肿瘤形成。

因此,科学家们需要继续努力研究,确保基因治疗技术的安全性和可靠性。

其次,基因治疗技术的成本也是一个问题。

目前,基因治疗技术的疗程费用非常昂贵,使得很多人无法负担。

这意味着,基因治疗技术在临床实践中的推广和普及仍然面临一定的困难。

因此,降低成本是基因治疗技术发展的一个重要方向。

此外,基因治疗技术的个体化和精准化也是当前的研究热点。

由于每个人的基因组都是独特的,因此针对不同个体的基因治疗方案可能存在差异。

分享了细胞治疗监管政策

分享了细胞治疗监管政策

分享了细胞治疗监管政策细胞治疗作为一种先进的医学技术,被广泛应用于治疗各种疾病,包括癌症、器官损伤和遗传性疾病等。

然而,这一技术的发展也带来了一些挑战,其中包括如何有效监管和管理细胞治疗的安全性和有效性。

在当前国际上,各国纷纷出台不同的细胞治疗监管,以确保这一技术的安全应用和进一步发展。

在美国,美国食品药品监督管理局(FDA)是负责监管细胞治疗的主要机构。

根据FDA的规定,细胞治疗产品的开发和上市需要经过严格的临床试验和监管程序,以确保其安全性和有效性。

此外,FDA还要求生产商对细胞治疗产品进行严格的质量控制和监测,以确保产品的质量稳定性和一致性。

这些的实施为美国的细胞治疗产品市场的发展奠定了坚实的基础。

与此同时,在欧洲,欧洲药品管理局(EMA)也扮演着类似于FDA的监管角色。

EMA要求细胞治疗产品的开发和上市需要进行严格的评估和监管,以确保产品的安全性和有效性。

此外,欧洲各国也在制定各自的细胞治疗监管,以适应各自国家的实际情况和市场需求。

这种多层次的监管机制为欧洲的细胞治疗产品市场的发展提供了有效的保障。

在亚洲,中国也在逐步完善细胞治疗监管。

中国国家药品监督管理局(NMPA)负责监管国内的细胞治疗产品。

近年来,随着中国经济的快速发展和医疗技术的进步,中国的细胞治疗市场迅速增长。

为了确保细胞治疗产品的质量和安全性,中国相关部门出台了一系列监管,包括检验检测、质量控制、生产监管等方面的规定。

这些的实施为中国的细胞治疗产品市场的进一步发展提供了有力支持。

总的来说,细胞治疗作为一种前沿的医学技术,对于人类健康的促进和疾病的治疗具有重要意义。

然而,由于细胞治疗技术的复杂性和潜在风险,其监管和管理面临着挑战。

各国相关部门和监管机构应加强合作,共同推动细胞治疗监管的完善和发展,以促进细胞治疗技术的安全应用和健康发展。

美国FDA发布6个基因治疗科学指导草案,推动基因治疗的发展

美国FDA发布6个基因治疗科学指导草案,推动基因治疗的发展

美国FDA发布6个基因治疗科学指导草案,推动基因治疗的
发展
刘发鹏;FDA官网(图片来源)
【期刊名称】《科技中国》
【年(卷),期】2018(0)8
【摘要】据FDA官网2018年7月11日消息,美国食品药品监督管理局(FDA)发布6个基因治疗领域相关的科学指导草案,包括血友病、视网膜疾病和罕见疾病基因治疗指南,以及人类基因治疗产品给药后的长期随访的指南等。

FDA旨在全面推进基因治疗的发展,并确保新的基因疗法符合FDA的安全性和有效性标准。

【总页数】1页(P104-104)
【关键词】美国FDA;基因治疗;科学;食品药品监督管理局;视网膜疾病;基因疗法;血友病;安全性;
【作者】刘发鹏;FDA官网(图片来源)
【作者单位】不详
【正文语种】中文
【中图分类】Q78
【相关文献】
1.012 美国FDA要求基因治疗的临床试验更有保证 [J],
2.美国FDA新发布《补充和替代医学产品及FDA管理指南》草案 [J], 无
3.美国FDA发布关于禁止将类固醇类产品非法用作食品补充剂的警告/美国FDA 一级召回Bard Composix Kugel Mesh X-Large Patch/美国FDA发布减少患者陷夹的医院病床设计指南 [J],
4.美国FDA要求基因治疗的临床试验更有保证 [J], 鲁茁壮
5.FDA:发布《细胞和基因治疗产品临床前评估指南》 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

美国:FDA发布药物辅助治疗指南

美国:FDA发布药物辅助治疗指南

美国:FDA发布药物辅助治疗指南
佚名
【期刊名称】《医院管理论坛》
【年(卷),期】2017(34)11
【摘要】美国食品和药品监督管理局(FDA)近期建议,对服用苯二氮卓等中枢
神经抑制药物的患者,不应拒绝给予丁丙诺啡和美沙酮药物辅助治疗。

FDA表示,尽管使用这些药物治疗会增加发生严重副作用的风险,但阿片样物质成瘾不加以治疗所造成的伤害超过了这些副作用的危害。

FDA建议,当丁丙诺啡或美沙酮与苯
二氮卓等中枢神经抑制剂联合使用时,医疗服务提供者应采取相应的行动和预防措施,并制定治疗计划。

FDA称,他们正在对辅助治疗的药品标签做出修改,以降
低联合用药的风险。

【总页数】1页(P4-4)
【关键词】药物辅助治疗;治疗指南;FDA;美国;中枢神经抑制剂;药品监督管理局;苯
二氮卓;丁丙诺啡
【正文语种】中文
【中图分类】R711.71
【相关文献】
1.美国FDA发布细菌对抗菌药物的抗性指南 [J], 陈焕生
2.Bard公司一级召回Composix(R) Kugel Mesh贴片的最新信息/Ligand公司发布地尼白介素2的重要药物警告/美国FDA批准多西他赛用于治疗晚期胃癌/抗癫
痫药噻加宾有望治疗焦虑和抑郁症/脂联素与1型糖尿病患者肾功能呈逆相关/严格
控制血糖可改善1型糖尿病患者的左心室功能 [J],
3.美国FDA发布细菌对抗菌药物的抗性指南 [J], 陈焕生
4.美国风湿病学会发布2020年类风湿关节炎药物治疗指南(草案) [J], 马剑达;戴冽
5.标准·方案·指南——美国发布首部《肥胖药物治疗指南》 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

FDA发布五篇具体疾病指南推进神经系统疾病新药研发

FDA发布五篇具体疾病指南推进神经系统疾病新药研发

FDA发布五篇具体疾病指南推进神经系统疾病新药研发美国 FDA 于 2 月 15 日发布了五篇关于神经系统疾病药物研发的新指南,展示了 FDA 监管方法的几个变革的方面,从如何与患者合作到如何组织编写文件。

FDA 局长 Scott Gottlieb 在同一天宣布指南发布的声明中表示,“FDA 认识到许多严重疾病包括神经系统疾病,如肌肉萎缩症、肌萎缩侧索硬化症(ALS)、阿尔茨海默症(AD)、偏头痛和癫痫等疾病,对于新治疗药物的迫切需求。

这需要我们变得更加灵活、协作并以患者为中心。

”这五篇指南包括一篇关于肌萎缩侧索硬化症的指南草案和一篇关于早期阿尔茨海默症的修订指南,这两篇指南均是在患者倡导组织的支持下制定的。

FDA 还发布了关于儿科患者癫痫药物的指南草案,治疗杜氏肌营养不良(DMD)及相关肌营养不良症药物的定稿指南,以及关于研发急性偏头痛治疗药物的定稿指南。

这些指南是FDA 药品审评与研究中心(CDER)新药办公室(OND)现代化的一部分,因此指南具有更“基于团队的方法”。

新药办公室计划整合来自不同学科(如药理学和统计学)的人员,并跨越从上市前到上市后整个产品生命周期的不同阶段。

Gottlieb 于去年九月宣布 OND 的改革计划,并指出 CDER 主任 Janet Woodcock 将领导指南撰写工作。

Gottlieb 表示,这些指南文件是编写基于科学的实用指南文件并使文件更快出台的新简化流程试点的一部分。

指南简明扼要地阐述研究人员如何最好地开展药物研发,没有冗长的叙述。

【FDA计划变革新药办公室结构和新药审评流程2017/03/11】【FDA药品中心主任表示将更快地制定政策指南2017/05/24】【直言简语将成为 FDA 指南的风格 2017/11/16】例如,Gottlieb 指出早期阿尔茨海默症治疗药物的研发修订指南草案描述了在失智症发病之前研究非常早期疾病的创新方法,包括纳入未发生任何明显损伤(认知或功能缺陷形式的损伤)但可通过使用敏感认知筛选、成像检测或生物标志物来识别的阿尔茨海默患者的试验策略。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国FDA发布6大指南,高调护航基因疗法
过去的2017年堪称基因疗法元年,FDA先后批准了3款重磅基因治疗产品。

近日,美国FDA局长宣布,FDA将继续大力推进基因疗法的开发,并发布6大新指南,作为全面监管框架的基石,确保新产品符合FDA的安全性和有效性金标准。

厚积薄发的基因疗法
1963年美国分子生物学家、诺贝尔生理学/医学奖获得者乔舒亚·莱德伯格(Joshua Lederberg)首次提出了基因交换和基因优化的概念。

经过半个多世纪的积累与沉寂,基因疗法以螺旋式的前进、遇挫甚至倒退、再前进的方式,最终走出困境,登上历史舞台,成为这个时代最耀眼的“明星”之一。

2017年,FDA先后批准了以下3款重磅基因治疗产品:
1.首款CAR-T细胞产品Kymriah(tisagenlecleucel)
获批时间:2017年8月
适用范围:治疗25岁以下复发性或难治性B-细胞急性淋巴细胞白血病患者。

2018年进一步获批用于治疗患有复发或难治性大B细胞淋巴瘤(LBCL)的成年患者。

2. 第二款CAR-T细胞产品Yescarta(axicabtagene ciloleucel)
获批时间:2017年10月
适用范围:治疗至少接受过2种其他治疗方案后无缓解或复发的特定类型大B细胞淋巴瘤成人患者。

3. 首款“靶向遗传学眼疾突变”的基因疗法产品Luxturna(voretigene neparvovec-rzyl)
获批时间:2017年12月
适用范围:使用AAV(腺相关病毒技术)将健康的RPE65基因引入患者体内,让患者生成正常功能的蛋白(RPE65酶)来改善视力,不但能治疗莱伯氏先天性黑蒙症还能治疗其他由RPE65基因突变引起的眼疾,包括遗传性视网膜营养不良等。

不同于市场上绝大多数药物,基因疗法的目的在于,纠正引发疾病的致病基因。

它的出现让很多原本治疗无望的重大疾病有了治愈的希望,包括癌症、血友病、遗传性视网膜病变、脊髓性肌萎缩症等。

目前有超过3000个基因疗法正在进行临床试验,其中包括120多个关键的2/3期或3期临床研究。

FDA发布的6大基因疗法新指南如下:
指南一:《治疗血友病的基因疗法产品的新指南草案(draft guidance on gene therapy products that are targeted to the treatment of hemophilia)》
目前正在开发的血友病基因治疗产品作为单次治疗,可以使患者长期生成体内缺失或异常的凝血因子,减少或消除对凝血因子替代品的需要。

该指南旨在提供关于临床试验设计和临床前考虑因素的建议,以支持这些基因治疗产品的开
发。

除其他要素外,指南草案还提供了关于替代终点的建议,供加速批准用于治疗血友病的基因治疗产品使用。

指南二:《视网膜疾病的人类基因疗法指南(Human Gene Therapy for Retinal Disorders guidance)》
目前在美国进行视网膜疾病临床试验的基因治疗产品通常是玻璃体内注射或视网膜下注射。

在一些情况下,基因治疗产品被封装在要植入眼内的装置中。

这份新的指南将重点关注视网膜疾病基因治疗的特殊问题,提供了产品开发、临床前测试和临床试验设计相关的建议。

指南三:《罕见病的人类基因疗法指南(Human Gene Therapy for Rare Diseases guidance)》
美国国立卫生研究院报告说,总共近7000种罕见病影响了超过2500万美国人。

大约80%的罕见病是由单基因缺陷引起的,大约一半的罕见病都会影响儿童。

由于大多数罕见病没有批准的治疗方法,因此存在显著的未满足需求。

该指南旨在提供关于临床前、制造和临床试验设计的建议,帮助申报者设计临床开发计划,可能对部分研究人群存在潜在的可行性和安全性问题,以及解释有效性。

指南四:《人类基因疗法新药申请(INDs)的化学、制造和控制(CMC)信息》
该指南旨在为申办方提供关于基因治疗产品的安全性、均一性、质量、纯度和有效性等支持信息的建议,适用于人类基因疗法,以及含有人类基因疗法的产品与药物或装置的组合。

指南五:《在产品制造和患者随访期间,测试逆转录病毒载体基因治疗产品具有复制能力的逆转录病毒》
该指南提供了在制造基于逆转录病毒载体的基因治疗产品期间,以及在接受基于逆转录病毒载体的基因治疗产品的患者的随访监测期间,正确测试RCR的更多建议。

指南六:《人类基因治疗产品给药后的长期随访》
该指南提供有关设计长期随访(LTFU)观察性研究的建议,以便收集基因治疗产品给药后延迟不良事件的数据。

一旦最终确定,这些草案指南将取代FDA在2008年4月(CMC)和2006年11月(RCR 和LTFU)发布的更早版本的指南。

FDA希望,基于这些指南,基因治疗能得到快速发展,从而促进该领域更多安全有效的创新产品进入市场,为应对难治性疾病带来希望!。

相关文档
最新文档