空间角和距离专题
专题6 向量法求空间角与距离(课件)高考数学二轮复习(新高考地区专用)
=|cos 〈u,n〉|=
·
=
·
.
例1 [2023·河北沧州模拟]如图,在三棱锥P - ABC中,AB是△ABC外
接圆的直径,△PAC是边长为2的等边三角形,E,F分别是PC,PB的
中点,PB=AB,BC=4.
(1)求证:平面PAC⊥平面ABC;
(2)求直线AB与平面AEF所成角的正弦值.
A.直线BC1与DA1所成的角为90°
B.直线BC1与CA1所成的角为90°
C.直线BC1与平面BB1D1D所成的角为45°
D.直线BC1与平面ABCD所成的角为45°
答案:ABD
)
2.[2022·新高考Ⅰ卷 ]如 图,直三棱柱ABC - A1B1C1 的体积为4 ,
△A1BC的面积为2 2.
(1)求A到平面A1BC的距离;
=2.
(1)证明:BD⊥EA.
(2)求平面EDCF与平面EAB夹角的余弦值.
题型三 (空间距离)点到平面的距离
已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点.过
点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P
到平面α的距离就是AP到直线l上的投影向量QP的长度.因此PQ=
(1)证明:A1C⊥AB1;
(2)若三棱锥B1 -
2 2
A1AC的体积为 ,求二面角A1
3
- B1C - A的大小.
题后师说
用法向量求二面角的关键是正确写出点的坐标和法向量,再利用两
个平面的夹角公式求解.
巩固训练2
[2023·河南安阳模拟]在多面体EF - ABCD中,平面EDCF⊥平面
ABCD,EDCF是面积为 3的矩形,CD∥AB,AD=DC=CB=1,AB
专题8.3 立体几何综合问题(原卷版)文科生
【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。
空间角和空间距离
空间角和空间距离一、空间角:(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为 0;②当α⊥l 时, l 与α所成的角为 90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内; ③角的两边与棱都垂直.二面角的范围: .方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足/P 的确定),垂足/P 和斜足A 的连线即为斜线PA 在平面α上的射影,则/PAP ∠即为所求;(2)将/PAP ∠放到/PAP ∆或其它包含此角的三角形中去求. 说明:关于线线角和线面角,下面的结论经常用到:①“爪角定理”:如图9-4-1,已知,AB AO 分别是面α在面α内过斜足O 任意引一直线OC ,设12,AOB BOC θθ∠=∠=,AOC θ∠=,则:21cos cos cos θθθ⋅=;② 经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的②及下面的几个结论是找垂足的有力工具:(ⅰ)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心;②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(ⅱ)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;(ⅲ)三垂线定理及其逆定理.3、求二面角的平面角的一般方法:如何作出(或找出)二面角的平面角是解题的关键,常用以下方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,用定义法时应认真观察图形的特性;②三垂线法(比较常用):已知二面角其中一个面内一点P 到另一个面的垂线(垂足为/P ),则只需过P (或/P )作棱的垂线(垂足为O ),由三垂线定理或其逆定理知/POP ∠即为所求(关键是从题中找到适当的点P );③垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角(由此知,二面角的平面角所在的平面与棱垂直);④面积投影法:此法最大的优点在于不用作出平面角θ,常用于“无棱二面角”(即在图中没有画出棱);如果α上某一平面图形的面积为斜S ,它在β上的射影的面积为射S ,则射斜S S =θcos 。
立体几何中的向量方法(ⅱ)——求空间角与距离课件 专题训练
要点梳理 1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一非零向量作为它 的方向向量. (2)平面的法向量可利用方程组求出:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的法向量,则求法向量的 方程组为nn··ab==00 .
123复...习两直二回条线面顾异 与 角面 平 的直 面 平线 所 面所 成 角成角的角的取的范值取围范值是围范是__0围__,__2__是___________00___,,___2____.___.____.
4.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则(B)
3.(二面角) 结论:cos cos n1, n2
(大2)小设为平面,则、与的法n1,向n2量的分关别系是是n什1、么n?2设二面 角
l
n1,n2
的
n1,n2
n2 n1,n2
n2
n1,n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
2 2 a.
5.如图所示,在三棱柱 ABC—A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°,点 E、F 分别 是棱 AB、BB1 的中点,则直线 EF 和 BC1 所成的角 是________.
解析 以 BC 为 x 轴,BA 为 y 轴,BB1 为 z 轴, 建立空间直角坐标系.
中,已知 AB=4,AD=3,AA1=2.E、F 分 别是线段 AB、BC 上的点,且 EB=BF=1. 求直线 EC1 与 FD1 所成的角的余弦值.
2025届高中数学一轮复习课件《空间角、距离以及综合问题》ppt
第27页
高考一轮总复习•数学
第28页
题型 探究性问题 典例 3(2024·湖北襄阳四中模拟)如图所示,在三棱锥 P-ABC 中, 已知 PA⊥BC,PB⊥AC,点 P 在底面 ABC 上的射影为点 H. (1)证明:PC⊥AB. 概括来讲,在三棱锥中,若两组对棱互相垂直,则第三组对棱也 互相垂直. (2)设 PH=HA=HB=HC=2,对于动点 M,是否存在 λ,使得C→M 这组数量关系说明此三棱锥是正三棱锥. =λC→P,且 BM 与平面 PAB 所成角的余弦值为45?若存在,求出 λ 的值;若不存在,请说明 理由.
高考一轮总复习•数学
第7页
(2)设平面 ABN 的一个法向量为 n=(x,y,z),则由 n⊥A→B,n⊥A→N, 得n·A→B=2 3x+2y=0,
n·A→N=4y+2z=0,
令 z=2,则 y=-1,x= 3 3,即 n= 3 3,-1,2. 易知C→1N=(0,0,-2),
高考一轮总复习•数学
第14页
高考一轮总复习•数学
第15页
题型 翻折问题 典例 2 如图 1,在梯形 ABCD 中,AB∥CD,AE⊥CD,垂足为 E,AB=AE=12CE=1,
DE= 2.将△ADE 沿 AE 翻折到△APE,如图 2 所示.M 为线段 PB 的中点,且 ME⊥PC. 最后这个条件,暗示△ADE 翻折到怎样的位置?
由 ME∩BE=E,ME,BE⊂平面 BEM, 得 BC⊥平面 BEM,PE⊂平面 BEM,于是 PE⊥BC. 由题意,知 PE⊥AE,AE 与 BC 相交, 则 PE⊥平面 ABCE,又 EC⊂平面 ABCE, 所以 PE⊥EC.
高考一轮总复习•数学
第19页
(2)解:连接 BN,MN,设 EN=t,由(1)知 PE,EA, 平面 BMN 和平面 PCE 无公共边,这样引入参数 t,使 t 参与二面角余弦值的计算,用 函数法求最小值. EC 两两垂直,故以 E 为坐标原点,E→A,E→C,E→P的方向分别为 x 轴、y 轴、z 轴的正方 向建立空间直角坐标系,如图所示,
第43讲 利用空间向量求空间角和距离(讲)(解析版)
第43讲 利用空间向量求空间角和距离思维导图知识梳理1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→·n ||n |.题型归纳题型1 异面直线所成的角【例1-1】(2020•济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,12AB AD BC ==,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90︒,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥;(2)求异面直线BM 与EF 所成角的大小.【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明:AB BC ⊥,AB BE ⊥,BCBE B =,AB ∴⊥平面BCE ,以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示:设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0),∴(2BM =,0),(1DF =,1-,0),∴200BM DF =-=,BM DF ∴⊥.(2)解:(2E ,0,0),故(1EF =-,0,1),cos BM ∴<,12||||2BM EF EF BM EF >===-⨯,∴设异面直线BM 与EF 所成角为θ,则cos |cos BM θ=<,1|2EF >=, 故3πθ=.【例1-2】(2020•北京模拟)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(Ⅰ)求证:PD BQ ⊥;(Ⅰ)求异面直线PC 与BQ 所成角的余弦值.【分析】()I 建立空间直角坐标系,只要证明0PD BQ =,即可证明结论. (Ⅰ)(1CP =-,1-,2),利用向量夹角公式即可得出.【解答】()I 证明:如图所示,(0A ,0,0),(1B ,0,0),(0P ,0,2),(0D ,2,0),(0Q ,1,1),(1C ,1,0),(0PD =,2,2)-,(1BQ =-,1,1),由220PD BQ =-=,∴PD BQ ⊥,PD BQ ∴⊥;(Ⅰ)解:(1CP =-,1-,2),cos CP <,BQ =.∴异面直线PC 与BQ 所成角的余弦值为3.【跟踪训练1-1】(2020•运城三模)如图,四边形ABCD 为平行四边形,且2AB AD BD ===,点E ,F 为平面ABCD 外两点,//EF AC 且2EF AE ==EAD EAB ∠=∠. (1)证明:BD CF ⊥;(2)若60EAC ∠=︒,求异面直线AE 与DF 所成角的余弦值.【分析】(1)设BD 与AC 相交于点G ,连接EG ,从而BD AC ⊥,推导出EAD EAB ∆≅∆,从而BD ⊥平面ACFE ,由此能证明BD CF ⊥.(2)过G 作AC 的垂线,交EF 于M 点,分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -,利用向量法能求出异面直线AE 与DF 所成角的余弦值. 【解答】解:(1)证明:设BD 与AC 相交于点G ,连接EG , 由题意可得四边形ABCD 为菱形, 所以BD AC ⊥,DG GB =,在EAD ∆和EAB ∆中,AD AB =,AE AE =,EAD EAB ∠=∠, 所以EAD EAB ∆≅∆,所以ED EB =,所以BD EG ⊥, 因为ACEG G =,所以BD ⊥平面ACFE ,因为CF ⊂平面ACFE ,所以BD CF ⊥.(2)解:如图,在平面AEFC 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD ,所以MG ⊥平面ABCD ,故直线GM ,GA ,GB 两两互相垂直, 分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -, 因为60EAC ∠=︒,则A ,(0D ,1-,0),3)2E,3()2F ,所以3()2AE =-,3()2DF =, 异面直线AE 与DF 所成角的余弦值为:99|0|||44|cos ,|||||310AE DF AE DF AE DF ++<>===【名师指导】用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.题型2 直线与平面所成的角【例2-1】(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.【分析】(1)过P 在平面PAD 内作直线//l AD ,推得l 为平面PAD 和平面PBC 的交线,由线面垂直的判定和性质,即可得证;(2)以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,求出(0Q ,1,1),运用向量法,求得平面QCD 的法向量,结合向量的夹角公式求解即可. 【解答】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD ==,Q 为l 上的点,QB ,PB ∴1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l ,取(1Q ,0,1),则(1DQ =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =-,0,1),cos n ∴<,6||||32n PB PB n PB >===,PB ∴与平面QCD . 【例2-2】(2020•北京)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点. (Ⅰ)求证:1//BC 平面1AD E ;(Ⅰ)求直线1AA 与平面1AD E 所成角的正弦值.【分析】(Ⅰ)根据正方体的性质可证得11//BC AD ,再利用线面平行的判定定理即可得证;(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立空间直角坐标系,设直线1AA 与平面1AD E 所成角为θ,先求出平面1AD E 的法向量m ,再利用sin |cos m θ=<,111|||||||m AA AA m AA >=以及空间向量数量积的坐标运算即可得解. 解法二:设正方体的棱长为2a ,易知122AA DS a =,结合勾股定理和余弦定理可求得1cos EAD ∠=,再求得1111sin 2EAD SAD AE EAD =∠;设点1A 到平面1EAD 的距离为h ,根据等体积法111A EAD E AA D V V --=,可求出h 的值,设直线1AA 与平面1AD E 所成角为θ,则1sin hAA θ=,从而得解. 【解答】解:(Ⅰ)由正方体的性质可知,11//AB C D 中,且11AB C D =,∴四边形11ABC D 是平行四边形,11//BC AD ∴,又1BC ⊂/平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E .(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则(0A ,0,0),1(0A ,0,)a ,1(D a ,0,)a ,(0E ,a ,1)2a ,∴1(0,0,)AA a =,1(,0,)AD a a =,1(0,,)2AE a a =,设平面1AD E 的法向量为(,,)m x y z =,则100m AD m AE ⎧=⎪⎨=⎪⎩,即()01()02a x z a y z +=⎧⎪⎨+=⎪⎩, 令2z =,则2x =-,1y =-,∴(2m =-,1-,2),设直线1AA 与平面1AD E 所成角为θ,则sin |cos m θ=<,11122|||33||||m AA a AA a m AA >===,故直线1AA 与平面1AD E 所成角的正弦值为23. 解法二:设正方体的棱长为2a ,则1AD =,AE =,13ED a =,1212222AA DSa a a ==,由余弦定理知,222222111110 cos22225AD AE EDEADAD AE a a+-∠===1sin EAD∴∠=∴12111sin32EADS AD AE EAD a=∠=,设点1A到平面1EAD的距离为h,111A EAD E AA DV V--=,∴221132233h a a a=,43h a∴=,设直线1AA与平面1AD E所成角为θ,则1423sin23ahAA aθ===.故直线1AA与平面1AD E所成角的正弦值为23.【跟踪训练2-1】(2020•山东)如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【分析】(1)过P在平面PAD内作直线//l AD,推得l为平面PAD和平面PBC的交线,由线面垂直的判定和性质,即可得证;(2)以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D xyz-,设(0Q,m,1),运用向量法,求得平面QCD的法向量,结合向量的夹角公式,以及基本不等式可得所求最大值.【解答】解:(1)证明:过P在平面PAD内作直线//l AD,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0), 设(Q m ,0,1)(0)m >,(DQ m =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b am c =⎧⎨+=⎩,取1c =,可得1(n m =-,0,1),cos n ∴<,211||||131n PBPB n PB m -->==+,PB ∴与平面QCD211111131m m m +++=++232611132m =++=+,当且仅当1m =取等号, PB ∴与平面QCD . 【名师指导】利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.题型3 二面角【例3-1】(2020•江苏)在三棱锥A BCD -中,已知CB CD =,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.【分析】(1)由题意画出图形,连接OC ,由已知可得CO BD ⊥,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到(1,0,2)AB =-,(1,1,1)DE =,设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值; (2)由14BF BC =,得14BF BC =,设(F x ,y ,)z ,由向量等式求得3(4F ,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cos θ,再由同角三角函数基本关系式求解sin θ.【解答】解:(1)如图,连接OC ,CB CD =,O 为BD 的中点,CO BD ∴⊥.以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系.2BD =,1OB OD ∴==,则2OC =.(1B ∴,0,0),(0A ,0,2),(0C ,2,0),(1D -,0,0),E 是AC 的中点,(0E ∴,1,1),∴(1,0,2)AB =-,(1,1,1)DE =.设直线AB 与DE 所成角为α,则||cos ||||14111AB DE AB DE α===++,即直线AB 与DE ; (2)14BF BC =,∴14BF BC =, 设(F x ,y ,)z ,则(1x -,y ,1)(4z =-,12,0),3(4F ∴,12,0).∴(1,1,1)DE =,71(,,0)42DF =,(1,2,0)DC =.设平面DEF 的一个法向量为111(,,)m x y z =,由11111071042m DE x y z m DF x y ⎧=++=⎪⎨=+=⎪⎩,取12x =-,得(2,7,5)m =--; 设平面DEC 的一个法向量为222(,,)n x y z =,由22222020n DE x y z n DC x y ⎧=++=⎪⎨=+=⎪⎩,取22x =-,得(2,1,1)n =-. |||cos |||||44925411mn m n θ∴===+++.sinθ∴=. 【例3-2】(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,PO =. (1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【分析】(1)设圆O 的半径为1,求出各线段的长度,利用勾股定理即可得到PA PC ⊥,PA PB ⊥,进而得证;(2)建立空间直角坐标系,求出平面PBC 及平面PCE 的法向量,利用向量的夹角公式即可得解. 【解答】解:(1)不妨设圆O 的半径为1,1OA OB OC ===,2AE AD ==,AB BC AC ===,DO PO ==PA PB PC ===, 在PAC ∆中,222PA PC AC +=,故PA PC ⊥, 同理可得PA PB ⊥,又PBPC P =,故PA ⊥平面PBC ;(2)建立如图所示的空间直角坐标系,则有11,0),(,0),222B C P ,(0E ,1,0),故3131(3,0,0),(,,0),(,22BC CE CP =-==-, 设平面PBC 的法向量为(,,)m x y z =,则3031022m BC m CP x y z ⎧=-=⎪⎨=-=⎪⎩,可取(0,2,1)m =, 同理可求得平面PCE 的法向量为(2,n =--,故||25cos||||5m n m n θ==,即二面角B PC E --.【跟踪训练3-1】(2020•新课标Ⅰ)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【分析】(1)在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC ,由已知证明四边形1B FAM 和四边形EDAM 都是平行四边形,可得1//AF MB ,且1AF MB =,//AD ME ,且AD ME =,进一步证明四边形11B C EM 为平行四边形,得到11//EC MB ,且11EC MB =,结合1//AF MB ,且1AF MB =,可得1//AF EC ,且1AF EC =,则四边形1AFC E 为平行四边形,从而得到点1C 在平面AEF 内;(2)在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.分别求出平面AEF 的一个法向量与平面1A EF 的一个法向量,由两法向量所成角的余弦值可得二面角1A EF A --的余弦值,再由同角三角函数基本关系式求得二面角1A EF A --的正弦值. 【解答】(1)证明:在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC , 在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111DD AA BB ==. 又12DE ED =,12A M AM =,12BF FB =,1DE AM FB ∴==.∴四边形1B FAM 和四边形EDAM 都是平行四边形.1//AF MB ∴,且1AF MB =,//AD ME ,且AD ME =.又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =, 11//B C ME ∴且11B C ME =,则四边形11B C EM 为平行四边形, 11//EC MB ∴,且11EC MB =,又1//AF MB ,且1AF MB =,1//AF EC ∴,且1AF EC =,则四边形1AFC E 为平行四边形,∴点1C 在平面AEF 内;(2)解:在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.2AB =,1AD =,13AA =,12DE ED =,12BF FB =,(2A ∴,1,3),(2E ,0,2),(0F ,1,1),1(2A ,1,0),则(2,1,1)EF =--,(0,1,1)AE =--,1(0,1,2)A E =-. 设平面AEF 的一个法向量为1111(,,)n x y z =.则1111111200n EF x y z n AE y z ⎧=-+-=⎪⎨=--=⎪⎩,取11x =,得1(1,1,1)n =-; 设平面1A EF 的一个法向量为2222(,,)n x y z =.则222221222020n EF x y z n A E y z ⎧=-+-=⎪⎨=-+=⎪⎩,取21x =,得2(1,4,2)n =. 1212127cos ,||||321n n nn n n ∴<>===. 设二面角1A EF A --为θ,则sin θ==. ∴二面角1A EF A --.【跟踪训练3-2】(2019•天津)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅰ)求直线CE 与平面BDE 所成角的正弦值;(Ⅰ)若二面角E BD F --的余弦值为13,求线段CF 的长.【分析】(Ⅰ)以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,求得A ,B ,C ,D ,E 的坐标,设(0)CF h h =>,得(1F ,2,)h .可得(1,0,0)AB =是平面ADE 的法向量,再求出(0,2,)BF h =,由0BF AB =,且直线BF ⊂/平面ADE ,得//BF 平面ADE ;(Ⅰ)求出(1,2,2)CE =--,再求出平面BDE 的法向量,利用数量积求夹角公式得直线CE 与平面BDE 所成角的余弦值,进一步得到直线CE 与平面BDE 所成角的正弦值;(Ⅰ)求出平面BDF 的法向量,由两平面法向量所成角的余弦值为13列式求线段CF 的长.【解答】(Ⅰ)证明:以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,可得(0A ,0,0),(1B ,0,0),(1C ,2,0),(0D ,1,0),(0E ,0,2). 设(0)CF h h =>,则(1F ,2,)h .则(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB =. 又直线BF ⊂/平面ADE ,//BF ∴平面ADE ;(Ⅰ)解:依题意,(1,1,0)BD =-,(1,0,2)BE =-,(1,2,2)CE =--. 设(,,)n x y z =为平面BDE 的法向量,则020n BD x y n BE x z ⎧=-+=⎪⎨=-+=⎪⎩,令1z =,得(2,2,1)n =. 4cos ,9||||CE n CE n CE n ∴<>==-.∴直线CE 与平面BDE 所成角的正弦值为49; (Ⅰ)解:设(,,)m x y z =为平面BDF 的法向量, 则020m BD x y m BF y hz ⎧=-+=⎪⎨=+=⎪⎩,取1y =,可得2(1,1,)m h =-,由题意,2|4|||1|cos ,|||||332m n m n m n -<>===⨯,解得87h =. 经检验,符合题意.∴线段CF 的长为87.【跟踪训练3-3】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.【分析】(1)过N 作NH AD ⊥,证明//NM BH ,再证明//BH DE ,可得//NM DE ,再由线面平行的判定可得//MN 平面1C DE ;(2)以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,分别求出平面1A MN 与平面1MAA 的一个法向量,由两法向量所成角的余弦值可得二面角1A MA N --的正弦值.【解答】(1)证明:如图,过N 作NH AD ⊥,则1//NH AA ,且112NH AA =, 又1//MB AA ,112MB AA =,∴四边形NMBH 为平行四边形,则//NM BH , 由1//NH AA ,N 为1A D 中点,得H 为AD 中点,而E 为BC 中点, //BE DH ∴,BE DH =,则四边形BEDH 为平行四边形,则//BH DE , //NM DE ∴,NM ⊂/平面1C DE ,DE ⊂平面1C DE ,//MN ∴平面1C DE ;(2)解:以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,则N 12-,2),M ,1,2),1A ,1-,4), 33(,0)2NM =,131(,2)2NA =-, 设平面1A MN 的一个法向量为(,,)m x y z =,由133022312022m NM y m NA y z ⎧=+=⎪⎪⎨⎪=-+=⎪⎩,取x (3,1,1)m =--, 又平面1MAA 的一个法向量为(1,0,0)n =,3cos ,||||5m n m n m n ∴<>===.∴二面角1A MA N --.【名师指导】利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.题型4 求空间距离【例4-1】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.【分析】法一:(1)连结1B C ,ME ,推导出四边形MNDE 是平行四边形,从而//MN ED ,由此能证明//MN 平面1C DE . (2)过C 作1C E 的垂线,垂足为H ,推导出DE BC ⊥,1DE C C ⊥,从而DE ⊥平面1C CE ,DE CH ⊥,进而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由此能求出点C 到平面1C DE 的距离. 法二:(1)以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能证明//MN 平面1C DE .(2)求出(1DC =-0),平面1C DE 的法向量(4n =,0,1),利用向量法能求出点C 到平面1C DE 的距离.【解答】解法一:证明:(1)连结1B C ,ME ,M ,E 分别是1BB ,BC 的中点,1//ME B C ∴,又N 为1A D 的中点,112ND A D ∴=, 由题设知11//A B DC =,11//B C A D =∴,//ME ND =∴,∴四边形MNDE 是平行四边形,//MN ED ,又MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)过C 作1C E 的垂线,垂足为H , 由已知可得DE BC ⊥,1DE C C ⊥,DE ∴⊥平面1C CE ,故DE CH ⊥,CH ∴⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得1CE =,14CC =,1C E ∴=,故CH =,∴点C 到平面1C DE 解法二:证明:(1)直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点. 1DD ∴⊥平面ABCD ,DE AD ⊥,以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,(1M 2),(1N ,0,2),(0D ,0,0),(0E 0),1(1C -4),(0MN =,0),1(DC =-,(0,DE =,设平面1C DE 的法向量(n x =,y ,)z ,则14030n DC x z n DE y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(4n =,0,1),0MN n =,MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)(1C -0),(1DC =-0),平面1C DE 的法向量(4n =,0,1),∴点C 到平面1C DE 的距离:||||17DC n d n ==.【跟踪训练4-1】(2020•梅州二模)如图,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当PA B 到平面PAD 的距离.【分析】(1)推导出BC CD ⊥,BC PC ⊥,得到BC ⊥平面PCD ,由此能证明BC PD ⊥.(2)推导出PC ⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系,利用向量法能求出点B 到平面PAD 的距离.【解答】解:(1)证明:PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点, 将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .BC CD ∴⊥,BC PC ⊥,CD PC C =,BC ∴⊥平面PCD ,PD ⊂平面PCD ,∴在多面体PABCD 中,BC PD ⊥.(2)由(1)得BC ⊥平面PCD ,又PC ⊂平面PCD ,BC PC ∴⊥,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,PA =AC ∴=222PC AC PA ∴+=,PC AC ∴⊥, AC BC C =,PC ∴⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系, (1B ,0,0),(0P ,0,1),(2A ,1,0),(0D ,1,0),(1PB =,0,1)-,(2PA =,1,1)-,(0PD =,1,1)-,设平面PAD 的法向量(n x =,y ,)z ,则200n PA x y z n PD y z ⎧=+-=⎪⎨=-=⎪⎩,取1y =,得(0n =,1,1),∴点B 到平面PAD 的距离为:||1||22PB n d n ===⨯.【名师指导】求点面距一般有以下三种方法(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.。
空间角与空间距离
n
O
a
A
n
a
B
(3)二面角
(0, ]
设m、分别是平面 n a、b的法向量,二面角a l b的大 m n mn 小为,则cos = 或cos = . | m|| n| | m|| n|
n
a
A
O
m
n
l
B
P
m
b
2.用空间向量求空间距离:
(1)点到直线的距离
P
b
d
N
M
a
l
d PM sin PMN | b | 1 cos 2 a, b
(2)点到平面的距离
P
d
a
n
H
Q
d PH PQ cos PQ, n
PQ n n
(3)异面直线间的距离
n
A1
D1
b
B1
C1
d
A
D
C
a
B
d AA1 AC1 cos AC1 , n
(1)异面直线所成的角 (0, ] 2
设a、分别是直线 b a、b的方向向量, 是直线a、b所成 ab 的角,则cos cos a, b . | a||b|
(2)直线与平面所成的角 [0, ] 2
设a是直线a的方向向量, n是平面a的法向量, 为直线 an a与平面a 所成的角,则sin cos a,n . | a|| n|
AC1 n |n|
《空间角、空间距离》
复相关的重要定理:
等角定理:如果一个角的两边和另一个角的两
边分别平行并且方向相同,那么这两个角相等. a Q c
a
空间角和距离专题讲座33页PPT
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
谢谢你的阅读
立体几何中的向量方法(Ⅱ)——求空间角与距离课件 专题训练
a2 a2 2 4 + 4 = 2 a.
5.如图所示,在三棱柱 ABC—A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90° ,点 E、F 分别 是棱 AB、BB1 的中点,则直线 EF 和 BC1 所成的角 是________.
解析 以 BC 为 x 轴,BA 为 y 轴,BB1 为 z 轴, 建立空间直角坐标系. 设 AB=BC=AA1=2, 则 C1(2,0,2),E(0,1,0),F(0,0,1), 则 EF =(0,-1,1), BC1 =(2,0,2), ∴ EF BC1 =2, 2 1 EF , BC ∴cos = , 1 = 2×2 2 2
3.已知向量 m,n 分别是直线 l 和平面 α 的方 1 向向量、法向量,若 cos〈m,n〉=-2, 则 l 与 α 所成的角为( A ) A.30° B.60° C.120° D.150°
设 l 与 α 所成的角为 θ, 1 则 sin θ=|cos〈m,n〉|=2,∴θ=30° . 解析
4.如图所示,在空间直角坐标系中,有一棱长为 a 的正 方体 ABCO—A′B′C′D′,A′C 的中点 E 与 AB 的中点 F
思维启迪: (1) 本题易于建立空间直角坐标系, → → 把 E C 1 与 F D 1 所成的角看向量EC1与FD1的夹 角,用向量法求解. (2)平移线段 C1E 让 C1 与 D1 重合,转化为平面 角,放到三角形中,用几何法求解.
AD、 AA1 分别为 x 轴、y 解 方法一 以 A 为原点, AB、
基础自测 1.如果平面的一条斜线与它在这个平面上的射 影的方向向量分别是 a=(1,0,1), b=(0,1,1), 那么,这条斜线与平面所成的角是( D ) A.90° B.30° C.45° D.60° 1 1 解析 ∵cos〈a,b〉= = , 2· 2 2
专题+立体几何中的向量方法(二)—求空间角和距离年领军高考数学一轮复习(文理通用)
专题45立体几何中的向量方法(二)——求空间角和距离 最新考纲1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用.基础知识融会贯通1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 ⎝⎛⎦⎤0,π2 [0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.重点难点突破【题型一】求异面直线所成的角【典型例题】如图,直棱柱(侧棱垂直于底面的棱柱) ABC ﹣A 1B 1C 1,在底面ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点. (1)求的值;(2)求证:BN ⊥平面C 1MN .【解答】解:以C 为原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的坐标系C ﹣xyz , (1)依题意,A 1(1,0,2),C (0,0,0),B 1(0,1,2),B (0,1,0), ∴(1,﹣1,2),(0,1,2),∴•1×0+(﹣1)×1+2×2=3, 又||,||,∴cos,6分证明:(2)A1(1,0,2),C1(0,0,2),B1(0,1,2),N(1,0,1),∴M(,,2),∴(,,2),(1,0,﹣1),(1,﹣1,1),∴•1(﹣1)+1×0=0,同理可求•0,∴⊥,⊥,C1M∩C1N=C1,∴BN⊥平面C1MN…12分.【再练一题】如图,BC=2,原点O是BC的中点,点A的坐标为(,,0),点D在平面yOx上,且∠BDC=90°,∠DCB=30°.(1)求向量的坐标.(2)求与的夹角的余弦值.【解答】解:(1)过D作DE⊥BC于E,则DE=CD•sin30°,OE=OB﹣BD cos60°=1,∴D的坐标为D(0,,,又∵C(0,1,0),∴(0,,).(2)依题设有A点坐标为A(,,0),∴(),(0,2,0),则与的夹角的余弦值:cos.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【题型二】求直线与平面所成的角【典型例题】如图所示,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,BC=BA AD=m,VA⊥平面ABCD.(1)求证:CD⊥平面VAC;(2)若VA m,求CV与平面VAD所成角的大小.【解答】(1)证明:连结AC,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,取AD中点G,连CG,因为BC∥AD,所以四边形ABCG为正方形.所以CG=GD,∠CGD=90°,∴∠DCG=45°,∴∠DCA=90°……………………所以CD⊥CA,又VA⊥平面ABCD,所以CD⊥VA,CD⊥平面VAC………………(2)解:法1:连VG由⇒CG⊥面VAD,∴∠CVG是CV与平面VAD所成的角………………VC2m;CG=m,∴∠CVG=30°∴CV与平面VAD所成角为30°………………法2:以A为原点,射线AB,AD,AV所在直线为x,y,z轴正半轴,建立空间直角坐标系,则平面VAD 法向量(m,0,0),又,设向量与夹角为θ,则cosθ,θ,CV与平面VAD所成的角为.【再练一题】如图,四棱锥P﹣ABCD中,底面为直角梯形,AB∥CD,∠BAD=90°,AB=2CD=4,P A⊥CD,在锐角△P AD 中,E是边PD上一点,且AD=PD=3ED.(1)求证:PB∥平面ACE;(2)当P A的长为何值时,AC与平面PCD所成的角为30°?【解答】(1)证明:连接BD交AC于O,∵AB∥CD,∴△OCD∽△OAB,∴,又,∴OE∥PB,又OE⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)解:过A作AF⊥PD,垂足为F,连接CF,∵CD⊥AD,CD⊥P A,P A∩AD=A,∴CD⊥平面P AD,∴CD⊥AF,又AF⊥PD,PD∩CD=D,∴AF⊥平面PCD,∴∠ACF为AC与平面PCD所成的角,即∠ACF=30°.AC,∴AF AC,∴sin∠ADF,cos∠ADF,∴P A.∴当P A时,AC与平面PCD所成的角为30°.思维升华利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.【题型三】求二面角【典型例题】四棱锥P﹣ABCD中,平面PCD⊥平面ABCD,四边形ABCD为矩形,AB=4,AD=3,∠P AB=90°.(1)求证:PD⊥平面ABCD;(2)若直线BD与平面P AB所成角的正弦值为,求二面角C﹣P A﹣D的余弦值.【解答】证明:(1)因为平面PCD⊥平面ABCD,且∠BCD=90°.所以BC⊥平面PCD,所以PD⊥BC.又因为AB⊥P A,AB⊥AD,所以AB⊥平面P AD,所以PD⊥AB.又因为PD⊥BC,所以PD⊥平面ABCD.解:(2)以D为原点,DA,DP,DC方向分别为x轴,y轴,z轴正方向建立如图空间直角坐标系.作DE⊥P A于E,连接BE,因为平面P AD⊥平面P AB,所以DE⊥平面P AB,∠DBE即为直线BD与平面P AB所成的角,故,所以DE.Rt△P AD中,令PD=x,则x•3•,解得x=3,故A(3,0,0),P(0,3,0),C(0,0,4).(﹣3,3,0),(﹣3,0,4),设平面P AC的一个法向量为(a,b,c),则,取(4,4,3).又因为平面P AD的一个法向量为(0,0,4),故cos.综合图形可知,所求二面角的余弦值为.【再练一题】如图在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC的中点,将△AEF沿EF折起,使点A到达点D的位置,连接BD,CD,M为CD的中点.(Ⅰ)证明:MF⊥面BCD;(Ⅱ)若DE⊥BE,求二面角E﹣MF﹣C的余弦值.【解答】证明:(Ⅰ)取DB中点N,连结MN、EN,∵MN,EF,∴四边形EFMN是平行四边形,∵EF⊥BE,EF⊥DE,BE∩EF=E,∴EF⊥平面BDE,∴EF⊥EN,∴MF⊥MN,在△DFC中,DF=FC,又∵M为CD的中点,∴MF⊥CD,又∵MF∩MN=M,∴MF⊥平面BCD.解:(Ⅱ)∵DE⊥BE,DE⊥EF,BE∩EF=E,∴DE⊥平面BEF,以E为原点,BE、EF、ED所在直线分别为x,y,z轴,建立空间直角坐标系,设BC=2,则E(0,0,0),F(0,1,0),C(﹣2,2,0),M(﹣1,1,1),∴(0,1,0),(﹣1,0,1),(2,﹣1,0),设面EMF的法向量(x,y,z),则,取x=1,得(1,0,1),同理,得平面CMF的法向量(1,2,1),设二面角E﹣MF﹣C的平面角为θ,则cosθ,∴二面角E﹣MF﹣C的余弦值为.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【题型四】求空间距离【典型例题】四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PB=PD.(1)求证:PD⊥AB;(2)若AB=6,PC=8,E是BD的中点,求点E到平面PCD的距离.【解答】(1)证明:由于四边形ABCD是菱形,∠BAD=60°,所以△ABD是正三角形.设AB的中点为K,连接PK,DK,如图所示,则AB⊥DK,又P A=PB,所以AB⊥PK.又PK,DK相交于K,所以AB⊥平面PKD.又PD⊂平面PKD,所以AB⊥PD.(2)解:由(1)可知,AB⊥平面PKD.又AB∥CD,所以CD⊥平面PKD.又CD⊂平面PDC,所以平面PDC⊥平面PKD,设点E到平面PCD的距离为h,则由于BD=2ED,得点B到平面PCD的距离为2h.由于KB∥平面PCD,所以K,B两点到平面PCD的距离均为2h.所以点K到直线PD的距离就是2h.设△ABD的中心为H,则PH⊥平面ABD.HC=4HE=4,在rt△PHC中,PH4,在Rt△PHD中,PH=4,DH=2,所以PD2.由DH=2HK,得点H到直线PD的距离为,即,得h.所以点E到平面PCD的距离为.【再练一题】如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是A B.PC的中点.(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离.【解答】解:(1)∵P A⊥平面ABCD,AB⊥AD,∴AB、AD、AP两两互相垂直,如图所示,分别以AB、AD、AP所在直线为x轴、y轴和z轴建立空间直角坐标系,可得A(0,0,0),B (2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),M(1,0,0),N(1,1,1),∴(0,1,1),(﹣1,1,﹣1),(0,2,﹣2)设(x,y,z)是平面MND的一个法向量,可得,取y=﹣1,得x=﹣2,z=1,∴(﹣2,﹣1,1)是平面MND的一个法向量,同理可得(0,1,1)是平面PCD的一个法向量,∵•2×0+(﹣1)×1+1×1=0,∴,即平面MND的法向量与平面PCD的法向量互相垂直,可得平面MND⊥平面PCD;(2)由(1)得(﹣2,﹣1,1)是平面MND的一个法向量,∵(0,2,﹣2),得•0×(﹣2)+2×(﹣1)+(﹣2)×1=﹣4,∴点P 到平面MND 的距离d .思维升华 求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离. (2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.基础知识训练1.【天津市部分区2019届高三联考一模】在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ; (Ⅱ)求二面角C PB Q --的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB,求线段DH 的长. 【答案】(1)证明见解析;(2)56π;(3)32. 【解析】 (1)平面ADPQ ⊥平面ABCD ,平面ADPQ ⋂平面ABCD AD =,PD ADPQ ⊂平面,PD AD ⊥,∴直线PD ⊥平面ABCD .由题意,以点D 为原点,分别以,,DA DC DP 的方向为x 轴,y 轴,z 轴的正向建立如图空间直角坐标系, 则可得:()()()0,0,0,2,2,0,0,2,0D B C ,()()()2,0,0,2,0,1,0,0,2A Q P .依题意,易证:()2,0,0AD =-是平面PDC 的一个法向量, 又()0,2,1QB =-,∴ 0QB AD ⋅=, 又直线QB ⊄平面PDC ,∴ //QB PDC 平面. (2)()()2,2,2,=0,22PB PC =--,.设()1111,,n x y z =为平面PBC 的法向量, 则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111112220220x y z y z +-=⎧⎨-=⎩. 不妨设11z =,可得()10,1,1n =.设()2222,,n x y z =为平面PBQ 的法向量, 又()()2,2,2,2,0,1PB PQ =-=-,则220n PB n PQ ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x z x y z -=⎧⎨+-=⎩. 不妨设22z =,可得()21,1,2n =,∴ 1212123cos<,nn n n n n ⋅>==⋅, 又二面角C PB Q --为钝二面角,∴二面角C PB Q --的大小为56π. (3)设()()0,0,02H h h ≤≤,则()2,0,AH h =-,又()2,2,2PB =-,又73cos<,15PB AH >=,即24273234h h--=⋅+,∴ 2625240h h -+=,解得32h =或83h =(舍去). 故所求线段DH 的长为32.2.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知正方形的边长为4,,E F 分别为,AD BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60的二面角,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF ,由,,A D E 三点所确定平面的交点为O ,试确定点O 的位置,并证明直线//OD 平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)证明见解析;(2)10,4±. 【解析】(1)因为直线MF ⊂平面ABFE , 故点O 在平面ABFE 内也在平面ADE 内,所以点O 在平面ABFE 与平面ADE 的交线上(如图所示)因为AOBF ,M 为AB 的中点,所以OAM MBF ∆≅∆,所以OM MF =,AO BF =,所以点O 在EA 的延长线上,且2AO = 连结DF 交EC 于N ,因为四边形CDEF 为矩形,所以N 是EC 的中点 连结MN ,因为MN 为DOF ∆的中位线,所以MN OD ,又因为MN ⊂平面EMC ,所以直线OD平面EMC .(2)由已知可得,EF AE ⊥,EF DE ⊥,所以EF ⊥平面ADE ,所以平面ABEF ⊥平面ODE ,取AE 的中点H 为坐标原点,建立如图所示的空间直角坐标系,所以(1,0,0)E -,3)D ,(0,3)C ,(1,4,0)F -, 所以3)ED =,(1,3)EC =, 设(1,,0)(04)M t t ≤≤,则(2,,0)EM t =,设平面EMC 的法向量(,,)m x y z =,则2000430x ty m EM m EC x y z ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=++=⎪⎪⎩⎩, 取2y =-,则x t =,3z =,所以8,2,3t m t -⎛=- ⎪⎝⎭, DE 与平面EMC 所成的角为60,所以2232(8)243t t =-++,所以22332419t t =-+,所以2430t t -+=,解得1t =或3t =, 所以存在点M ,使得直线DE 与平面EMC 所成的角为60,取ED 的中点Q ,则QA 为平面CEF 的法向量,因为13,0,2Q ⎛⎫- ⎪ ⎪⎝⎭,所以33,0,22QA ⎛⎫=- ⎪ ⎪⎝⎭,,2,3m t ⎛=- ⎪⎝⎭, 设二面角M EC F --的大小为θ,所以222|||cos |||||(8)419343QA m QA m t t t t θ⋅===⋅--+++,因为当2t =时,cos 0θ=,平面EMC ⊥平面CDEF , 所以当1t =时,θ为钝角,所以1cos 4θ=-. 当3t =时,θ为锐角,所以1cos 4θ=. 3.【陕西省汉中市2019届高三全真模拟考试】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C --的余弦值为6,求PF 的长度. 【答案】(1)见解析;(2)5【解析】(1)证明:∵90BAF ∠=︒,∴AB AF ⊥, 又平面ABEF ⊥平面ABCD ,平面ABEF 平面ABCD AB =,AF ⊂平面ABEF ,∴AF ⊥平面ABCD .(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系, 则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D,()0,0,1F ,∴()0,2,1FD =-,()1,2,0AC =,()1,0,0AB = 由题知,AB ⊥平面ADF ,∴()1,0,0AB =为平面ADF 的一个法向量,设()01FP FD λλ=≤<,则()0,2,1P λλ-,∴()0,2,1AP λλ=-,设平面APC 的一个法向量为(),,x y z =m ,则0m AP m AC ⎧⋅=⎨⋅=⎩, ∴()21020y z x y λλ⎧+-=⎨+=⎩,令1y =,可得22,1,1m λλ⎛⎫=- ⎪-⎝⎭, ∴26cos ,21411m AB m AB m ABλλ⋅===⎛⎫⋅++ ⎪-⎝⎭,得13λ=或1λ=-(舍去), ∴5PF =.4.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C --的余弦值.【答案】(1)详见解析;(23【解析】(1)因为平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BC ⊂平面ABC ,90ACB ∠=︒,所以BC ⊥平面11ACC A ,因为1AC ⊂平面11ACC A ,所以1BC A C ⊥. 因为11B C BC ∥,所以111AC B C ⊥. 因为11ACC A 是平行四边形,且1AA AC =,所以11ACC A 是菱形,11A C AC ⊥. 因为1111AC B C C ⋂=,所以1A C ⊥平面11AB C .又1AC ⊂平面11A B C ,所以平面11AB C ⊥平面11A B C . (2)取AC 的中点M ,连接1A M ,因为11ACC A 是菱形,160A AC ∠=︒, 所以1ACA ∆是正三角形,所以1A M AC ⊥,且13A M AC =. 令122AA AC CB ===,则13A M =所以以C 为原点,以CA 所在直线为x 轴,CB 所在直线为y 轴,过点C 且平行于1A M 的直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0C ,()2,0,0A ,()11,0,3C -,()0,1,0B,()11,0,3A ,()2,0,0CA =,()()111111,0,30,1,0CB CC CB CC CB =+=+=-+()1,1,3=-,()11,0,3CA =. 设平面1ACB 的一个法向量为(),,n x y z =,则10n CA n CB ⎧=⎪⎨=⎪⎩,所以2030x x y z =⎧⎪⎨-++=⎪⎩,得0x =,令1z =,则3y =-,所以()0,3,1n =-.由(1)知1A C ⊥平面11A B C ,所以()11,0,3CA =是平面11A B C 的一个法向量, 所以111cos ,CA n CA n CA n⋅<>=⋅3341331==+⋅+. 所以二面角11C AB C --的余弦值为3.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.【答案】(1)见解析(2)3(3)线段BD 上存在点N,使得直线//CE 平面AFN ,且2=3BN BD ,详见解析. 【解析】(1)证明:因为ADEF 为正方形, 所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF ⋂平面ABCD AD =, 所以AF ⊥平面ABCD .所以AF BD ⊥.(2)取AD 中点O,EF 中点K ,连接OB ,OK.于是在△ABD 中,OB OD ⊥,在正方ADEF 中OK OD ⊥,又平面ADEF ⊥平面ABCD ,故OB ⊥平面AFEF ,进而0B OK ⊥, 即OB, OD, OK 两两垂直. 分别以,,OB OD OK 为x 轴,y 轴,z 轴 建立空间直角坐标系(如图).于是,3B ⎫⎪⎪⎝⎭,10,,02D ⎛⎫ ⎪⎝⎭,3C ⎫⎪⎪⎝⎭,1E 0,,12⎛⎫⋅ ⎪⎝⎭,311M ,0,F 0,,142⎫⎛⎫-⎪ ⎪⎪⎝⎭⎝⎭ 所以3335,,1,,,0,(0,0,1)4422MF CD DE ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面CDE 的一个法向量为(,,)n x y z =,则00CD n DE n ⎧⋅=⎪⎨⋅=⎪⎩ 即35020x y z ⎧-⋅-⋅=⎪⎨⎪=⎩令5x =-,则3y =,则(5,3,0)n =-.设直线MF 与平面CDE 所成角为θ,||3sin |cos ,|14||||MF n MF n MF n θ⋅=<>==(3) 要使直线//CE 平面AFN ,只需AN //CD ,设,[0,1]BN BD λλ=∈,则331,,,,02n n n x y z λ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,331,,02n n n x y z λλ=-==, 331,,02N λλ⎛⎫- ⎪ ⎪⎝⎭,所以3311,,022AN λλ⎛⎫=-+ ⎪ ⎪⎝⎭, 又 35(,,0)2CD =--,由//AN CD 得33112222 5322λλ-+=--解得2=[0,1]3λ∈所以线段BD 上存在点N,使得直线//CE 平面AFN ,且2=3BN BD . 6.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合考试】如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值. 【答案】(1)见解析(221【解析】(1)证明:在BAD ∆中,因为22AB AD ==,60BAD ∠=︒. 由余弦定理得,2222cos60BD AD AB AB AD =+-⋅︒, 解得3BD =, ∴222AB AD DB =+,∴AD DB ⊥, 在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD , ∴GD DB ⊥ 又AD GD D ⋂=, ∴BD ⊥平面ADG ,∴平面BDG ⊥平面ADG . (2)解:如图以D 为原点建立空间直角坐标系D xyz -,因为45BAE GAD ∠=∠=︒,22AB AD ==,所以()1,0,0A ,()3,0B ,()3,2E ,()0,0,1G ,()3,2AE →=-,()1,0,1AG →=-,()3,1GB →=-.设平面AEFG 的法向量(),,n x y z →=,3200n AE x z n AG x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩, 令1x =,得33y -=,1z =,∴31,,13n→⎛⎫=-⎪⎪⎝⎭.设直线GB和平面AEFG的夹角为θ,所以()()30,3,11,,1321sin cos,730,3,11,,13GB nGB nGB nθ→→→→→→⎛⎫-⋅-⎪⋅⎝⎭====⎛⎫⋅-⋅-⎪⎝⎭,所以直线GB与平面AEFG所成角的正弦值为217.7.【西藏拉萨市2019届高三第三次模拟考试】如图,等边三角形PAC所在平面与梯形ABCD所在平面互相垂直,且有AD BC∥,2AB AD DC===,4BC=.(1)证明:平面PAB⊥平面PAC;(2)求二面角B PC D--的余弦值.【答案】(1)详见解析;(2)513.【解析】(1)证明:取BC中点M,连接AM,则四边形AMCD为菱形,即有12AM MC BC==,所以AB AC⊥.又AB平面ABCD,平面ABCD⊥平面PAC,平面ABCD平面PAC AC=,∴AB⊥平面PAC,又AB平面PAB,∴平面PAB⊥平面PAC.(2)由(1)可得23AC =,取AC 中点O ,连接PO ,则PO AC ⊥,3PO =, 又PO ⊂平面PAC , 平面PAC ⊥平面ABCD , 平面PAC平面ABCD AC =,∴PO ⊥平面ABCD .以A 为原点建系如图,则()2,0,0B ,()3,3P ,()0,23,0C ,()3,0D -,()2,23,0BC =-,()3,3PC =-,()1,3,0CD =--,设平面BPC 的法向量为()1,,n x y z =,则2230330x z ⎧-+=⎪-=,取1z =,得()13,3,1n =. 设平面PCD 的法向量为()2,,n x y z =,则30330x y z ⎧--=⎪⎨-=⎪⎩,取1z =,()23,1n =-,1212125cos ,131313n n n n n n ⋅<>===-⨯.∴二面角B PC D --的余弦值为513.8.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)】如图,在直三棱柱111ABC A B C -中,D 、E 、F 、G 分别是BC 、11B C 、1AA 、1CC 中点.且22AB AC ==,14BC AA ==.(1)求证:BC ⊥平面ADE ; (2)求二面角1G EF B --的余弦值.【答案】(1)见解析;(2)6- 【解析】(1)∵22AB AC ==,4BC =,∴AB AC ⊥. ∵D 是BC 的中点,∴AD BC ⊥,∵111ABC A B C -为直三棱柱,D ,E 为BC ,11B C 中点, ∴DE ⊥平面ABC ,∴DE BC ⊥,∴BC ⊥平面ADE .(2)由(1)知建系如图,且()002F ,,,()122,0,0B ,()2,2,0E ,()0,22,2G ,∴()2,2,2EF =--,()12,2,0B E =-,()0,22,0FG =.设平面1B EF 的法向量为(),,m x y z =,由100m EF m B E ⎧⋅=⎪⎨⋅=⎪⎩,得2220220x y z xy ⎧--+=⎪⎨-+=⎪⎩. 取()1,1,2m =,同理得平面EFG 的法向量()2,0,1n =.∴226cos ,323m n <>==,而二面角1G EF B --为钝二面角, ∴二面角1G EF B --的余弦值为6-. 9.【广东省肇庆市2019届高中毕业班第三次统一检测】如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AFFC .(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值.【答案】(1)详见解析;(2)52929. 【解析】解:(1)连接1AB 交1A E 于点G ,连接FG . 因为11AGA B GE ∆∆,所以1112AA AG GB EB ==,又因为2AF FC =,所以1AF AG FC GB =,所以1//FG CB ,又1CB ⊄面1A EF ,FG ⊂面1A EF ,所以1//CB 面1A EF .(2)过C 作CO AB ⊥于O ,因为CA CB =,所以O 是线段AB 的中点. 因为面CAB ⊥面11ABB A ,面CAB面11ABB A AB =,所以CO ⊥面1ABA .连接1OA ,因为1ABA ∆是等边三角形,O 是线段AB 的中点,所以1OA AB ⊥.如图以O 为原点,OA ,1OA ,OC 分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标,不妨设2AB =,则(1,0,0)A ,1(0,3,0)A ,(0,0,1)C ,(1,0,0)B -,12(,0,)33F, 由11AA BB =,得(2,3,0)B -,1BB的中点33(,,0)2E -,133(,,0)2A E =--,112(,3,)33A F =--. 设面1A FE 的一个法向量为1111(,,)n x y z =,则111100A E n A F n ⎧⋅=⎪⎨⋅=⎪⎩,即1111230333302x y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,得方程的一组解为111135x y z =-⎧⎪=⎨⎪=⎩,即1(1,3,5)n =-.面1ABA 的一个法向量为2(0,0,1)n =,则121212529cos ,n n n n n n ⋅<>==, 所以二面角1F A E A --的余弦值为52929.10.【广东省潮州市2019届高三第二次模拟考试】如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F --的大小. 【答案】(1)见证明;(2) 4π【解析】(1)∵菱形ABCD ,∴AC BD ⊥, ∵FD ⊥平面ABCD ,∴FD AC ⊥, ∵BD FD D ⋂=,∴AC ⊥平面BDF , ∵AC ⊂平面ACF ,∴平面ACF ⊥平面BDF . (2)设ACBD O =,以O 为原点,OB 为x 轴,OA 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则3,0,0)B ,()0,1,0C -,(3,0,3)F ,(3,1,0)BC =--,(3,0,3)BF =-,设平面BCF 的法向量(,,)n x y z =,则302330n BC y n BF x z ⎧⋅=--=⎪⎨⋅=-=⎪⎩,取1x =,得(1,3,2)n =-, 平面ABC 的法向量(0,0,1)m =, 设二面角A BC F --的大小为θ, 则||2cos ||||28m n m n θ⋅===⋅, ∴4πθ=.∴二面角A BC F --的大小为4π. 11.【山东省栖霞市2019届高三高考模拟卷】如图,在三棱锥V ABC -中,,90,2VC AB ABC AB BC ︒<∠===,侧面ACV ⊥底面ABC ,45ACV ︒∠=,D 为线段AB 上一点,且满足AD CV =.(1)若E 为AC 的中点,求证:BE CV ⊥; (2)当DV 最小时,求二面角A BC V --的余弦值. 【答案】(1)见证明;(2) 33【解析】(1)在ABC ∆,因为90ABC ∠=,AB BC =,E 为AC 的中点,所以BE AC ⊥,因为面ACV ⊥面ABC ,面ACV 面ABCAC =,所以BE ⊥面ACV ,又VC ⊂面ACV ,BE VC ⊥(2)以B 为坐标原点,分别以射线,BC BA 和垂直于面ABC 向上的方向为,,x y z 轴,建立空间直角坐标系-B xyz ,设BD t =,则有(0,0,0),(2,0,0),(0,,0)B C D t ,因为侧面ACV ⊥底面ABC ,45ACV ∠=, 所以(1,1222t t V +-, 所以222232(1)(1)()344222tt t DV t t -=++-+=-+ 当2(0,2)3t =∈时,DV 最小, 此时2(0,,0)3D ,4222(,33V ,4222(2,0,0),(,33BC BV ==设(,,)x y z =n 为平面VBC 的一个法向量,则有0,0BC BV ==n n ,所以204222033xx y z =⎧⎪⎨++=⎪⎩,令2z =,则(0,2,2)=-n , 而平面ABC 的一个法向量为(0,0,1)=m , 所以23cos ,16n m <>==⋅, 故二面角A BC V --的余弦值为33. 12.【河南省百校联盟2019届高三考前仿真试卷】如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)277. 【解析】(Ⅰ)因为11B A ⊥平面11ADD A , 所以111B A DD ⊥,又11111111DD D A B A D A A ⊥⋂=,,所以1DD ⊥平面1111D C B A ,又因为11//DD CC ,所以1CC ⊥平面1111D C B A ,11B C ⊂平面1111D C B A ,所以111CC B C ⊥,因为平面11ADD A ⊥平面11CDD C ,平面11ADD A ⋂平面111CDD C DD =,111C D DD ⊥,所以11C D ⊥平面11ADD A , 经计算可得1111523B E BC EC ===,,, 从而2221111B E B C EC =+,所以在11B EC 中,111B C C E ⊥,又11CC C E ⊂,平面1111CC E CC C E C ⋂=,,所以11B C ⊥平面1CC E .(Ⅱ)如图,以点A 为原点建立空间直角坐标系,依题意得()()()10001,0,00,2,2A C B ,,,,, ()()11,2,10,1,0C E ,.∵1(1,1,1)(1,2,1)CE B C =--=--,,设平面1B CE 的一个法向量(,,)m x y z =则100m B C m CE ⎧⋅=⎨⋅=⎩,,即200x y z x y z --=⎧⎨-+-=⎩,,消去x 得20y z +=,不妨设1z =,可得()3,2,1m =--,又()111,0,1B C =-,设直线11B C 与平面1B CE 所成角为θ, 于是111111427sin cos ,7142||m B C m B C m B C θ⋅-====⨯⋅, 故直线11B C 与平面1B CE 所成角的正弦值为277. 13.【江西省上饶市横峰中学2019届高三考前模拟考试】如图,在三棱锥P ABC -中,20{28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离
形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
利用空间向量求角和距离典型例题精讲
9.8用空间向量求角和距离一、明确复习目标1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离.二.建构知识网络1.求角:(1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角;②求出平面的法向量n ,直线的方向向量a ,设线面角为θ,则|cos ,|||||||n asin n a n a θ⋅=<>=⋅.(3)二面角:①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离(1)点M 到面的距离||cos d MN θ=(如图)就是斜线段MN 在法向量n 方向上的正投影. 由||||cos ||n NM n NM n d θ⋅=⋅⋅=⋅ 得距离公式:||||n NM d n ⋅=(2)线面距离、面面距离都是求一点到平面的距离;(3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量NM ,再代上面距离公式.三、双基题目练练手1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1D.02. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030B . 21C .1530 D .10153.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , .◆答案提示: 1. C ; 2. A ; 3. 57;4.(2,1,25),d AB =17四、以典例题做一做【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1)11(1,0,1)(1,,1)DA D E x ⋅=⋅-因为110,.DA D E =⊥所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD , 设平面ACD 1的法向量为,n n 则不与y 轴垂直,可设(,1,)n a c =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n也即200a a c -+=⎧⎨-+=⎩,得2a a c=⎧⎨=⎩,从而)2,1,2(=n , ∴点E 到平面AD 1C 的距离:.313212||||1=-+=⋅=n n E D h (3)1(1,2,0),(0,2,1),CE x DC =-=-1(0,0,1),DD = 设平面D 1EC 的法向量(,1,)n a c =,由10,20(2)0.0,n D C c a x n CE ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ ).2,1,2(x n -= 依题意11||2cos 42||||n DD n DD π⋅==⋅222.2(2)5x ⇒=-+∴321+=x (不合,舍去),322-=x . ∴AE =32-时,二面角D 1—EC —D 的大小为4π【例2】(2005全国)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点。
空间角与距离的计算
由△PAD 为等腰直角三角形得 PN⊥AD. 由 DC⊥AD,BC∥AD,BC=12AD,N 是 AD 的中点得 BN⊥AD.所以 AD⊥平面 PBN. 由 BC∥AD 得 BC⊥平面 PBN, 则平面 PBC⊥平面 PBN. 过点 Q 作 PB 的垂线, 垂足为 H,连接 MH,易知 QH⊥平面 PBC, 所以 MH 是 MQ 在平面 PBC 上的射影, 所以∠QMH 是直线 CE 与平面 PBC 所成的角.
令 y=1,则 n=(0,1,-1),
BF=1,EPPF=2,所以 EP=233,设 D 到面 PEA 的距离为 d,
因为 VA-EDP=VD-AEP,即13·AD·S△EDP=13·d·S△AEP,所以 d=
AD·S△EDP= S△AEP
1×
3 3
=
33× 2
2 2.
【通法指导】 诚如上文所说,求点面距问题可以采用等积转换和向量 法求解,除此之外个别问题也可采用垂面法(利用面面垂直性 质定理)和等价转移法(利用线面平行)求解.当然,一些求几 何体体积问题,也是对点面距问题的相应考查.
因为A→P=-1,2
3
3,1,A→E=(-1,0,1)
,
所以xy==z0,, 令 z=1,则 n=(1,0,1). 因为D→A=(1,0,0),
所以
D
到面
APE
的距离为
d=|D→|An·|n|=
|1| = 2
2 2.
解法二:由(1)知,AD⊥平面 BFED,所以 AD⊥EP,
AD⊥ED.又因为 EP⊥ED,所以 EP⊥平面 ADE.BD= 3,
【题型分析】 如图,在梯形 ABCD 中,AB∥CD,AD=DC=CB=1, ∠BCD=120°,四边形 BFED 为矩形,平面 BFED⊥平面 ABCD,BF=1.
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
高三复习专题:向量方法求空间角和距离
高三复习专题:向量方法求空间角肖冠承在高考的立体几何试卷中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教案和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.b5E2RGbCAP1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.<1)求异面直线所成的角设、分别为异面直线a、b的方向向量,则两异面直线所成的角=<2)求线面角设是斜线l的方向向量,是平面的法向量,则斜线l与平面所成的角=<3)求二面角法一、在内,在内,其方向如图,则二面角的平面角=法二、设是二面角的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角的平面角=例1.如图,在棱长为2的正方体中,E、F分别是棱的中点.<Ⅰ)求异面直线所成的角;<II)求和面EFBD所成的角;解:<Ⅰ)记异面直线所成的角为,则等于向量的夹角或其补角,<II)如图建立空间坐标系,则,设面的法向量为由得又记和面EFBD所成的角为则∴和面EFBD所成的角为.设计说明:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―――正方体为载体,来说明空间角的向量求法易于学生理解.p1EanqFDPw2.解决(1>后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难<不必多讲,高考对公垂线的作法不作要求).DXDiTa9E3d3.完成这2道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直<是前者的特殊情况),都可用向量方法来解决,RTCrpUDGiT向量方法可以人人学会,它程序化,不需技巧.例2.如图,三棱柱中,已知A BCD是边长为1的正方形,四边形是矩形,<Ⅰ)若=1,求直线AB到面的距离.<II)试问:当的长度为多少时,二面角的大小为解:<Ⅰ)如图建立空间坐标系,则设面的法向量为则得直线AB到面的距离d就等于点A到面的距离,也等于向量在面的法向量上的投影的绝对值,<II)易得面的法向量向量的夹角为由得当=1时,二面角的大小为.设计说明:1.通过<Ⅰ),复习线面距离转化为点面距离再转化为一向量在一向量<法向量)投影的绝对值的解题思路与方法.5PCzVD7HxA2.通过<II),复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.jLBHrnAILg通过上面的例子,我们看到向量方法<更确切地讲,是用公式:)解决空间角和距离的作用,当然,以上所举例子,用传统方法去做,也是可行的,甚至有的<例2)还较为简单,用向量法的好处在于克服传统立几以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强―――运算过程公式化、程序化,有效地突破了立体几何教案和学习中的难点,是解决立体几何问题的重要工具.充分体现出新教材新思想、新方法的优越性.这是继解读几何后用又一次用代数的方法研究几何形体的一块好内容,数形结合,在这里得到淋漓尽致地体现.xHAQX74J0X申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
高考数学复习:利用向量求空间角和距离
(2)方法一:不存在,证明如下:当面B′OA⊥面AOC时,三
棱锥B′ -AOC的体积最大,因为面B′OA∩面AOC=AO,
B′O⊥AO,所以B′O⊥面AOC,所以OC⊥OB′,又因为
OC⊥OA,所以OC⊥平面AOB′,在直角三角形CPO中,
CO=1,COP ,sinCPO 所以6 POCC=, ,所以 6
令x1=1,得n1=(1,-1,0).
设平面PBC的一个法向量为n2=(x2,y2,z2),
由n2·PC=0,n2· B=C 0得
y2x2
z2 0,
0,?
令y2=1得n2=(0,1,1), 设二面角C -PB -D的大小为θ,则cos θ= 所以θ=60°.
| n1 n2 | 1 , | n1 || n2 | 2
D. 4 15
【解析】选A.以D为原点,DA为x轴,DC为y轴,DD1为z 轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,则N(1,2,2), D(0,0,0),C(0,2,0),M(2,2,1),则 C=M(2,0,1), DN=(1,2,2),设异面直线所成角为θ, 则cos θ= | CM DN | 4所以 4异5面,直线CM与
( 2,0,0) ( 2,0, 2),
所以
cos〈A1F,D1E〉
|
A1F A1F |
D1E | D1E
|
2
2 2 1
解得 1 ( 1 舍去).
3
3
答案: 1
3
3 2, 5 10
【规律方法】利用向量求线线角的解题策略 (1)向量法求异面直线所成的角的方法有两种 ①基向量法:利用线性运算; ②坐标法:利用坐标运算.
D. 10 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间角和距离专题
在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. (1)求异面直线所成的角
分别在直线n m ,上取两个定向量,,b a
则异面直线n m ,所成的角β等于向量b a ,所成的角或其补角θ,则||
cos cos ||||a b a b βθ⋅==⋅
特殊情形:0a b a b ⊥⇔= , 即异面直线a 垂直于b 。
例1.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成角的余弦值; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离
(2)求线面角
特殊情形:当(0)a n R λλλ=∈≠ 且,则直线a 与平面α垂直。
一般情形:在直线L 上取定AB (或与直线L共线的a ),求平面α
的法向量n (如图所示),再求cos ||||
AB n AB n θ⋅=⋅
则sin cos βθ==1||
cos ||||
AB n AB n θ⋅=⋅
注:,AB n θ〈〉= ,1,BA n θ〈〉= 且 1180θθ+= 如例1(2)问
(3)求二面角
方法1:先求出二面角一个面内一点到另一个面的距离及到棱的距离,然后通过解直角三
角形求角.
方法2:(法向量法)构造二面角βα--l 的两个半平面βα、的法向量21n n 、 (都取向上的方向,如图所示)
1)若二面角βα--l 是“钝角型”的如图甲所示,那么其大小φ等于两法向量21n n 、的夹角的补角,
即 12
12cos cos .||||
n n n n φθ⋅=-=-⋅
2)若二面角βα--l 是“锐角型”如图乙所示,那么其大小φ
等于两法向量21n n 、的夹角即 12
12cos cos .||||n n n n φθ⋅==⋅
例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A ''是矩形,。
平面平面ABCD B B A A ⊥'' (Ⅰ)若A A '=1,求直线AB 到面'
DAC 的距离.
(II ) 试问:当A A '的长度为多少时,二面角
A C A D -'-的大小为? 60
例3.正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点.
(Ⅰ)求证:直线1B P 不可能与平面11ACC A 垂直; (II )当11BC B P ⊥时,求二面角11C B P C --的大小的余弦值
2.求空间距离问题
图甲
构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离(推广到线面、面面之间的距离)
方法:如图,易知点A 到平面α的距离||cos ,d PA θ=
而
||cos ||||PA n PA n θ= , ||||
PA n d n ∴=
其中n 是平面α的一个法向量,PA
是平面α的斜向量则
点A 到平面α的距离d 等于
在n 上的射影长,即点A到平面α的距离为:|
|n d =
(2)求异面直线的距离
法一、找平面β使b β⊂且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面
β的距离.
法二:如图,d 是异面直线a 与 b 的距离,
n
是直线a 与b 的一个法向量 A 、 B 分别是
直线a , b 上的点,显然:||cos ,d AB θ=
又||cos ,||||AB n AB n θ= ||||
AB n d n ∴=
例4.如图,在正三棱柱A 1B 1C 1—ABC 中,D ,E 分别是棱BC 、1CC 的中点,12,AB AA == (Ⅰ)证明:1BE AB ⊥; (Ⅱ)求二面角1B AB D --的大小;
(Ⅲ)求异面直线1AB 与BE 的距离。
练习:
1、在正四面体S ABC -中,棱长为a ,E,F分别为SA 和BC 的中点,求异面直线BE 和SF 所成角的余弦值.
2、在边长为1的菱形ABCD 中,60ABC ︒
∠=,将菱形沿对角线AC 折起,使折起后BD
=1,求二面角B AC D --的余弦值.
3、在直三棱柱111ABC A B C -中,90A ︒
∠=,1,,O O G 分别为111,,BC BC AA 的中点,且
12AB AC AA ===.
(1)、求1O 到面11ACB 的距离;
(2)
(2)、求BC 到面11GBC 的距离.
4、 如图,在三棱椎P-ABC 中,PA ⊥平面ABC ,
90,BAC ∠= D ,E ,F 分别是棱AB 、BC 、CP 的中点,
AB=AC=1,PA=2,
(Ⅰ)求直线PA 与平面DEF 所成角的大小; (Ⅱ)求点P 到平面DEF 的距离。
5、如图,直三棱ABC-A 1B 1C 1中, ∠ACB=90°,AC=AA 1=1,
,
AB 1与A 1B 相交于点D ,M 为B 1C 1的中点。
(1)求证:CD ⊥平面BDM ;(2)求平面B 1BD 与平面CBD 所成二面角的大小。