现代交流电机控制技术基础

合集下载

现代电机控制技术

现代电机控制技术
现代电机控制技术
2
现代电机控制技术
第1章 基础知识 第2章 三相感应电动机矢量控制 第3章 三相永磁同步电动机矢量控制 第4章 三相感应电动机直接转矩控制 第5章 三相永磁同步电动机直接转矩控制 第6章 无速度传感器控制与智能控制
3
第1章 基础知识
1.1 电磁转矩 1.2 直、交流电机电磁转矩 1.3 空间矢量 1.4 矢量控制
9
0
1
2
3
4
5
6
7
8
9
a) 三相绕组由逆变器供电
b) 电子开关VT1、VT2、VT6闭合时的电路
图1-29 定子电压矢量 c) 电压矢量us1的构成
0
1
2
a) 正弦分布磁动势波
b) 正弦分布磁场
图1-30 A相绕组产生的正弦分布磁场
3
4
5
6
7
8
9
0
1
2
4
1.1 电磁转矩
1.1.1 磁场与磁能 1.1.2 机电能量转换 1.1.3 电磁转矩生成 1.1.4 电磁转矩控制
5
图1-1 双线圈励磁的铁心
6
7
磁压降
磁压降
磁路的 磁动势
8
9
铁心磁路 主磁通
铁心磁 路磁阻
气隙 磁通
气隙磁 路磁阻
0
1
2
3
4
5
6
7
8
9
0
1
2
3
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5

电机及拖动基础(第5版)课件:控制电机

电机及拖动基础(第5版)课件:控制电机
当控制电压Uc=0时,Ic=0,电磁转矩T=0,
电动机立即停转。保证了电动机无“自转”
现象,所以直流伺服电动机是自动控制系 统中一种很好的执行元件。
电枢控制
《电机及拖动基础》(第5版) 控制电机
一、直流伺服电动机

机械特性
n UC Ra T Ce CeCT 2

调节特性 T一定时的n=f(Uc)
交流伺服电动机的原理图
自转现象:
当转子转动起来以后,控 制信号消失,即断开控制 绕组,变成单相时,电动 机仍然能够转动。
《电机及拖动基础》(第5版) 控制电机
“自转”的消除:增加伺服电动机的转子电阻。
变成单相后,电磁转矩>0, 与转速的方向相同,电动 机仍然能够转动。
变成单相后,电磁转矩<0, 与转速的方向相反,制动 作用,电动机立即停传。
不同T时的调 特族是线性的
与他励 直流电 动机改 变电枢 电压时 的人为 机特相 似。
不同Uc时的机 特族是线性的
始 动 电 T1 压
T一定 Uc越大 n越高
控制电压UC越大,则n=0时对应 的起动转矩T也越大,越利于起动。
控制电压UC<始动电压Uc0,电 动机不转—“失灵区”。同样的 T下,失灵区越小,灵敏度越高。
生一个旋转电动势Erq,其有效值为:
Erq CqΦd n
转子绕组中将产生
交流电流Irq
Irq产生 Φq ( kErq )
略电抗, 两者同相
E2 4.44 f1N2KN2Φq 即 E2 C1n
结论:异步测速发电机输出 绕组N2中所产生的感应电动 势E2的大小与转速n成正比。
《电机及拖动基础》(第5版) 控制电机
自控系统对测发的主要要求:

现代机电设备基础知识

现代机电设备基础知识

第一章机电设备的发展与分类第一节机电设备的发展机电设备广泛用于国民经济各行业。

机电设备的技术水平,在一定程度上反映了国家工业生产的水平和能力。

所以,采用先进的机电设备,管好、用好机电设备,对提高企业效益,促进国民经济的发展都起着十分重要的作用。

一、机电设备的发展过程机电设备是随着科学技术的发展而不断发展的。

传统的机电设备是以机械技术和电气技术应用为主的设备。

例如,普通机床,其运动的传递、运动速度的变换主要是由机械机构来实现的,而运动的控制则是由开关、接触器、继电器等电器构成的电气系统来实现的,这里的“机”、“电”分别构成各自独立的系统,两者的“融合性”很差,这是传统机电设备的共同特点.虽然,传统的机电设备也能实现自动化,但是自动化程度低,功能有限,耗材多,能耗大,设备的工作效率低,性能水平不高。

为了提高机电设备的自动化程度和性能,从20 世纪60 年代开始,人们自觉或不自觉地将机械技术与电子技术结合,以改善机械产品的性能,结果出现了许多性能优良的机电产品或设备。

到了20 世纪70、80 年代,微电子技术获得了惊人的发展,各种功能的大规模集成电路不断涌现,导致计算机与信息技术广泛使用。

这时人们自觉、主动地利用微电子技术的成果,开发新的机电产品或设备,使得机电产品或设备的发展发生了脱胎换骨的变化,机电产品或设备不再是简单的“机”和“电”相加,而是成为集机械技术、控制技术、计算机与信息技术等为一体的全新技术产品。

到了20 世纪90 年代,这种机电一体化技术迅猛发展,时至今日,机电一体化产品或设备已经透渗到国民经济和社会生活的各个领域。

二、现代机电设备的特点现代机电设备,如电动缝纫机、电子调速器、自动取款机、自动售票机、自动售货机、自动分检机、自动导航装置、数控机床、自动生产线、工业机器人、智能机器人等都是应用机电一体化技术为主的设备。

与传统机电设备相比,现代机电设备具有以下特点:1、体积小,重量轻机电一体化技术使原有的机械结构大大简化,如电动缝纫机的针脚花样主要是由一块单片集成电路来控制的,而老式缝纫机的针脚花样是由350 个零件构成的机械装置控制的.机械结构的简化,使设备的结构减小,重量减轻,用材减少。

现代电机控制技术

现代电机控制技术

现代电机控制技术
现代电机控制技术是电力驱动的系统的核心部分,能够满足现代电机多种要求。

由于发展迅速,越来越多的机械设备被自动化,越来越依赖电机的控制,电机的控制技术有着极其重要的作用。

本文主要介绍现代电机控制技术的基础:
1. 马达控制原理:马达控制通过电源和传动系统来控制电机,由于电源传输的能量可以控制电机驱动的机械元件,所以可以控制机械设备的运动状态。

2. 机器控制内容:机器控制是采用数字化电机控制系统来控制机械设备的运动状态。

它是将电机的控制信号与机器设备的动作联系起来,使机械设备可以根据电源传输的能量实现控制。

3. 电力控制:电力控制是指在指定的电流或功率中对电机进行控制,以实现特定的动作。

它通常是指根据电机控制信号调整电机输出参数,实现电机控制的能力。

4. 电源信号控制:电源信号控制是指用电源传输的信号来控制电机的运动状态,可以实现电机的高精度控制。

综上所述,现代电机控制技术已经发展得相当成熟,取得了很大的成就,它深刻地改变了机械设备的结构,并有效地提升了机械设备的性能,为各种机械设备的自动化提供了有力的支持。

现代电机控制技术第3章三相永磁同步电动机矢量控制课件

现代电机控制技术第3章三相永磁同步电动机矢量控制课件
用于矢量控制的 PMSM,要求其永磁励磁磁场在气隙中为正弦分布,这也 是 PMSM 的一个基本特征。
2
PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三 种,如图 3-1、图 3-2 和图 3-3 所示。
图 3-1 面装式转子结构
图 3-2 插入式转子结构
图 3-3 内装式转子结构
(3-2) (3-3)
A LA LAB LAC iA fA
B LBA LB LBC iB fB
C
LCA
LCB
LC
iC
fC
(3-4)
式中, fA 、 fB 和 fC 分别为永磁励磁磁场链过 ABC 绕组产生的磁链。 11
同电励磁三相隐极同步电动机一样,因电动机气隙均匀,故 ABC 绕组
Lm1
1 2
Lm1
1 2
Lm1
Ls Lm1
1 2
Lm1
1 2
Lm1
1 2
Lm1
Ls Lm1
iA iB iC
fA fB fC
式中, A
(Ls
Lm1 )iA
1 2
Lm1
(iB
iC ) fA

(3-7)
12
若定子三相绕组为 Y 接,且无中线引出,则有iA iB iC 0 ,于是
将矢量图直接转换为 A 相绕组的相量图,或者反之。这一结论同样适用 于
PMSM,因此可将图 3-9a 所示的矢量图直接转换为 A 相绕组的相量图,如图
3-9b 所示。
17
a) 稳态矢量图
b) 相量图
图3-9 面装式PMSM矢量图和相量图
18
此时,可将式(3-17)直接转换为
U s Rs Is jωs Ls Is jωsΨ f Rs Is jωs Ls Is jωs Lm If Rs Is jωs Ls Is E0

现代电机控制技术

现代电机控制技术

(1)他控变频调速系统 用独立的变压变频装置给同步电动机供电的系 统。 (2)自控变频调速系统 用电动机本身轴上所带转子位置检测器或电动 机反电动势波形提供的转子位置信号来控制变压 变频装置换相时刻的系统。
哈尔滨工业大学电磁驱动与控制研究所
3、同步调速系统的特点 (1)交流电机旋转磁场的同步转速1与定子 电源频率 f1 有确定的关系 2f1 1
哈尔滨工业大学电磁驱动与控制研究所
1、 转速开环恒压频比控制的 同步电动机群调速系统 步电动机群 速系统 转速开环恒压频比控制的同步电动机群 调速系统,是一种最简单的他控变频调速 单 他 变 系统 多用 化纺 系统,多用于化纺工业小容量多电动机拖 小容 多 动机 动系统中。 这种系统采用多台永磁或磁阻同步电动 机并联接在公共的变频器上,由统一的频 率给定信号同时调节各台电动机的转速。 率给定信号同时调节各台电动机的转速
哈尔滨工业大学电磁驱动与控制研究所
1)系统组成
多台同步电动机的恒压频比控制调速系统
哈尔滨工业大学电磁驱动与控制研究所
2)系统控制 多台永磁或磁阻同步电动机并联接在公共 的电压源型PWM变压变频器上,由统 变压变频器上 由统一的 的 频率给定信号 f * 同时调节各台电动机的转 速。 PWM变压变频器中,带定子压降补偿的恒 变压变频器中 带定子压降补偿的恒 压频比控制保证了同步电动机气隙磁通恒 定 缓慢地调节频率给定 f * 可以逐渐地同 定,缓慢地调节频率给定 时改变各台电机的转速。
哈尔滨工业大学电磁驱动与控制研究所
(6)由于同步电动机转子有独立励磁,在 极低的电源频率下也能运行 因此 在同 极低的电源频率下也能运行,因此,在同 样条件下,同步电动机的调速范围比异步 电动机更宽。 电动机更宽 (7)异步电动机要靠加大转差才能提高转 矩,而同步电机只须加大功角就能增大转 矩 同步电动机比异步电动机对转矩扰动 矩,同步电动机比异步电动机对转矩扰动 具有更强的承受能力,能作出更快的动态 响应。 哈尔滨工业大学电磁驱动与控制研究所

《现代电机控制技术》课件

《现代电机控制技术》课件

03 现代电机控制技术实现
数字信号处理器(DSP)在电机控制中的应用
数字信号处理器(DSP)是一种专用的微处理器,特别适合于进行高速数字信号处 理计算。
在电机控制中,DSP可以用于实时计算复杂的控制算法,实现精确的速度和位置控 制。
DSP通过接收编码器的反馈信号和输入的参考信号,计算出电机的控制量,并输出 到驱动器来控制电机的运行。
数字化与智能化
高效与节能
随着数字化和智能化技术的不断发展,电 机控制技术将更加智能化和自适应性。
未来电机控制技术将更加注重高效和节能 ,以适应绿色环保的需求。
网络化与远程控制
多学科交叉融合
网络化技术的发展将使得电机控制更加便 捷和远程化,提高设备的可维护性和安全 性。
电机控制技术将与多个学科交叉融合,如 人工智能、机器视觉和物联网等,以实现 更广泛的应用和创新。
02 电机类型和控制原理
直流电机及其控制原理
01
02
03
直流电机
利用直流电能转换为机械 能的电动机,具有较好的 调速性能和启动转矩。
控制原理
通过改变电机的输入电压 或电流,实现对电机转速 和转矩的控制。
调速方法
改变电枢电压、改变励磁 电流、串电机
利用交流电能转换为机械 能的电动机,具有结构简 单、价格便宜、维护方便 等优点。
交通运输
电机控制技术在交通领域有广泛应用 ,如电动汽车、轨道交通和航空电子 等。
能源转换与利用
电机控制技术有助于提高能源转换效 率和利用率,如风力发电、太阳能逆 变器和智能电网等。
智能家居与楼宇自动化
电机控制技术为智能家居和楼宇自动 化提供了技术支持,如智能家电、自 动门和安防系统等。
电机控制技术的未来趋势

电工技术基础:控制三相交流电动机

电工技术基础:控制三相交流电动机

电工技术基础:控制三相交流电动机引言在现代工业领域中,三相交流电动机广泛应用于各类机械设备中,如泵、风机、压缩机等。

掌握控制三相交流电动机的基本知识和技术,对于确保工业设备的正常运行和提高生产效率至关重要。

本文将介绍控制三相交流电动机的基础原理和常用的控制方法。

一、三相交流电动机的基本原理三相交流电动机是一种将电能转换为机械能的装置。

它由定子和转子两部分组成。

其中,定子上绕有三相绕组,通过定子绕组中的电流在旋转磁场的作用下,使转子旋转。

三相交流电动机的基本原理可以归结为两个关键概念:磁场旋转和感应电动机原理。

•磁场旋转:三相交流电动机的定子绕组通电后,产生的磁场会随着电流的变化而旋转。

这个旋转的磁场与转子磁铁产生相互作用,从而导致转子旋转。

•感应电动机原理:根据法拉第电磁感应定律,当导体(转子)在变化的磁场中移动时,会在导体中产生感应电动势。

这个感应电动势将导致转子上产生感应电流,感应电流与旋转磁场相互作用,从而推动转子旋转。

二、三相交流电动机的控制方法控制三相交流电动机有多种方法,常见的包括直接启动、自耦变压器启动、起动器控制和变频调速等。

下面将对这些方法一一进行介绍。

1. 直接启动直接启动是最简单的一种控制方法,它适用于小型电动机和起动负载不大的情况。

直接启动的主要步骤如下:•通过接线将电动机的三相绕组与电源连接。

•打开电源开关,给电动机供电。

•电动机直接启动,并开始工作。

然而,直接启动可能会对电网和电动机本身造成较大的冲击。

因此,在大型电动机和重载起动的情况下,需要采用更加先进的控制方法。

2. 自耦变压器启动自耦变压器启动是一种减小启动冲击的方法。

它通过引入自耦变压器来减小启动时的电压冲击。

自耦变压器启动的主要步骤如下:•通过接线将电动机的三相绕组、自耦变压器和电源连接。

•打开电源开关,给电动机和自耦变压器供电。

•首先,通过自耦变压器将电动机的起动电压减小为较低的值。

•待电动机达到正常转速后,通过切换开关去除自耦变压器,使电动机工作于额定电压下。

电机与电气控制技术基础

电机与电气控制技术基础
③ 计算各段磁路的磁压 ,即 、 、 。
④ 利用式(15-2)求出磁动势IN。
15.1.2 铁心线圈与电磁铁
1.铁心线圈的电磁关系
铁心线圈的电磁关系有两种,一种是用直流来励磁,另一种是用交流励磁。直流励磁的铁心线圈,磁通恒定、电流I的大小只与线圈电阻R有关,功率损耗也只有I 2R,即所谓铜损。而交流铁心线圈的电磁关系与功率损耗等是比较复杂的。它也是变压器与交流电机的基础。
磁饱和性即磁性材料的磁化磁场B(或Φ)随着外磁场H(或I)的增强,并非无限地增强,而是当全部磁畴的磁场方向都转向与外磁场一致时,磁感应强度B不再增大,达到饱和值。亦即铁磁性材料的磁化曲线是非线性的,如图15-2所示。为了尽可能大地获得强磁场,一般电机铁心的磁感应强度常设计在曲线的拐点a附近。
下面以非匀磁路图15-4的分析与计算为例,介绍其求解磁动势的一般步骤。
① 由于各段磁路的截面不同,而磁通Φ相同,因此各段磁路中的磁感应强度Bi=Φ/Si,由此求得B 1、B 2、及B 0,其中计算B 0时的截面S 0 时,因δ很小,可以也取铁心截面S 2。
② 据各段磁路材料的磁化曲线B=f(H),查得与上述B i对应的磁场度H i。其中空气隙或其它非铁磁材料的磁场强度H 0=B 0/μ0=B 0/4π×10-7(A/m)可以直接计算。
[牛顿] (15-11)
由式(15-11)可知,吸力在零与最大值Fm之间脉动(图15-8)。因而衔铁以两倍电源频率在颤动,引起噪音,同时触头容易损坏。为了消除这种现象,可在磁极的部分端面上套一个分磁坏(图15-9)。于是在分磁坏(或称短路环)中便产生感应电流,以阻碍磁通的变化,使在磁极两部分中的磁通Φ1与Φ2之间产生一相位差,因而磁极各部分的吸力也就不会同时降为零,这就消除了衔铁的颤动,当然也就除去了噪音。

现代电机控制技术复习题

现代电机控制技术复习题

《现代电机控制技术》复习题1.试述磁共能的意义,磁能和磁共能有什么关系?2.试解释以磁能和磁共能表示的电磁转矩公式的物理意义。

3.试以“磁场”和“Bli ”的观点,阐述电磁转矩生成的原因和实质。

4.任意波形的定子电流通入相绕组后能否产生基波磁动势?为什么?5.试论述三相感应电动机各磁链矢量σψs 、g ψ、s ψ、σψr 、和r ψ的物理含义,指出它们之间的联系和区别,并写出相应的磁链方程。

6.为什么可以采用空间矢量理论来分析电动机的动态控制问题?矢量控制的含义是什么?7.为什么在转子磁场作用下,转子笼型绕组会具有换向器绕组的特性?8.什么是磁场定向?为什么在基于转子磁场的矢量控制中,一定要先将MT 轴系沿转子磁场方向进行磁场定向?9.什么是换向器变换?MT 轴系沿转子磁场定向后,为什么通过换向器变换可将转子绕组最终变换为换向器绕组?10.试论述电动机参数变化对直接和间接磁场定向的影响。

11.试论述定子电流3种控制模式的优缺点。

12.基于气隙磁场定向和基于定子磁场定向的矢量控制与基于转子磁场定向的矢量控制比较,有什么本质的不同?13.PMSM 的磁场定向指的是什么?为什么PMSM 的转子磁场定向相对三相感应电动机的转子磁场定向要容易得多?14.对于面装式PMSM ,是怎样将其变换为一台等效的直流电动机的?15.试论述弱磁控制的基本原理和控制方式。

16.为什么说PMSM矢量控制是一种自控式的控制方式?矢量控制会不会发生失步现象?为什么?17.试将PMSM与本相感应电动机的转子磁场定向的矢量控制进行比较性分析。

并指出两者存在差异的根本原因是什么?18.试论述谐波转矩产生的原因,并分析其对低速性能的影响。

19.试论述直接转矩控制的基本原理。

20.除了定子磁链和转矩会计外,滞环比较控制是否还利用了电动机数学模型,这有什么好处?21.电动机转速大小对直接转矩控制有什么影响?为什么?22.为什么直接转矩控制是一种非线性控制?为什么通常选择滞环比较控制方式?这种控制方式有什么优点和不足?23.直接转矩控制能否改变三相感应电动机固有的非线性机械特性?为什么?24.试分析滞环比较控制中转矩脉动的原因,您能提出哪些有效的解决方法?25.在直接转矩控制原理上,PMSM与三相感应电动机有什么共同之处?又有什么差别?26.电动机转速变化对直接转矩控制有什么影响?27.直接转矩控制是非线性的,根本原因是什么?28.直接转矩控制中能够引起转矩脉脉动的因素有哪些?为什么低速时容易引起转矩脉动和产生冲击电流?如何解决?29.在模型参考自适应系统中,自适应律起什么作用?它的物理含义是什么?30.试论述由模型参考自适应系统估计转子磁链和转速的优点和不足?31.扩展的卡尔曼滤与自适应观测器有什么相同之处,又有什么不同?扩展的卡尔曼滤波中增益矩阵起什么作用?。

电机现代控制技术PPT课件

电机现代控制技术PPT课件
电磁转矩是定、转子磁场相互作用的结果,其大小和方向决定 于这两个旋转磁场的幅值和磁场轴线的相对位置 .
三相隐极同步电机等效物理模型
两个磁场轴线间的电角度为β,大小决定于定子旋转磁场速度ωs和转子速度ωr。 产生恒定的电磁转矩
te isif Lm sin f is sin
凸极结构的同步电动机,还会产生磁阻转矩
te
Wm (iA , iB , r ) r
公式说明:
1. 当转子因微小位移引起系统磁共能发生变化时,会受到电磁 转矩的作用;
2. 转矩方向应为在恒定电流下倾使系统磁共能增加的方向.
磁能和磁共能之和为
Wm Wm
0
A
iA
d
0
B
iBd
iA 0
A di
iB 0
B
di
iA A iB B
向。
2. 直流电机的电磁转矩与等效模型
主磁极基波磁场轴线为d 轴, 将d轴旋转90°为q轴;
电枢绕组产生的基波磁场轴 线与q轴一致。
绕组旋转,磁场轴线固定旋 转绕组称为换向器绕组。
图2-4两极直流电机
在直流电机动态分析中,
常将这种换向器绕组等效为 一个“伪静止线圈”
图2-5 伪静止线圈
“伪静止线圈”与换向器绕组从机电 能量转换角度看是等效的。
dr
dt
]
第一项和第二项是当θr =常值,即绕组A和B相 对静止时,由电流变化所引起的感应电动势, 称为变压器电动势.
第三项是因转子运动使绕组A和B相对位置发生 位移(θr变化)而引起的感应电动势,称为运动电 动势.
在dt时间内,由电源输入绕组A和B的净电能为:
dWe (iAeA iBeB )dt iAd A iBd B

电机控制器基础知识课件

电机控制器基础知识课件

保护电路通常由熔断器、过流保护器 、过压保护器等元件组成,实现对电 机的过流、过压、短路等保护。
04 电机控制器的软件组成
CHAPTER
控制算法
控制算法是电机控制器的核心, 用于实现电机的速度、位置和转
矩控制。
控制算法通常采用PID(比例-积 分-微分)控制、模糊控制、神经
网络控制等现代控制理论。
智能制造领域
电机控制器将在智能制造领域中发挥重要作用, 如自动化生产线、数控机床等。
绿色环保与可持续发展
能效提升
电机控制器的发展将注重能效提升,降低能源消耗和碳排放,推 动绿色环保的可持续发展。
环保材料
采用环保材料制造电机控制器,减少对环境的污染和破坏。
循环经济
电机控制器的设计将注重循环经济理念,方便回收和再利用,降 低资源浪费。

物流系统
电机控制器用于控制物流输送带 、升降机等设备的运行,提高物
流效率。
机器人
电机控制器用于控制机器人的关 节和运动,实现精确的定位和操
作。
电动车与新能源汽车
电动汽车
电机控制器是电动汽车的核心部件之一,用于控制电机的运行, 实现车辆的加速、减速、制动等功能。
混合动力汽车
电机控制器用于控制汽车的发动机、电动机和电池等部件,提高燃 油效率和减少排放。
现代电机控制器集成了更多的功能, 如保护、诊断和通讯等,同时采用智 能控制算法,提高了电机的运行效率 和可靠性。
随着微处理器技术的发展,数字电机 控制器逐渐取代了模拟电机控制器, 控制精度和稳定性得到了提高。
02 电机控制器的工作原理
CHAPTER
电机的工作原理
直流电机
直流电流通过电机的线圈产生磁场, 该磁场与电机中的永磁体相互作用, 产生转矩使电机旋转。直流电机的转 速可以通过改变输入电流的大小和方 向来调节。

电机现代控制技术

电机现代控制技术
主磁极基波磁场轴线为d 轴, 将d轴旋转90°为q轴; 电枢绕组产生的基波磁场轴 线与q轴一致。 绕组旋转,磁场轴线固定旋 转绕组称为换向器绕组。
图2-4两极直流电机
在直流电机动态分析中, 常将这种换向器绕组等效为 一个“伪静止线圈”
“伪静止线圈”与换向器绕组从机电能 量转换角度看是等效的。 对实际的换向器绕组而言,当q轴磁场 变化时会在电枢绕组内感生变压器电动势, 同时它又在旋转,还会在d轴励磁磁场作用 下,产生运动电动势。 这种实际旋转而在空间产生的磁场却 静止不动的线圈称之为伪静止线圈,它完 全反映了换向器绕组的特性,可以由其等 效和代替实际的换向器绕组。
(i A , i B , r ) Wm te r
公式说明:
1.
2.
当转子因微小位移引起系统磁共能发生变化时,会受到电磁 转矩的作用; 转矩方向应为在恒定电流下倾使系统磁共能增加的方向.
磁能和磁共能之和为 Wm Wm iA d iBd A di Bdi 0 0 0 0
图2-5 伪静止线圈
直流电机等效模型
d轴为励磁绕组轴线.
q轴为换向器绕组轴线, 即“伪静止线圈”, 其轴线在空间固定不动. 当q轴磁场变化时会在 线圈内感生变压器电动势.
q轴线圈又是旋转的, 会在d轴励磁磁场作用下 产生运动电动势.
图2-6 直流电机的等效模型

电磁转矩:te iAiBM AB sin r if ia Lmf
绕组A、B交链的自感、互感磁链为:
A LA iA LAB ( r )iB
B LBiB LAB ( r )iA
线圈A和B产生感应电动势
d A d eA [ LA iA LAB ( r )iB ] dt dt diA diB LAB ( r ) d r [ LA LAB ( r ) iB ] dt dt r dt

现代电机控制技术第4章 三相感应电动机直接转矩控制

现代电机控制技术第4章 三相感应电动机直接转矩控制

而若保持 ψs 的幅值不变,就可以快速地改变和控制电磁转矩,但是电磁转
矩 te 和负载角 sr 间呈显了非线性关系。
9
4.1.2 定子电压矢量作用与定子磁链轨迹变化
在定子三相轴系中,定子电压矢量方程为
us

Rs is

dψ s dt
(4-11)
若忽略定子电阻的影响,则有
us

dψ s dtΒιβλιοθήκη 可近似地表示为现代电机控制技术
第4章 三相感应电动机 直接转矩控制
第 4 章 三相感应电动机直接转矩控制
4.1 控制原理与控制方式 4.2 控制系统 4.3 空间矢量调制 4.4 直接转矩控制与矢量控制的联系和比较 4.5 直接转矩控制仿真举例
2
对电动机的控制归根结底是要实现对电磁转矩的有效控制。在感应 电动机矢量控制中,基本的控制思想是将定子电流作为控制变量,通过 控制定子电流励磁分量来控制转子磁场、气隙磁场或者定子磁场,在此 基础上,通过控制定子电流转矩分量来控制电磁转矩。为此,先要进行 磁场定向,然后通过矢量变换,将磁场定向 MT 轴系中的定子电流励磁 分量和转矩分量变换为 ABC 轴系中的三相电流。总之,是通过控制定 子电流来间接控制电磁转矩。在这一过程中,磁场定向、矢量变换和定 子电流控制是必不可少的。
5
式(4-5)表明,电磁转矩决定于ψs 和ψ r 的矢量积,即决定于两者幅值 和其间的空间电角度。若 ψs 和 ψr 保持不变,电磁转矩就仅与负载角有 关。由式(4-5),可得
dte
d sr
p0
Lm LsLr
ψs
ψr
cos sr
(4-6)
通常, sr 的值较小,可见 sr 对电磁转矩的调节和控制作用是明显的。于

(完整)现代电机控制技术复习资料

(完整)现代电机控制技术复习资料

1。

机电能量转换:时间内磁能的变化,由绕组A和B中变压器电动势从电源所吸收的全部电能加之运动电动势从电源所吸收电能的一半所组成;由运动电动势吸收的另外一半电能成为转换功率,成为机械功率.产生感应电动势是耦合场从电源吸收电能的必要条件,产生运动电动势是通过耦合场实现机电能量转换的关键。

转子在耦合场中运动产生电磁转矩,运动电动势和电磁转矩构成一对机电耦合项,是机电能量转换的核心部分。

2.磁阻转矩:。

当转子凸极轴线与定子绕组轴线重合,此时气隙磁导最大,定义此时定子绕组的自感为直轴电感;当转子交轴与定子绕组轴线重合,此时气隙磁导最小,定义此时定子绕组的自感为交轴电感;因此在转子旋转过程中,定子绕组的自感将发生变化。

由于转子运动使气隙磁导发生变化而产生的电磁转矩称为磁阻转矩。

转子励磁产生的电磁转矩称为励磁转矩。

3.直流电机电磁转矩:主磁极基波磁场轴线定义为d(直)轴,d轴反时针旋转90定义为q(交)轴。

直流电动机的电枢绕组又称为换向器绕组,其特征:电枢绕组本来是旋转的,但在电刷和换向器的作用下,电枢绕组产生的基波磁场轴线在空间却固定不动。

在动态分析中,常将换向器绕组等效为一个单线圈,若电刷放在几何中性线上,单线圈的轴线就被限定在q轴,称为q轴线圈。

因q轴磁场在空间是固定的,当q轴磁场变化时会在电枢绕组内感生变压器电动势;同时它又在旋转,在d轴励磁磁场作用下,还会产生运动电动势,q轴线圈为能表示出换向器绕组这种产生运动电动势的效应,它应该也是旋转的。

这种实际旋转而在空间产生的磁场却静止不动的线圈具有伪静止特性,称为伪静止线圈,它完全反映了换向器绕组的特征,可以由其等效和代替实际的换向器绕组。

电磁转矩,控制不变,改变即改变,线性控制良好。

转子产生运动电动势,不断吸收电能,同时将电能转换为机械能,此时转子成为了能量转换的“中枢”,因此称为电枢。

4。

三相异步电机电磁转矩:其运行原理是①定子三相绕组通入三相对称正弦电流,②将会在气隙中产生正弦分布的两极旋转磁场,当转子静止不动时,由电磁感应原理,定子旋转磁场将在转子绕组中感生出三相对称正弦电流,其同样会在气隙中产生两极旋转磁场,旋转速度和方向与定子旋转磁场相同,但存在相位差,③定、转子旋转磁场相互作用产生电磁转矩,若其大于负载转矩,转子将开始旋转,而转子速度总是小于定子旋转磁场速度,否则转子绕组不会感生电流,电磁转矩也将消失,所以称为异步电机。

现代电机控制技术[可修改版ppt]

现代电机控制技术[可修改版ppt]

式(1-2)表明线圈 A 提供的磁动势 fA 被主磁路的两段磁压降所平
衡。此时, fA 相当于产生磁场 H 的“源”,类似于电路中的电动势。
在铁心磁路内,磁场强度 Hm 产生的磁感应强度 Bm 为
Bm Fe H m r 0H m
(1-4)
式中, Fe 为磁导率, r 为相对磁导率, 0 为真空磁导率。
电机中常用的铁磁材料的磁导率 Fe 约是真空磁导率 0 的 2000~6000 倍。空气磁导率与真空磁导率几乎相等。铁磁材料的 导磁特性是非线性的,通 常 将 Bm f (Hm ) 关 系 曲 线称为磁化曲线,如图 1-3 所示。可以看出,当 H m 达 到一定值后,随着 H m 的增 大,Bm 增加越来越慢,这 种现象称为饱和。
(1-13)
式中,
是线圈
AA
A
电流
iA 产生的磁场链过自身线圈的磁链,称为
自感磁链。
定义
LA LσA LmA
(1-14)
式中,LA 称为自感,由漏电感 LσA 和励磁电感 LmA 两部分构成。
这样,通过电感就将线圈 A 产生磁链的能力表现为一个集
路的总磁导成正比。由于总磁导与铁心磁路的饱和程度( Fe 值)有关,因此
LmA 是个与励磁电流 iA 相关的非线性参数。若将铁心磁路的磁阻忽略不计
(
Fe
), LmA便是个仅与气隙磁导和匝数有关的常值,即有
Lm A
N
2 A
Λ

在磁动势 fA 作用下,还会产生没有穿过气隙主要经由铁心外空 气磁路而闭合的磁场,称之为漏磁场。它与线圈 A 交链,产生漏磁
链 σA ,可表示为
σA LσAiA
(1-12)
式中,LσA 为线圈 A 的漏电感。LσA 表征了线圈 A 单位电流产生漏磁

机电控制技术基础

机电控制技术基础

机电控制技术基础机电控制技术基础机电控制技术是现代工程领域中基本的技术之一,它使用多种技术如机械、电子、计算机和控制论等控制方法,综合利用这些技术来实现机械设备系统的自动化控制。

机电控制技术在工业生产、生活服务等领域中应用广泛,对于提高生产效率、降低成本、提高安全系数等方面都起到了至关重要的作用。

因此,本文将从机电控制技术的基础方面入手,介绍以下内容:机电系统概述、传感器、电机、电器元件、控制器及其应用。

一、机电系统概述机电控制技术是一种机电一体化的技术,它主要应用在工业领域中。

它的核心工作是将电气控制系统和机械设备整合在一起,形成一个相互作用的系统,然后通过合理地制定控制策略,实现对机械设备的自动化控制。

机电系统通常由以下三部分组成:1. 机械结构部分:包括设备的传动装置、支撑结构和形体结构。

机械结构部分是机电系统的基础之一。

2. 电气部分:包括设备的电气系统、电气元件和电路。

电气部分是机电系统的控制核心。

3. 控制器:用于控制机械和电气部分,实现对机械设备的自动化控制。

二、传感器传感器是一种能够将检测到的物理量转换成电信号输出的设备。

常见的传感器有温度传感器、湿度传感器、光传感器、压力传感器、电流传感器等。

传感器可以将物理参数转换成电信号,然后将这些信号送到微处理器或控制器中进行计算和判断,控制设备的运转、维护和调试。

传感器是机电系统中不可或缺的部分,与机电系统中的电气部分紧密关联,有着重要的应用价值。

三、电机电机是机电系统中电气部分的核心元件,主要用于将电能转换成机械能。

常见的电机有直流电机、交流电机、步进电机、伺服电机等。

电机的结构主要由转子(转动部分)和定子(不动部分)两部分构成。

在机械工程中,电机通常用作驱动力,从而实现各种机械设备的自动化运行。

四、电器元件电器元件是机电系统中的基础部分,其中包括了各种基本的电子元件、电容器、电感、二极管、三极管、场效应管等。

这些电器元件可以有效地控制电流和电压,使其达到合理的水平,并保证设备的安全运行。

电机控制理论与应用

电机控制理论与应用

电机控制理论与应用电机是现代工业中非常重要的设备,广泛应用于各个行业和领域。

电机控制理论和应用是电机技术领域的核心内容之一。

本文将对电机控制理论和应用进行探讨,并介绍其相关概念、原理和实际应用。

一、电机控制理论的基础知识电机控制理论是研究电机工作原理、调速方式、控制方法和控制系统的学科。

在学习电机控制理论之前,我们需要了解一些基础知识。

1.1 电机工作原理电机是将电能转化为机械能的装置。

根据电机工作原理的不同,电机可以分为直流电机和交流电机两大类。

直流电机是利用直流电源产生的磁场与定子磁场相互作用而产生转矩,从而实现机械运动。

而交流电机则是通过交流电源产生的交变磁场与转子磁场相互作用来完成输出功率。

1.2 电机调速方式电机的调速方式通常有机械调速和电子调速两种。

机械调速是通过机械装置改变电机输出轴的转速来实现调速;而电子调速则是通过调节电机输入电压、频率或绕组电阻来控制电机的转速。

1.3 电机控制方法电机控制方法有很多种,常见的有恒流控制、恒压控制、矢量控制等。

不同的电机控制方法适用于不同的实际应用场景,可以根据需要选择合适的控制方法。

二、电机控制的应用领域电机控制广泛应用于各个行业和领域,以下是几个常见的应用领域。

2.1 工业自动化在工业生产中,电机控制是实现自动化生产的重要手段。

通过电机的控制,可以实现生产线的自动化运行,提高生产效率和质量。

2.2 交通运输电机控制在交通运输领域的应用非常广泛。

例如,电动车和混合动力汽车使用电机控制来实现驱动系统和能量回收系统的控制,提高汽车的能效和环保性能。

2.3 家用电器电机在家用电器中的应用非常普遍,如电视、洗衣机、空调等。

通过电机控制,可以实现家电产品的智能控制和功能扩展。

2.4 新能源领域在新能源领域,电机控制也起着关键的作用。

例如,风力发电机组中的发电机采用电机控制来实现风能的转换和电能的调节。

2.5 机器人技术机器人技术是电机控制应用的一个重要领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国: 500亿/年的市场,1000亿kWh/年 • 变频调速对电动机发展的推动作用
1.2 变频调速的一般概念
交流电机的转速公式为:
异步电机:n=60 f (1-s) / p 同步电机:n=60 f / p
交流电动机的调速方法实际上只有两大类: 改变ns和改变s。
高效调速方法:变ns 低效调速方法:变S
第一代、第二代、第三代等等
Industrial
Communications Computer Consumer Car
Total Solution
IGCT
iPowIR Total Solution
集成化智能化
PI-IPM
IGBT
IPM BBI
双极性自关断器件
GTO
DirectFET
Switching
B:50年代,异步电动机定子串饱和电抗器 调速方法有了一定发展。
C:串级调速的思想:
转子串电阻,浪费大量能量,很不经 济,若用电源代替电阻,即在转子回路中串 入一个与转子回路频率相同的交流附加电势E2 装 置
I2
串级调速原理图
(1)当E2与转子电流同相,E2相当于一个负 电阻,电能输入到电机,电机转速升高; (2)当E2与转子电流反相,E2相当于一个电 阻,电能从电机流到电网,电机转速降低; (3)E2还可以用来调节异步电动机的功率因 数。
20世纪70年代以前,凡是要求调速范围广速度 控制精度高和动态响应性能好的场合,几乎全 都采用直流电动机调速系统。
原因: 直流电动机易于控制,改变电机的输入电压
或励磁电流,就可在范围内实现无级调速。 交流电机的电流和转矩特性不是固定的,不
易控制 。
而交流电动机(主要指笼式异步电动机和 同步电动机)主要用于不需要变速的电力 传动系统中.
风机水泵类的传动由交流恒速挡板阀门调 节方式改造成交流电机调速方式平均可节 电20%,设备改造费一般可在1年~3年内 回收。
3.交流电机调速技术的发展,使交流电机传动 实用化成为现实。
传统的交流电机可分为异步电动机和同 步电机两大类。
A.早期的交流电机调速以以下3种为主 (1)线绕式异步电机的转子外串电阻 (2)笼型异步电动机的变极调速 (3)同步电机的变极调速 后两种极对数改变有限,调速范围不大。
现代交流电机控制技术基础
控制科学与工程系自动化研究所 沈安文
87541547(O) shenanwn@
第一章 概 论
1.1 交流电机调速技术的发展
1.需要对电机进行调速 A:运行、生产、工艺的需要 高质量的生活,需要高性能的电机调速; B:节能的需要。
2.需要对交流电动机进行调速 A:长期以来,电机调速以直流电机为主
B:直流电机存在严重缺陷:机械接触式换向器
直流电动机致命的弱点:机械式换向器
它给直流传动的应用带来了限制:
(1)换向器表面线速度及换向电流、电压有 一极限容许值,约束了单台电机的转速和功率 上限,超过这一极限时就只能采取多电枢方案, 这就增加了电机制造的难度和成本以及调速控 制系统的复杂性。有些特高转速和特大功率的 场合则根本无法用直流电机方案来实现。
D:变频调速是交流电动机最好的调速方法
(1)20世纪20年代人们就认识到了,但当时直至本世 纪50年代中期,一直几乎无法实现。
(2)20世纪50年代中期,晶闸管研制成功,不仅开创 了电力电子技术的新时代,同时也带来交流电机控制 技术发展的一个大飞跃。
(3) 20世纪70年代发展起来的矢量控制理论带交流 电机控制技术的革命,使交流电机的控制性能在理论 上和直流电机相当。
(2)开关磁阻电动机,也是70年代兴起的,它 在国外发展迅猛,大有和异步电动机、同步电动 机三分天下之趋势。
4.我们的机遇与挑战
电力电子与运动控制: 传统产业通向信息社会的桥梁与纽带。
中国正在成为世界电动机的生产基地,机遇与挑战? • 可持续发展战略下,电机系统节能的巨大市场:
美国: 电动机进步,节电246亿kWh/年 变频供电,节电 606亿kWh/年
C:交流电机所具有的优越性。
而交流电动机,特别是笼式异步电动机,拥有 结构简单、坚固耐用、价格便宜及不需要经常 维修等特点,使其得到了十分广泛的应用。
如果能控制好,它具有直流电机无法比拟的 优越性。
采用交流调速、方便、节能
一套2050mm的热连轧板机,精轧部分采用 交流传动,比直流传动节电1150万kW·h/年, 节水30%,转动惯量减少77%,响应时间 缩短30%,设备投资少,停机维修时间缩 短75%。
(2)由于要照顾到换向器的可靠工作,电枢及换 向器的直径一般都做的比较大,因此电机的转动 惯量就大,这对于有快速响应要求的调速场合或 是在安装场地上有尺寸要求的场合是很不利的。
(3)换向器必须定期停机检修,运行中也要经 常注意观察换向器的火花情况。因此在一些恶劣 条件下或人难以接近的工作场所,使用直流电机 就很难保证长期运行的安全性。
(4) 20世纪80年代的直接转矩控制方法,也对交流 电机控制技术发展发展起来推动作用。
E:微电子技术发展极大促进了交流电机调速 技术的发展和应用。
模拟和数字电子技术、集成电路、大规模和超 大规模集成电路、单板机、单片机、DSP、专 用芯片等等
F:电力电子技术发展为交流电机调速发展和 应用打下坚实的基础
FlipFET MOS+IC+… Controller
LDO
MOSFET Drive IC
BJT
晶闸管
Power Electronics
Power Management
G:新型交流电机的出现丰富和推动了交流电 机的应用
(1)无刷直流电机,亦称无换向器电机,70 年代在国外得到应用,它是未来电动汽车等的 首选电机——本质上是同步电动机
原因是:
(1)不论是异步电动机还是同步电动机, 唯有改变定子供电频率调速最为方便,而 且可以获得优异的调速特性。而大容量的 变频电源却在长时期内没有得到很好的解 决;
(2)异步电动机和直流电动机不同,它只 有一个供电回路—定子绕阻,致使其速度 控制比较困难,不像直流电动机那样通过 控制电枢电压或控制励磁电流均可方便地 控制电动机的转速。
相关文档
最新文档