人教中考数学圆的综合-经典压轴题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE= °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).
【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.
【解析】
试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.
(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.
试题解析:(1)连接FE,
∵E(8,0),F(0 , 6),G(4,8),
∴根据勾股定理,得FG=,EG=,FE=10.
∵,即.
∴△FEG是直角三角形,且∠FGE=90 °.
(2)作图如下:
P(7,7),PH是分割线.
考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.
2.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.
【答案】(1)证明见解析;(2)见解析;(3)
9
2 DE=.
【解析】
【分析】
(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;
(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到
∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到
AB22
AD BD
+=26,由相似三角形的性质即可得到结论.
【详解】
(1)连接AD.如图1,设∠BDC=α,∠ADC=β,
则∠CAB=∠BDC=α,
∵点C为弧ABD中点,∴AC=CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,
∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;
(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴1
2
OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,
∵△AHE ∽△ADB ,∴
AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =9
2
.
【点睛】
本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
3.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ,P 是半径OB 上一动点,Q 是AB 上的一动点,连接PQ.
发现:∠POQ =________时,PQ 有最大值,最大值为________; 思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ 的长;
(2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;
探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.
【答案】发现: 90°,102; 思考:(1)10
3
π=;(2)25π−1002+100;(3)点O 到折痕PQ 的距离为30. 【解析】
分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;
思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(2)先在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2,解得OP=102−10,最后用面积的和差即可得出结论.
探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=
1
2
OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是AB 上的一动点, ∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合, 此时,∠POQ=90°,PQ=22OA OB +=102; 思考:(1)如图,连接OQ ,
∵点P 是OB 的中点,
∴OP=
12OB=1
2OQ . ∵QP ⊥OB , ∴∠OPQ=90°
在Rt △OPQ 中,cos ∠QOP=
1
2
OP OQ =, ∴∠QOP=60°, ∴l BQ =
601010
1803
ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =2, 在Rt △B'OP 中,OP 22−10)2=(10-OP )2