06材料力学01梁的挠度
《材料力学》——期末考试答案

《材料力学》——期末考试答案一、单选题1.水平冲击的动荷系数与( )和原构件的静变形大小有关。
A.初速度B.末速度C.加速度D.平均速度正确答案:A2.等效长度因子是等效长度与( )的比值。
A.等效长度B.原长C.实际长度D.直线长度正确答案:B3.在冲击应力和变形实用计算的能量法中,因为不计被冲物的重量,所以计算结果与实际相比( )。
A.冲击应力偏大,冲击变形偏小B.冲击应力偏小,冲击变形偏大C.冲击应力和冲击变形均偏大D.冲击应力和冲击变形均偏小正确答案:C4.在下列关于内力与应力的讨论中,说法( )是正确的。
A.内力是应力的代数和B.内力是应力的矢量和C.应力是内力的平均值D.应力是内力的分布集度正确答案:D5.应力状态分类以下不正确的是()A.单向应力状态B.二向应力状态C.三向应力状态D.四向应力状态正确答案:D6.不会引起静定结构产生内力的因素是( )。
A.集中力B.集中力偶C.分布力D.温度变化正确答案:D7.分析内力时,为了便于分析,一般将弹簧的螺旋角视为多少度?()A.30°B.0°C.60°D.90°正确答案:B8.什么是相应位移?()A.载荷作用点沿载荷作用方向的位移B.载荷作用点沿载荷作用反方向的位移C.载荷作用点沿载荷作用垂直方向的位移D.载荷作用点沿载荷作用倾斜方向的位移正确答案:A9.单位长度扭转角与( )无关。
A.杆的长度B.扭矩C.材料性质D.截面几何性质正确答案:A10.在冬天,当水管内的水结冰时,因体积膨胀,水管处于二向拉伸应力状态,故容易破坏,而冰块这时( )应力状态,则不容易破坏。
A.处于三向压缩B.处于二向压缩C.处于单向压缩D.处于极复杂的压缩正确答案:A11.构件抵抗破坏的能力叫做?()A.精度B.强度C.刚度D.刚性正确答案:B12.在单元体上,可以认为( )。
A.每个面上的应力是均匀分布的,—对平行面上的应力相等B.每个面上的应力是均匀分布的,—对平行面上的应力不等C.每个面上的应力是非均匀分布的,—对平行面上的应力相等D.每个面上的应力是非均匀分布的,—对平行面上的应力不等正确答案:A13.在下面关于梁、挠度和转角的讨论中,结论( )是正确的。
材料力学梁的挠度和刚度计算课件

桥梁刚度反映了桥梁结构抵抗变形的能力。刚度计算可以帮助工程师了解桥梁在不同载荷作用下的变形情况,从 而优化结构设计,提高桥梁的承载能力和稳定性。
梁的挠度和刚度在房屋建筑中的应用
房屋挠度
在房屋建筑中,挠度对建筑物的安全 性和稳定性具有重要影响。通过计算 和分析挠度,可以确保建筑物在使用 过程中不会发生过大的弯曲和变形, 从而保证居住者的安全。
泊松比与挠度
泊松比是衡量材料横向变形能力的 参数。泊松比越大,梁在受到压力 时横向变形越大,导致挠度增加。
剪切模量与刚度
剪切模量反映了材料抵抗剪切应力 的能力。剪切模量大的材料具有较 大的刚度,能够更好地抵抗变形。
材料的弹性模量对挠度和刚度的影响
01
弹性模量与挠度
弹性模量是衡量材料抵抗弹性变形能力的参数。弹性模量越大,梁在受
03
梁的挠度计算方法
挠度的计算公式
挠度计算公式:$y = frac{Fl^4}{48EI}$
$I$:梁的惯性矩 $E$:材料的弹性模量
$F$:施加在梁上的力 $l$:梁的长度
挠度的计算步骤
确定施加在梁上的力 $F$和梁的长度$l$。
将已知数值代入挠度 计算公式进行计算。
确定材料的弹性模量 $E$和梁的惯性矩$I$ 。
材料的泊松比对挠度和刚度的影响
泊松比与横向变形
泊松比描述了材料在受到压力时横向变形的程度。泊松比 越大,横向变形越明显,这可能对梁的挠度和刚度产生影 响。
泊松比与交叉应力
在分析梁的挠度和刚度时,需要考虑由于泊松比引起的交 叉应力效应。这种效应会影响梁的剪切力和弯矩分布,从 而影响挠度和刚度。
泊松比与材料非线性的考虑
梁的刚度定义
刚度
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

圣才电子书
ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。
材料力学面试重点概念36题

材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。
2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。
(2)均匀性:构件内各处的力学性能相同。
(3)各向同性:物体内各方向力学性能相同。
3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。
4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。
5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。
(2)用截面法求解内力。
6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。
答:(1)受力特点:外力的合力作用线与杆的轴线重合。
(2)变形特点:沿轴向伸长或缩短。
11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。
σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。
材料力学考试题(卷)集(含答案解析)

《材料力学》考试题集一、单选题1.构件的强度、刚度和稳定性________。
(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关2.一直拉杆如图所示,在P力作用下。
(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3.在杆件的某一截面上,各点的剪应力。
(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)—定为零4.在下列杆件中,图所示杆是轴向拉伸杆。
(A) (B) P(C) (D)5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A 为。
(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6.解除外力后,消失的变形和遗留的变形。
(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。
(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8.图中接头处的挤压面积等于。
P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。
(A)τ/2 (B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。
(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12.图示悬臂梁的AC段上,各个截面上的。
(A)剪力相同,弯矩不同(B)剪力不同,弯矩相同(C)剪力和弯矩均相同(D)剪力和弯矩均不同13.当横向力作用于杆件的纵向对称面内时,关于杆件横截面上的内力与应力有以下四个结论。
材料力学 第6章 梁的弯曲变形

(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
结构与力学试题及答案

结构与力学试题及答案一、选择题(每题2分,共20分)1. 以下关于结构力学的描述,哪一项是不正确的?A. 结构力学是研究结构在外力作用下的应力、应变和位移的学科B. 结构力学只研究静力平衡问题C. 结构力学是土木工程、机械工程等工程领域的重要基础学科D. 结构力学的研究对象包括梁、板、柱等构件答案:B2. 简支梁在均布荷载作用下的最大弯矩发生在:A. 梁的中点B. 梁的支点C. 梁的四分之一点D. 梁的任意点答案:B3. 在结构力学中,下列哪一项不是结构分析的基本原则?A. 力的平衡B. 力的可传递性C. 力的可加性D. 力的不可分解性答案:D4. 梁的剪力图和弯矩图的零点分别位于:A. 梁的支点B. 梁的中点C. 梁的四分之一点D. 梁的任意点答案:A5. 根据能量原理,下列哪一项不是结构力学分析中常用的方法?A. 虚功原理B. 虚位移原理C. 虚力原理D. 虚应力原理答案:C6. 在结构力学中,下列哪一项不是静定结构的特点?A. 内部无多余约束B. 内力可以通过静力平衡方程求解C. 内部有多余约束D. 变形可以通过几何方程求解答案:C7. 受弯构件的应力分布规律是:A. 线性分布B. 抛物线分布C. 正弦波分布D. 指数分布答案:B8. 梁的挠度计算公式中,下列哪一项是不需要的?A. 梁的截面惯性矩B. 梁的长度C. 梁的截面面积D. 梁的弹性模量答案:B9. 在结构力学中,下列哪一项不是结构稳定性分析的内容?A. 屈曲分析B. 振动分析C. 疲劳分析D. 极限承载力分析答案:C10. 根据材料力学,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D二、填空题(每题2分,共20分)1. 梁的弯矩M可以表示为:\[ M = \frac{EI}{\rho^2} \],其中E 是材料的弹性模量,I是截面的惯性矩,\(\rho\)是梁的________。
答案:曲率半径2. 根据结构力学,梁的剪力V和弯矩M之间的关系可以用微分方程表示为:\[ \frac{dV}{dx} = -M \],其中x是梁的________。
《材料力学》第1到8章复习题

材料力学第一章复习题1,下列结论中正确的是()A,内力是应力的代数和B,应力是内力的平均值C应力是内力的集度D内力必大于应力2. 一对自平衡的外载产生杆件的哪种基本变形只对杆件的某一局部存在影响。
( )A 拉伸与压缩B 剪切C扭转D弯曲3,已设计好的构件,若制造时仅对其材料进行更换通常不会影响其( )A稳定性 B 强度C几何尺寸D刚度4. 根据均匀性假设,可认为构件的下列各量中的( )在各点处都相同A屈服极限B材料的弹性常数C应力D应变第二章轴向拉伸压缩与剪切挤压的实用计算1.塑性材料的极限应力是A屈服极限B强度极限c比例极限D弹性极限2.脆性材料的极限应力是。
A屈服极限B比例极限C强度极限D弹性极限3.受轴向拉压的杆件内最大切应力为80 Mpa,则杆内最大正应力等于A160Mpa B 80Mpa C40Mpa D20Mpa4.在低碳钢Q235的拉伸试验中,材料暂时失去了抵抗变形能力是发生在哪个阶段A弹性B屈服C强化D缩颈断裂5材料进入强化阶段卸载,在室温中放置几天再重新加载可以获得更高的()。
A比例极限B强度极限C弹性变形D塑性变形6直径为d的圆截面钢杆受轴向拉力作用,已知其纵向线应变为e,弹性模量为E,杆轴力大小为()。
填空题(5.0分)7.在连接件上,剪切面和挤压面分别()于外力方向8.连接件剪切强度的实用计算中去,许用切应力是由( )9.插销穿过水平放置的平板上的圆孔,在其下端受拉力F作用。
该插销的剪切面面积和挤压面面积分别等于( a)。
填空题(5.0分)10.低碳钢拉伸试验中滑移线是( )造成的。
11.外力消失后,变形也消失,这种变形为( )12.当延伸率小于( )时为脆性材料,当延伸率大于( )时为塑性材料13.一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1<F2<F3,则该结构的实际许可载荷[F]为判断题(5.0分)14低碳钢的抗拉能力小于抗剪能力()A对 B 错15. 试求图中1-1,2-2,3-3截面上的轴力,并作轴力图。
第六章-材料力学梁的位移

19
练习3:
F
A
a
Cb
l
Bk
A
D
F
EA h
a
Cb B
l
x0,wA0
xa时, C左C右
xa时w , C左w C右
x
L, wB
FBy k
x0,wA0
xa时, C左C右
xa时w , C左w C右
xL,wBlBD
F By h EA
20
积分法求梁变形的基本步骤:
E1 Iw F 6lxb 3Fl6 b 2lb2 x E2 I w F 6 lx 3 b F x 6 a 3 Fl6 2 lb b 2x
F
4、最大转角和最大挠度
x
A
Fbl2b2
A 6EIl
Fabl b
6EIl
a
Cb B
l
w
Fbl2
C
qa 3 4 EI
q
B
C
(b)
wD
qa4 24EI
36
例题6-6:已知 P,E,G,求C点铅垂位移.
P
尺寸:l, d
C 尺寸:a, b, h
A
B
分析:AB —— 弯曲 + 扭转变形, BC —— 弯曲变形 故 C点的挠度由三部分组成 : • AB弯曲引起的B点下沉 • AB扭转引起C点位移 • BC弯曲引起C点下沉
C左 C右
8
例6-1 悬臂梁受力如图所示,求wA 和 A 。
解: 1、列出梁的弯矩方程
q
A
B
M(x) 1qx2 2
(0xl)
x
w
材料力学第六章

在横力弯曲时,梁横截面上除弯矩 M 外还有剪力 FS ,但工程上常用的 梁,当梁的长度大于横截面高度 10 倍时, FS 对梁的位移影响很小,可略去
不计,所以上式仍可应用。但此时, M 和 都是 x 的函数。即
M (x)
(x) EI
从高等数学可知,平面曲线的曲率可写成
d2 y
(x)
1
第六节 简单超静定梁的解法
对梁某方向的位移起限制作用的物体称为约束。在超静定梁中,超过了维持 梁的静力平衡所必需的约束,称为多余约束,相应的约束力(包括约束力偶), 称为多余约束力。
解超静定梁的方法较多,本书介绍变形比较法,步骤如下。 (1)判断超静定次数。梁上未知约束力的个数与独立的平衡方程数之差, 称为超静定次数。对于给定的梁,解题时首先应判断它是静定的,还是超静定的。 如果是超静定的,要确定超静定的次数。 (2)解除超静定梁的多余约束,并代之以多余约束力,所得系统称为静定 基。在多余约束处寻找变形协调条件。 (3)写出变形协调条件和物理条件,得到补充方程。 (4)将补充方程和平衡方程联立,即可求解。
,
FAy
ql
坐标为 x 的截面上的弯矩为
M (x) qlx 1 ql2 1 qx2 22
列挠曲线近似微分方程并积分,有
EI
d2 y dx2
qlx
1 2
ql 2
1 2
qx2
EI
dy dx
EI
ql
x2 2
1 ql2x 2
q 6
x3
C1
(a)
EIy
ql
x3 6
1 4
ql2 x2
1 qx4 24
C1x
该处的挠度 y 0 ,截面转角 0 ;铰支座处的边界条件,挠度 y 0 。
材料力学-梁的挠度 PPT

最大挠度及最大转角
max(a)
Pa2 2EI
a
P
L
x
fmax f(L)6PE2aI3La
f
[例3] 试用积分法求图示梁的挠曲线方程和转角方程,并
求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。
解:1.外力分析:求支座约束反力。 研究梁ABC,受力分析如图,列平衡方程:
m F yA R R A B R l B FF 1 .5 0 l0 R R B A 1 .0 5.F 5F
二、结构形式叠加(逐段刚化法)
2.位移边界条件
P
A
C
B
D
P
支点位移条件:
fA 0 fB 0
连续条件: fC fC
光滑条件: 讨论:
C
C
fD 0 D 0
或写 fC 左成 fC 右
或 写 C 左 成C 右
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确;缺点:计算较繁。
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:
P L
建立坐标系并写出弯矩方程
x
x
M (x)P(xL)
f
写出微分方程并积分
应用位移边界条件求积分常数
E f I M (x ) P (L x ) EfI1 2P(Lx)2C1
大家有疑问的,可以询问和交
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
EfI (x) M (x)
§7-3 积分法计算梁的位移
梁的挠度和转角问题分析

科学技术创新2018.06梁的挠度和转角问题分析王爽焦之森(齐齐哈尔大学建筑与土木工程学院,黑龙江齐齐哈尔161000)对简支梁、外伸梁的变形问题的解析计算方法有很多种,常见的有积分法[1-5]、能量法[1-5]、叠加法[1-5]、奇异函数法[1-5]和共轭梁法[1-5]等,在用积分法求解简支梁、外伸梁的变形问题时须求解多个积分常数,计算繁琐;奇异函数法仍属于积分法,求解过程也须解积分常数;如果仅计算某一截面的位移,能量法较为简单,不过仍须进行积分计算[6]。
本文通过间接叠加法,来介绍简支梁、外伸梁等结构在受载荷作用时挠度及转角问题的简单求解方法,即将简支梁、外伸梁等结构在受载荷作用时挠度及转角问题,转化为有初始转角的悬臂梁受载荷时的变形问题,使简支梁、外伸梁等结构在受载荷作用时挠度及转角问题的求解过程的思维难度得到很大程度的降低,从而问题变得更容易理解。
1原理介绍与例题分析悬臂梁具有一个固定端,当悬臂梁受已经与水平线外荷载作用时,靠近固定端的载面不发生转动,转角为零。
如果有一个悬臂梁,在未荷载时,形成一个小的角度θB ,如图1所示。
图1有初始转角的悬臂梁x 轴为水平方向,梁轴线与x 轴成角θB ,即θB 为初始转角,此梁称为有初始转角的悬臂梁。
在未受荷载时,相对于x 轴,自由端已经有一挠度为θB l 。
根据叠加法,当加一静荷载F 时,自由端的挠度ω=θB l+Fl 33EI 转角为θB +Fl22EI。
应用初始转角悬臂梁概念,只要知道悬臂梁在集中力偶、集中力和均布载荷作用下自由端的挠度和转角公式,就可以通过叠加法,求解简支梁、外伸梁、的变形问题。
跨长l ,刚度EI 的悬臂梁在集中力偶Me ,集中力F ,均布荷载q 作用下,自由端的挠度和转角公式列出如下Mel 22EI ,Mel EI ,Fl 33EI,Fl 23EI ,ql 48EI ,ql 36EI。
下面举几个例子。
例1.如图例2-1所示简支梁端受集中力偶Me 作用,求端截面转角。
材料力学 (8)

C1
ql
24
梁的转角方程和挠曲线方程分别为
'
qx 24 EI q 24 EI (l 2lx x )
3 2 3
(l 6lx 4 x )
3 2 3
RA
A
x
q
A
l 2
RB
B
在 x0 和 xl 处 转角的绝对值相等, 且都是最大值
x
CθB
y
3
l
θ
max
qc
5qL
4
C
z
l 2
384 EI z
转角() :横截面对其原来位置的角位移 , 称为该截面的
转角。
转角
A C B x
ω 挠度
C' y B'
挠曲线 :梁变形后的轴线称为挠曲线 。
挠曲线方程为
f ( x)
式中 ,x 为梁变形前轴线上任一点的横坐标 ,ω为该点的挠度。
挠度与转角的关系: tg ' f '( x)
C
y
连续条件
x
L 2
B1 B 2
B1 B 2
例题 5.6
用积分法求图示梁挠曲线方程时,试问下列梁的挠曲线
近似微分方程应分几段;将分别出现几个积分常数,并写出其确 定积分常数的边界条件。 挠曲线方程应分两段AB,BC.
F
EI
z1
共有四个积分常数
x
EI
z2
边界条件
A
L 2
B
RA RB ql 2
A
x
q
B
l
x
y 例题 5 .2图
此梁的弯矩方程及挠曲线微分方程分别为
材料力学第章 梁的挠度和刚度计算演示课件

l2
ql 3 24
ql 3 24
例9.3 集中力下的简支梁,EI已知,求挠曲线方程
和转角方程,最大挠度及最大转角。
a
解:1 确定反
力 2 求出弯矩方程
A
M1 x
FAy x
Fb l
x
x 0,a
M2
x
Fb lx来自Fxa
x a,l
3 微分方程的积分
l
FA
Fb l
EIw1(
B
力 2 求出弯矩方程
wmax
x
M x ql x 1 qx2
22
3 微分方程的积分
w
FA
ql 2
L
FB
ql 2
4 边界条件、连续条件
EIw(x) M x 1 qx2 ql x EIw(0) 0 D1 0
2
2 EIw(l) 0
EIw
1 6
qx3
C1
0
C1
1 2
PL2
C2
1 6
PL3
弹性曲线方程
Px2 w(x) (3L x)
6EI
P L
x
最大挠度及最大转角
w
qmax
q (L)
PL2 2EI
wmax
w(L)
PL3 3EI
例9.2 均布荷载下的简支梁,EI已知,求挠度及两端
截面的转角。
q0
解:1 确定反
A
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计
材料力学第七章 梁的变形

EIy1=-Fx13/9+ 5Fa2x1/9 EIy2=-Fx23/9+F(x2-a )3/6+ 5Fa2x2/9
(0≤x1 ≤a)
( a ≤x2 ≤3a )
7. 求ymax , θmax
x 0,
max
A
5Fa2 9EI
()
x 1.367a,
ymax
0.4838 Fa3 EI
21
F
A
C
在如图所示的座标系下,顺时针转为正,反之为负。
转角方程 θ = θ(x)
平行于轴线方向的线位移忽略
7
挠度与转角的关系:
θ θ’
y
x y
小变形
θ =θ ′
tgθ ′ ≈ θ ′ = y′
y dy
dx
x
8
§7-2 直梁挠曲线近似微分方程
一、挠曲线近似微分方程
纯弯曲 k 1 M
EIz
(x)
F C yCF
42
例题4
怎样用叠加法确定C 和 yC ?
q
A
B
C
yC
l
l
C
2
2
43
A
B
l 2
q
C
yC
l
C
2
A
l 2
A
l 2
q
B
l 2
q
B
l 2
A
q
l
B
l
2
2
44
简单静不定梁(超静定梁)
一、静定梁
F Fl
A
B
C
l
l
2
2
qa
A
B
C
a
a
45
材料力学笔记(第五章)

材料力学(土)笔记第五章 梁弯曲时的位移1.梁的位移——挠度及转角为研究等直梁在对称弯曲时的位移取梁在变形前的轴线为x 轴,梁横截面的铅垂对称轴为y 轴而xy 平面即为梁上荷载作用的纵向对称平面梁发生对称弯曲变形后,其轴线将变成在xy 平面内的曲线1AC B度量梁变形后横截面位移的两个基本量是挠度:横截面形心(即轴线上的点)在垂直于x 轴方向的线位移ω转角:横截面对其原来位置的角位移θ 梁变形后的轴线是一条光滑的连续曲线,且横截面仍与该曲线保持垂直因此横截面的转角θ也就是曲线在该点处的切线与x 轴之间的夹角度量等直梁弯曲变形程度的是曲线的曲率梁的变形还受到支座约束的影响通常就用这两个位移量来反映梁的变形情况梁轴线弯曲成曲线后,在x 轴方向也将发生线位移 但在小变形情况下,梁的挠度远小于跨长,梁变形后的轴线是一条平坦的曲线横截面形心沿x 轴方向的线位移与挠度相比属于高阶微量,可略去不记因此在选定坐标后,梁变形后的轴线可表达为()f x ω=式中,x 为梁在变形前轴线上任一点的横坐标;ω为该点的挠度梁变形后的轴线称为挠曲线,在线弹性范围内,也称为弹性曲线上述表达式则称为挠曲线(或弹性曲线)方程由于挠曲线为一平坦曲线,故转角θ可表达为''tan ()f x θθω≈== 称为转角方程即挠曲线上任一点处的切线斜率'ω可足够精确地代表该点处横截面的转角θ 由此可见,求得挠曲线方程后,就能确定梁任一横截面挠度的大小,指向及转角的数值 正值的挠度向下,负值的挠度向上正值的转角为逆时针转向,负值的转角为顺时针方向2.梁的挠曲线近似微分方程及其积分为求得梁的挠曲线方程,利用曲率κ与弯矩M 间的物理关系,即 1M EIκρ== 式中曲率κ为度量挠曲线弯曲程度的量,是非负的这是梁在线弹性范围内纯弯曲情况下的曲率表达式在横力弯曲时,梁横截面上除弯矩M 外尚有剪力S F 但工程用梁,其跨长l 一般均大于横截面高度的10倍剪力S F 对于梁位移的影响很小,可略去不计,故该式子依然适用式中的M 和ρ均为x 的函数,即1()()()M x x x EIκρ== 在数学中,平面曲线的曲率与曲线方程导数间的关系有'''23/21()(1)x ωρω=±+ 取x 轴向右为正,y 轴向下为正时曲线凸向上时''ω为正,凸向下时为负而按弯矩的正、负号规定,梁弯曲后凸向下时为正,凸向上为负,符号相反于是得到 '''23/2()(1)M x EIωω=-+ 由于梁的挠曲线为一平坦曲线,因此,'2ω与1相比十分微小可以略去不计故上式可近似的写为 ''()M x EIω=-上式略去了剪力S F 的影响,并略去了'2ω项 故称为梁的挠曲线近似微分方程若为等截面直梁,其弯曲刚度EI 为一常量,上式可改写为''()EI M x ω=-对于等直梁,上式进行积分,并通过由梁的变形相容条件给出的边界条件确定积分常数 即可求得梁的挠曲线方程当全梁各横截面上的弯矩可用单一的弯矩方程表示时,梁的挠曲线近似微分方程仅有一个 将上式的两端各乘以dx ,经积分一次,得'1()EI M x dx C ω=-+⎰再积分一次,即得12[()]EI M x dx dx C x C ω=-++⎰两式子中积分常数1C 、2C 可通过挠曲线的边界条件确定例如在简支梁中,左右铰支座处的挠度均等于零在悬臂梁中,固定端处的挠度和转角均等于零确定积分常数1C 、2C 后,就分别得到梁的转角方程和挠曲线方程从而可以确定任一横截面的转角和挠度1C 和2C 的几何意义 由于以x 为自变量,在坐标原点即0x =处的定积分恒等于零因此,积分常数'100x C EI EI ωθ===,20C EI ω=式中,0θ和0ω分别表示坐标原点处截面的转角和挠度若梁上的荷载不连续即分布荷载在跨度中间的某点处开始或结束,以及集中荷载或集中力偶作用处梁的弯矩需分段写出,各段梁的挠曲线近似微分方程也随之不同在对各段梁的近似微分方程积分时,均将出现两个积分常数为确定这些积分常数,除需利用支座处的约束条件外还需利用相邻两段梁在交界处位移的连续条件例如左、右两段梁在交界处的截面应具有相等的挠度和转角不论是约束条件和连续条件,均发生在各段挠曲线的边界处故均成为边界条件,即弯曲位移中的变形相容条件遵循两个原则①对各段梁,都是从同一坐标原点到截面之间的梁段上的外力列出弯矩方程所以后一段梁的弯矩方程包括前一段的弯矩方程的新增的()x a -项②对()x a -项的积分,以()x a -作为自变量于是由x a =处的连续条件,就能得到两段梁上相应的积分常数分别相等的结果 对于弯矩方程需分为任意几段的情况,只要遵循上述规则同样可以得到各梁段上相应的积分常数分别相等的结果从而简化确定积分常数的运算3.按叠加原理计算梁的挠度和转角梁在微小变形条件下,其弯矩与荷载成线性关系 在线弹性范围内,挠曲线的曲率与弯矩成正比当挠度很小时,曲率与挠度间呈线性关系梁的挠度和转角均与作用在梁上的荷载成线性关系在这种情况下梁在几项荷载(如集中力、集中力偶或分布力)同时作用下某一横截面的挠度或转角 就分别等于每项荷载单独作用下该截面的挠度或转角的叠加,即为叠加原理 已知梁在每项荷载单独作用下的挠度和转角表则按叠加原理来计算梁的最大挠度和最大转角将较为方便4.奇异函数·梁挠曲线的初参数方程5.梁的刚度校核·提高梁的刚度的措施5.1 梁的刚度校核对于梁的挠度,其许可值通常用许可挠度与跨长之比值[]l ω作为标准 梁的刚度条件可表达为 max[]ll ωω≤ max []θθ≤ 一般土建工程中的构件,强度要求是主要的刚度要求一般处于从属地位但当对构件的位移限制很严,或按强度条件所选用的构件截面过于单薄时刚度条件也可能起控制作用5.2 提高梁的刚度的措施由梁的位移表可见梁的位移(挠度和转角)除了与梁的支承和荷载情况有关还与其弯曲刚度EI 成反比,与跨长l 的n 次幂成正比减小梁的位移,可采取下列措施①增大梁的弯曲刚度EI②调整跨长和改变结构5.梁内的弯曲应变能当梁弯曲时,梁内将积蓄应变能梁在线弹性变形过程中弯曲应变能V ε在数值上等于作用在梁上的外力所作的功W梁在纯弯曲时各横截面上的弯矩M 为常数,并等于外力偶矩e M当梁处于线弹性范围内e EI EI θρ=== θ与e M 呈线性关系直线下的三角形面积就代表外力偶所作的功W ,即12e W M θ=从而得纯弯曲时梁的弯曲应变能 12e V M εθ=即得2222e M l M l V EI EIε== 横力弯曲时,梁内应变能包含两个部分:与弯曲变形相应的弯曲应变能和与切应变形相应的剪切应变能对于弯曲应变能,取长为dx 的梁段,其相邻两横截面的弯矩应分别为()M x 和()()M x dM x +在计算微段的应变能时,弯矩的增量为一阶无穷小,可略去不计 计算器弯曲应变能为2()2M x dV dx EIε= 全梁的弯曲应变能则可通过积分求得为2()2l M x V dx EIε=⎰ 式中,()M x 为梁任一横截面上的弯矩表达式 当各段梁的弯矩表达式不同时,积分需分段进行梁的剪切应变能远小于弯曲应变能,可略去不计。
材料力学第9章 梁的挠度和刚度计算

EIw1
Fb 2l
x2
Fb 6l
l2 b2
E Iw2
Fb 2l
x2
1 2
F
x
a 2
F b l 2 b 2 6l
EIw1
Fb 6l
x3
Fb 6l
l2 b2
x
EIw2
Fb 6l
x3
1 6
F
x
a 3
F b l 2 b 2 x 6l
6 最大转角
E Iq A
E Iq
|x 0
Fab l
q
l
3l 2
3
l
1 48
q l 3l
1 32
ql4
1 48
q
l
4
1 8
1
3 2
yC
y2 l
1 128EI
ql4
9.4 叠加法求梁的变形 在小变形条件下,材料服从虎克定律
内力 Fs , M 与外力 q, P, M0 成线性关系
几个载荷共同作用的变形 === 各个载荷单独作用的变形之和 叠加原理
x0,wq0
EIw(x)M(x)
* 注意问题
什么时候需要分段积分? 如何确定极值?
A
L1 C
L2
P
B
例9.1 求等截面直梁的弹性曲线、最大挠度及最大转角。
弯矩方程
L
P
M (x)P(Lx)
x
微分方程的积分
w
E I w ( x ) M ( x ) P ( L x ) 边界条件、连续条件
EIw1 2P(Lx)2C1 EIw1 6P(Lx)3C1xC2
7ql 3 24EI
w
+