合成气

合成气
合成气

科技名词定义

中文名称:合成气

英文名称:synthetic gas;syngas

定义:由煤、重油或天然气生产以氢与一氧化碳为主要成分的原料气。

应用学科:煤炭科技(一级学科);煤炭加工利用(二级学科);煤转化(三级学科)本内容由全国科学技术名词审定委员会审定公布

合成气是以一氧化碳和氢气为主要组分,用作化工原料的一种原料气。合成气的原料范围很广,可由煤或焦炭等固体燃料汽化产生,也可由天然气和石脑油等轻质烃类制取,还可由重油经部分氧化法生产。

目录

也各不相同,通常不能直接满足合成产品的需要。例如:作为合成氨的原料气,要求H/N2=3,需将空气中的氮引入合成气中(见合成氨原料气);生产甲醇的合成气要求 H2/CO≈2或(H2-CO2)/(CO+CO2)≈2;用羰基合成法生产醇类时,则要求H2/CO≈1;生产甲酸、草酸、醋酸和光气等则仅需要一氧化碳。为此,在合成气制得后,尚需调整其组成,调整的主要方法是利用水煤气反应(变换反应):以降低一氧化碳,提高氢气的含量。

编辑本段历史沿革

合成气的生产和应用在化学工业中具有极为重要的地位。早在1913年已开始从合成气生产氨,现在氨已成为最大吨位的化工产品。从合成气生产的甲醇,也是一个重要的大吨位有机化工产品。1939年,德国开发的乙炔氢羧化工艺曾是生产丙烯酸及其酯的重要方法。第二次世界大战期间,德国和日本曾建立了十多座以煤为原料用费托合成从合成气生产液体燃料(见煤间接液化)的工厂,战后由于有廉价的原油,这些厂先后关闭。1945年,德国鲁尔化学公司用羰基合成(即氢甲酰化)法生产高级脂肪醛和醇开发成功,此项工艺技术发展很快。60年代,在传统费托合成的基础上,南非开发了SASOL工艺,生产液体燃料并联产乙烯等化工产品,以适应当地的特殊情况。1960年,联邦德国巴登苯胺纯碱公司的甲醇羰基化生产醋酸工艺工业化;1970年,美国孟山都公司对此法作了重大改进,使之成为生产醋酸的主要方法,进而带动了有关领域的许多研究。70年代石油涨价以后,又提出了碳一化学的概念。对合成气应用的研究,引起了各国极大的重视。

编辑本段生产方法

第二次世界大战前,合成气主要是以煤为原料生产的;战后,主要采用含氢更高的液态烃(石油加工馏分)或气态烃(天然气)作原料。70年代以来,煤气化法又受到重视,新技术及各种新的大型装置相继出现,显示出煤在合成气原料中的比重今后将有可能增长。但目前仍主要从烃类生产合成气,所用方法主要有蒸汽转化和部分氧化两种。

蒸汽转化

此法以天然气或轻质油为原料,与水蒸气反应制取合成气。1915年,A.米塔斯和C.施奈德用蒸汽和以甲烷为主的天然气,在镍催化剂上反应获得了氢。1928年,美国标准油公司首先设计了一台小型蒸汽转化炉生产出氢气。第二次世界大战期间,开始用此法生产合成氨原料气。

天然气蒸汽转化

主要反应为:

合成气

主要工艺参数是温度、压力和水蒸气配比。由于此反应是较强的吸热反应,故提高温度可使平衡常数增大,反应趋于完全。压力升高会降低平衡转化率。但由于天然气本身带压,合成气在后处理及合成反应中也需要一定压力,在转化以前将天然气加压又比转化后加压经济上有利,因此普遍采用加压操作,同时增加水蒸气用量以提高甲烷转化率。高水蒸气用量也可防止催化剂上积炭。除上述主要反应外,还有下列反应发生:此两反应均为放热反应。

在温度 800~820℃、压力2.5~3.5MPa、H2O/C摩尔比3.5时,转化气组成(体积%)为:CH410、CO10、CO210、H269、N21。

合成气

为在工业上实现天然气蒸汽转化反应,可采用连续转化和间歇转化两种方法。

①连续蒸汽转化流程这是目前合成气的主要生产方法(图1)。在天然气中配以0.25%~0.5%的氢气,加热到380~400℃时,进入装填有钴钼加氢催化剂和氧化锌脱硫剂的脱硫罐,脱去硫化氢及有机硫,使总硫含量降至0.5ppm以下。原料气配入水蒸气后于400℃下进入转化炉对流段,进一步预热到 500~520℃,然后自上而下进入各支装有镍催化剂的转化管,在管内继续被加热,进行转化反应,生成合成气。转化管置于转化炉中,由炉顶或侧壁所装的烧嘴燃烧天然气供热(见天然气蒸汽转化炉)。转化管要承受高温和高压,因此需采用离心浇铸的含25%铬和20%镍的高合金不锈钢管。连续转化法虽需采用这种昂贵的转化管,但总能耗较低,是技术经济上较优越的生产合成气的方法。

合成气

合成气

②间歇蒸汽转化流程亦称蓄热式蒸汽转化法。采用周期性间断加热来补充天然气转化过程所需的反应热(图2)。过程可分为两个阶段:首先

是吹风(升温、蓄热)阶段:一部分天然气首先作为燃料与过量空气在燃烧炉内进行完全氧化反应,产生1300℃左右的高温烟气,经第一、二蓄热炉进入转化炉,从上而下穿过催化剂层,使催化剂吸收一部分热量。同时,烟气中的残余氧与催化剂中的金属镍发生氧化反应放出大量的热,进一步提高床层温度。烟气从转化炉底部出来时约850℃左右,经回收热量后放空。然后是制气阶段:作为原料的天然气与水蒸气(如生产合成氨则另加空气)经蓄热炉预热到950℃左右,进入催化剂床层进行蒸汽转化反应。从催化剂床层出来的气体,温度约850℃左右,同样经回收热量后,存入合成气气柜。中国曾采用间歇蒸汽转化炉,建设了一批小型合成氨厂,这些厂不

合成气

用昂贵的合金钢转化管,其主要设备为耐火材料衬里的圆筒型转化炉,结构简单,建设费用低廉。缺点是常压操作,设备庞大,占地多,操作费用较高。现国际上还有用此法生产城市煤气的。

合成气

轻质油蒸汽转化

是50年代英国卜内门化学工业公司开发的,1959年建成第一座工厂。此法主要反应为:

合成气

在许多方面与天然气蒸汽转化相似。C/H比较高,更因其中除烷烃外,还有芳烃甚至少量烯烃,易生成炭而析出,因此必须采用抗析炭的催化剂。一般仍采用镍催化剂,而以氧化钾为助催化剂,氧化镁为载体。轻质油中含硫一般较天然气为高,而此催化剂对硫又很敏感,因此在蒸汽转化前,需先严格脱硫,并同时加氢。裂化轻油脱硫十分困难,极少用来制取合成气。用来制合成气的是直馏轻质油。由于轻质油价格较高,又有上述不利之处,因此只有在缺少天然气供应的地区,才发展以轻油原料的合成气生产。

部分氧化天然气或轻质油蒸汽转化的主要反应为强吸热反应,反应所需热量由反应管外燃烧天然气或其他燃料供给,而部分氧化法则是把管内外反应合为一体。本法可不预脱硫,反应器结构材料比蒸汽转化法便宜。此外,更主要的优点是不择原料,几乎从天然气到渣油的任何液态或气态烃都能适用。

天然气部分氧化

加入不足量的氧气,使部分甲烷燃烧为二氧化碳和水:

合成气

此反应为强放热反应。在高温及水蒸气存在下,二氧化碳及水蒸气可与其他未燃烧甲烷发生吸热反应:

所以主要产物为一氧化碳和氢气,而燃烧最终产物二氧化碳不多。反应过程中为防止炭析出,需补加一定量的水蒸气。这样做同时也加强了水蒸气与甲烷的反应。

天然气部分氧化可以在催化剂的存在下进行,也可以不用催化剂。

①非催化部分氧化天然气、氧、水蒸气在3.0MPa或更高的压力下,进入衬有耐火材料的转化炉内进行部分燃烧,温度高达1300~1400℃,出炉气体组成(体积%)约为:CO25、CO42、H252、CH40.5。反应器用自热绝热式。

②催化部分氧化使用脱硫后的天然气与一定量的氧或富氧空气以及水蒸气在镍催化剂下进行反应。当催化床层温度约900~1000℃、操作压力3.0MPa时,出转化炉气体组成(体积%)约为: CO27.5、CO25.5 、H267、CH4<0.5。反应器也采用自热绝热式,热效率较高。反应温度较非催化部分氧化法低。

重油部分氧化

各种重油,包括常压渣油、减压渣油及石油深度加工所得燃料油,都是部分氧化中常用的原料,其代表

合成气

性反应为:

反应产物主要也是一氧化碳和氢气。反应条件为:1200~1370℃,3.2~8.37MPa,不用催化剂,每吨原料加入水蒸气量约为400~500kg。水蒸气起气化剂作用,同时可以缓冲炉温及抑制炭的生成。这种反应器(气化炉,图3)的出口气体用水直接急冷。该法的缺点是:①需要氧气或富氧空气,即需另设空气分离装置;②生成的气体比蒸汽转化法有更高的一氧化碳对氢气

的比例;③使用重油部分氧化时有炭黑生成,这不但增加了消耗,还将影响

合成气下一步处理和使用。目前,使用油吸收除炭,炭与吸收油再循环返

回气化炉的方法(图4)。

编辑本段合成气系化学品

由合成气可以生产一系列的化学品

合成气

合成气

合成气

氨及其产品

最主要的合成气化学品,是用合成气中的氢和空气中的氮在催化剂作

用下加压反应制得的氨。氨加工产品有尿素、各种铵盐(如氮肥和复合肥料)、硝酸、乌洛托品、三聚氰胺等。它们都是重要的化工原料。

甲醇及其产品

甲醇是合成气化学品中第二大产品,是一氧化碳和氢气在催化剂作用下反应制得的,其用途和加工产品

合成气

十分广泛。甲醇羰基化制得醋酸,是生产醋酸的主要方法(见彩图);甲醇经氧化脱氢可得甲醛,进一步可制得乌洛托品,后两者都是高分子化工的重要原料。由醋酸甲酯羰基化生产醋酐,被认为是当前生产醋酐最经济的方法,1983年,美国田纳西伊斯曼公司建立了一个年产226.8kt(5亿磅)的工厂。此外,正在开发的尚有通过二醋酸乙二醇酯制醋酸乙烯,由甲醇生产低碳烯烃,由甲醇同系化生产乙醇,由甲醇通过草酸酯合成乙二醇等工艺。

合成气

费托合成产品

合成气在铁催化剂作用下加压反应生成烃,也可发展为生产汽油和丙酮、醇等低沸点产品。这类生产在特殊情况下尚有意义(见费托合成)。

氢甲酰化产品

即羰基合成的产品,包括直链和支链的C2~C17烯烃与合成气进行氢甲酰化反应的产品。羰基合成生成

合成气

醛,再进一步催化加氢制得醇。它们是制增塑剂的重要原料。

此外,正在开发中的尚有用合成气直接合成乙二醇、乙醇、醋酸、1,4-丁二醇等

合成气制液体燃料(DOC)

碳一化学 ----合成气制液体燃料 学院:化学与化工 专业:化工1201班 姓名:张小琴 学号:1215010105 时间:2015.10.8

合成气制液体燃料工艺描述 煤间接液化 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气,然后再在催化剂的作用下合成为液体燃料的工艺技术。间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般油产品更优质。 煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共 57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于 SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非 Mossgass100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = C n H2n+2+nH2O 生成烯烃:nCO+(2n)H2 = C n H2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O

天然气制取芳烃的可行性

天然气制取芳烃的可行性分析 一、天然气制取芳烃的重要性 天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。苯及其衍生物是重要的基础化工料,目前主要来源于石油的铂催化重整及裂化制乙烯的副产品。而随着石油资源的日益短缺,以及汽油等燃料对芳烃含量的要求日益严格,正影响苯及其衍生物的生产来源,所以天然气制取芳烃十分必要。 二、天然气制取芳烃的技术现状 传统天然气制取芳烃有两种方式,一是由甲烷直接转化芳烃,二是由天然气制取合成气,然后转化为芳烃。其中,甲烷芳构化工艺如图所示。 图1 甲烷芳构化工艺 甲烷的芳构化分为有氧气氛和无氧两种。1993年,大连化物所的王林胜等人首次报道了Mo/HZSM—5分子筛催化剂上逢续流动模式下甲烷无氧芳构化反应,在973K,1个大气压下,甲烷转化率大约为6%,芳烃的选择性大于90%(不计反应积碳)。这个结果吸引了大量的国内外科学家参与到甲烷无氧芳构化催化剂的研究与开发中,目前已取得了一定的进展。甲烷无氧芳构化的研究经过多年的发展主要集中在催化剂的制备和改性方面,在提髙催化剂活性的同时更注重提高催化剂的稳定性。但是目前文献所报道的的单程寿命仍然不足以实现该过程的工业化。使用中温有氧再生,并通过流化床反应器实现反应和再生的连续进行是该过程工业化的有效途径。其次是有氧气氛的甲烷芳构化,氧化剂为分子氧和氮氧化合物,催化剂为分子筛,担载氧化物和混合氧化物。甲烷与氧气混合体系在空石英管反应器及金属氧化物或担载金属催化剂上可氧化聚合成芳烃。如下表一所示为甲烷有氧芳构化的结果。表二为甲烷有氧及无氧芳构化特点对比。 表一甲烷有氧芳构化的结果

合成气的制备方法

二甲醚原料----合成气 合成气的主要组分为CO与H2,可作为化学工业的基础原料,亦可作为制氢气与发电的原料。经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。合成气的用途广泛,廉价、清洁的合成气制备过程就是实现绿色化工、合成液体燃料与优质冶金产品的基 础。 1合成气的制备工艺 根据所用原料与设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺就是以处理天然气与煤这2种原料的工艺为基础发展起来的。 1、1以天然气为原料的合成气制备工艺 以天然气为原料制备合成气就是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)与甲烷与二氧化碳重整反应(5)。 CH4+H2O CO+3H2+206 kJ/mol (1) CH4+0·5O2CO+2H2-36 kJ/mol (2) CH4+2O2CO2+2H2O -802 kJ/mol (3) CO+H2O CO2+H2-41 kJ/mol (4) CH4+CO22CO+2H2+247 kJ/mol (5) 这几个主要反应的不同组合、不同的实施方式与生产装置,形成了天然气转化制备合成气的多种工艺。从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法与两者的组合方法等三大类。 1、1、1甲烷蒸汽转化 甲烷蒸汽转化的代表反应式为(1)。工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨与氢气为主产品的工艺。此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资与操作费用高。 1、1、2甲烷非催化部分氧化 甲烷非催化部分氧化的代表反应式为(2)。CH4与O2的混合气体在1 000~1 500℃下反应,

甲烷临氧催化转化制合成气研究进展

2008年第27卷第4期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·503· 化工进展 甲烷临氧催化转化制合成气研究进展 井强山1,方林霞1,楼辉2,郑小明2 (1信阳师范学院化学化工学院,河南信阳 464000;2浙江大学催化研究所,浙江杭州 310028) 摘要;介绍了国内外甲烷临氧催化转化制合成气的研究进展,结合本课题组的研究结果及文献报道,对甲烷部分氧化、甲烷临氧二氧化碳重整、甲烷临氧水蒸气重整及甲烷-二氧化碳-水-氧气耦合三重整反应进行了阐述和分析,综述了在催化剂体系、反应机理和工艺条件等方面取得的近期研究成果。最后对甲烷临氧催化转化制合成气技术今后的研究重点及应用领域作了展望。 关键词:甲烷;合成气;部分氧化;自热重整;催化 中图分类号:TQ 426.8 文献标识码:A 文章编号:1000–6613(2008)04–0503–05 Progress of catalytic conversion of methane to syngas in the presence of oxygen JING Qiangshan1,FANG Linxia1,LOU Hui2,ZHENG Xiaoming2 (1School of Chemistry and Chemical Engineering,Xinyang Normal College,Xinyang 464000,Henan,China; 2Institute of Catalysis,Zhejiang University,Hangzhou 310028,Zhejiang,China) Abstract:In this paper,the research progress of synthesis gas preparation by catalytic conversion of methane in the presence of oxygen is summarized. The authors’ work in preparing syngas form methane in the presence of oxygen is introduced. Catalytic partial oxidation (CPO),autothermal CO2 reforming (ATR-CO2),autothermal H2O reforming (ATR-H2O) and triple-reforming of methane are reviewed. The achievements in catalyst,reaction mechanism and process conditions are also discussed. The research focus and commercial application of catalytic conversion of methane in the future are also prospected. Key words:methane;syngas;partial oxidation;autothermal reforming;catalysis 目前,工业上从天然气制合成气主要采用水蒸气重整工艺。这是一强吸热过程,投资大、能耗高,所得合成气的H2/CO比较高,适合于合成氨及制氢,而不适用于甲醇合成和费-托合成等过程。 近年来,从节约能源、降低催化剂积炭等角度出发,众多研究者在甲烷临氧催化转化领域做了大量的工作,主要的研究内容有甲烷催化部分氧化、甲烷二氧化碳临氧自热重整及甲烷水蒸气氧气混合重整等。本文作者主要综述了几种甲烷临氧催化转化制合成气方法的催化剂研究、反应器及其优缺点,并对从天然气出发制合成气路线提出自己的观点。 1 甲烷部分氧化制合成气 甲烷部分氧化(POM)制合成气是一个温和的放热反应,在750~800 ℃下,平衡转化率可达90%以上,CO和H2的选择性高达95%,生成的合成气V(H2)/V(CO)≈2,可直接用于甲醇及费-托合成等重要工业过程。与传统的蒸气重整法相比,POM在很高空速下进行,反应器体积小、效率高、能耗低,可显著降低设备投资和生产成本。进入20世纪90年代以来,这一工艺过程受到了国内外的广泛重视,研究工作十分活跃。 1.1甲烷催化部分氧化反应催化剂研究现状 POM反应所用催化剂主要是负载型金属催化 收稿日期:2007–11–22;修改稿日期:2007–12–21。 基金项目:国家自然科学基金重点资助(20433030)及河南省高校新 世纪优秀人才支持计划(2006HANCET-20)。 第一作者简介:井强山(1970—),男,博士,副教授。电话 0376–6390603;E–mail 9jqshan@。

甲醇制芳烃技术进展及经济分析

甲醇制芳烃技术进展及经济分析
2014年12月17日(亚化咨询-上海)

? 前言 ? 甲醇制芳烃技术进展

? 甲醇制芳烃技术经济分析 ? 结束语



芳烃,特别是轻质芳烃BTX(苯、甲苯、二甲苯) 是重要的基本有机化工材料,其产量与规模仅次 于乙烯和丙烯。其衍生物广泛地应用于化纤、塑 料和橡胶等化工产品和精细化学品的生产中。近 年来,随着石油化工及纺织工业的不断发展,世 界上对芳烃的需求量不断增长。
3


芳烃主要来源于石油路线。石油芳烃是目前芳 烃最主要的来源。 国内芳烃来源于石油和煤焦油,其中石油生产 的芳烃约占芳烃生产总量的85%以上。 国外通过石油路线生产的芳烃高达芳烃总产量 的98%以上。



从石油获取芳烃资源主要来自三个方面的 技术:石脑油重整、乙烯裂解汽油加氢抽 提和碳四、碳五芳构化技术。 已经成功工业化的甲醇甲苯甲基化成为制 取BTX的一种新技术路线。





国内市场对芳烃的需求量很大,而且增长较快。 由于我国近几年聚酯产业的迅猛发展,芳烃的产 量,尤其是PX产量难以满足国内市场快速增长的 巨大需求。2013年,我国PX表观消费量达到1650 万吨,其中国内产量760万吨,进口量890万吨。 2014年前三季度PX进口约700万吨。


2013年,我国的进口原油依存度58%,单纯依赖石油资源已 经很难满足日益增长的化工基础原料需求,同时,巨大的 石油资源缺口也已严重威胁到国家的能源安全。 我国化石能源中煤炭资源相对丰富,利用煤炭资源生产 甲醇,继而从煤基甲醇或是海外进口廉价的甲醇为原料制 取芳烃,提高甲醇下游产品的附加值,延长煤化工产业链 ,是一条发展中国特色芳烃产业的新路。

合成气工艺

四合成气系化学品 由合成气可以生产一系列的化学品。 1.氨及其产品:合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。 最主要的合成气化学品,是用合成气中的氢和空气中的氮在催化剂作用下加压反应制得的氨。氨加工产品有尿素、各种铵盐(如氮肥和复合肥料)、硝酸、乌洛托品、三聚氰胺等。它们都是重要的化工原料。 合成氨的生产分为三部分: 造气——原(燃)料通人空气(氧气)和蒸汽,汽化成为水煤气(半水煤气),该粗原料气由氢气、氮气、二氧化碳、一氧化碳和少量硫化氢、氧气及粉尘组成,原料气经废热锅炉回收热量后存于气柜; 变换净化——气柜来的原料气通过电除尘器除去粉尘进入气压机加压,经脱硫(脱除硫化氢)、变换(将一氧化碳转化为氢和二氧化碳)、脱碳(吸收脱除二氧化碳)后,再次加压进入铜洗塔(用醋酸铜氨液)和碱洗塔(用苛性钠溶液)进一步除去原料气中的一氧化碳和二氧化碳(含量降至十万分之三以下),获得纯氢气和氢气混合气体; 合成——净化后的氢氮混合气(H2:N2=3:1)经压缩机加压至30~32MPa进入合成塔,在铁触媒存在下高温合成为氨。 生产是在密封、高压、高温下连续进行的。 2.甲醇及其产品:甲醇是合成气化学品中第二大产品,是一氧化碳和氢气在催化剂作用下反应制得的,其用途和加工产品十分广泛。甲醇羰基化制得醋酸,是生产醋酸的主要方法,甲醇羰基化法是以甲醇、CO为原料合成乙酸。所用催化剂最初是Co配合物。1970年,美国Monsanto公司开发了CH3I促进的RhI3的催化剂体系,并使之工业化。Rh工艺的优点在于反应压力相对较低(10~25 bar pco),温度适中(175℃),选择性>99%,没有副产品生成,产品纯度达食品级、药典级;甲醇经氧化脱氢可得甲醛,进一步可制得乌洛托品,后两者都是高分子化工的重要原料。由醋酸甲酯羰基化生产醋酐,被认为是当前生产醋酐最经济的方法,1983年,美国田纳西伊斯曼公司建立了一个年产226.8kt(5亿磅)的工厂。此外,正在开发的尚有通过二醋酸乙二醇酯制醋酸乙烯,由甲醇生产低碳烯烃,由甲醇同系化生产乙醇,由甲醇通过草酸酯合成乙二醇等工艺。 以天然气为原料生产甲醇,大多采用蒸汽一段转化,低压合成,三塔精馏的技术, 工艺过程:以天然气为原料,采用中压蒸汽转化制甲醇合成气中、低压合成甲醇,三塔精馏制取精甲醇的工艺。 工艺装置共分以下四个工序: (1)造气工序 a天然气脱硫 在一定的温度、压力下,天然气通过氧化锰脱硫剂及氧化锌脱硫剂,将天然气中的有机硫、H2S脱至1PPM以下,以满足蒸汽转化催化剂对硫的要求,其主要反应为:COS+MnO →MnS+CO2;H2S+MnO→MnS+H2O;H2S+ZnO→ZnS+H2O b 烃类的蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,在镍催化剂的作用下将烃类物质转化,得到合成甲醇的原料气。这一过程为吸热过程故需外供热量,转化所需的热量由转化炉辐射段燃烧燃料气提供。 在镍催化剂存在下其主要反应如下:CH4+H2O→CO+3H2+Q;CO+H2O→CO2+H2+Q (2)压缩工序 压缩工序包括原料气压缩、合成气压缩和循环气压缩。 由造气工序来的转化气,经合成气压缩到一定的压力,与合成工序来的循环气混合,进入循环气压缩机升压后返回合成系统。 (3)合成工序 甲醇合成是在一定的压力下,在催化剂的作用下,合成气中的一氧化碳,二氧化碳与氢反应生成甲醇,基本反应式为: CO+2H2=CH3OH+Q;CO2+3H2=CH3OH+H2O+Q. 在甲醇合成过程中,尚有如下副反应; 2CO+4H2=(CH3)O+H2O;2CO+4H2=C2H5OH+H2O;4CO+8H2=C4H5OH+3H2O。

合成气中硫化物的脱除与净化

合成气中硫化物的脱除与净化 在制气时,所用的气、液、固三类原料均含硫化物,在制气时转化成硫化氢和有机硫气体,它们会使催化剂中毒,腐蚀金属管道和设备,危害很大,必须脱除,并回收利用这些硫资源。 1、硫化物的危害: 硫化物是制气过程中最常见、最重要的催化剂毒物,极少量硫化物就会使催化剂中毒,使催化剂活性降低直至完全失活。硫化物主要有硫化氢和有机硫化物,后者在高温和水蒸气、氢气作用下也转变成硫化氢。 2、不同原料硫化物脱出位置: 用天然气或轻油制气时,为避免蒸汽转化催化剂中毒,已预选将原料彻底脱硫,转化生成的气体中无硫化物。 煤或重质油制气时,氧化过程不用催化剂,不用对原料预脱硫,因此产生的气体中有硫,在下一步加工前必须进行脱脱硫。 3、硫化物脱除的具体方法: 根据硫化物的含量、种类和要求的净化度、技术条件和经济性,可选用一种或多种脱硫方法来进行脱硫。按脱硫剂状态来分,有干法、湿法两大类。

(1)干法脱硫: 有吸附法和催化转化法。 A、吸附法:采用对硫化物有强吸附能力的固体来脱硫。吸附剂有氧化锌、活性炭、氧化铁、分子筛等。 氧化锌:以氧化锌为主组分,添加少量CuO、MnO2、MgO等作为促进剂,以矾土水泥作粘结剂制成条形或球形。在一定条件下,将H2S、RSH、ZnO转化成稳定ZnS固体,在氢气条件下,COS、CS2转化为H2S,为ZnO吸收变为ZnS。氧化锌脱硫效果好,一般只用于低含硫气体的精脱硫,不能脱除硫醚和噻吩。 活性炭:用于脱除天然气、油田气及以湿法脱硫后之气体中微量硫,属于常温精脱硫。活性炭吸附H2S和O2,后两者在其表面反应,生成元素硫。活性炭也能吸附有机硫。吸附方法对噻吩最有效。 氧化铁:这是一种古老的吸附方法。有常温、中温、高温吸附。氧化铁吸收硫化氢后生成硫化铁,再生时用氧化法使硫化铁转化为氧化铁和元素硫或二氧化硫。 此外还有分子筛等。 B、催化转化法:使用加氢脱硫催化剂,将烃类原料中含有的有机硫氢解,转化成易脱除的硫化氢,再用其他方法脱除。 催化剂常用钴钼的氧化物。即以Al2O3为载体,以CoO和MoO3为负载的钴钼加氢脱硫剂。应用举例见课本181-182页。 一般在采用钴钼加氢转化后再用氧化锌脱除生成的硫化氢,因此,用氧化锌-钴钼加氢转化-氧化锌组合,可达到精脱硫的目的。

对二甲苯生产技术研究进展及发展趋势

对二甲苯生产技术研究进展及发展趋势 摘要:现如今,我国的经济在迅猛发展,社会在不断进步,阐述了甲苯歧化和 烷基转移、二甲苯异构化、甲醇芳构化、甲苯选择性歧化及甲醇甲苯选择性烷基 化等对二甲苯生产技术的研究进展,并分析了各种技术的优势及不足。分析表明,与甲醇制芳烃技术相比,甲醇甲苯选择性烷基化制对二甲苯技术具有对二甲苯选 择性高、流程短、无需吸附分离等方面的显著优势,是实现煤经甲醇(和甲苯或苯)制对二甲苯产业发展的最佳选择;采用芳烃联合装置与甲醇甲苯选择性烷基 化技术耦合,理想状况下可实现对二甲苯增产40%以上,同时不副产苯。提出了 对二甲苯生产工艺技术的发展趋势:发展甲醇甲苯选择性烷基化制对二甲苯技术,既利于煤炭的清洁高效利用,保障聚酯产业链安全,还有助于形成煤化工和石油 化工技术互补、协调发展的新格局。 关键词:二甲苯;生产技术;研究进展 引言 对二甲苯作为炼油和化工的桥梁,既是芳烃产业中最重要的产品,亦是聚酯 产业的龙头原料。目前,对二甲苯应用中约97%用于生产精对苯二甲酸(PTA),其 余用于医药、溶剂、涂料等领域。近年来,随着我国聚酯产业的飞速发展,对二 甲苯供不应求,利润率居高不下,引发项目建设热潮。未来几年,对二甲苯产能 将集中释放,供需格局将发生巨大变化。本文就对分离技术进行简要介绍并对市 场进行分析,为企业应对未来市场变化提供参考。 1对二甲苯生产工艺技术 现在全球美国环球油品公司(UOP)和法国Axens公司拥有整套且比 较成熟的对二甲苯生产工艺技术,2011年我国拥有了自主知识产权的对二甲 苯整套生产技术。其中UOP是世界领先的芳烃生产工艺技术供应商,截至20 14年,UOP已经为100多套联合成套装置和700多套单独芳烃生产工艺 装置发布了许可。本文主要以混合二甲苯为原料,装置采用无歧化流程,即由二 甲苯精馏、异构化、产品分离三个单元组成。其中二甲苯精馏是通过精馏除去混 合二甲苯原料中除二甲苯之外的其它组分;异构化是将精馏后二甲苯中的1,2 -二甲苯(邻二甲苯)、1,3-二甲苯(间二甲苯)和乙苯转化为1,4-二 甲苯(对二甲苯),最大限度地生产需要的PTA原料;PTA原料分离是将异 构化产物中的1,4-二甲苯与反应后还存在的1,2-二甲苯和1,3-二甲 苯等进一步分离,从而得到纯度符合要求的1,4-二甲苯。工艺全部采用美国 UOP(环球油品公司)的成套专利技术。其中,吸附分离采用ParexTM 工艺技术和ADS-37吸附剂,该工艺利用吸附分离原理选择分离生产高纯度 的1,4-二甲苯,利用模拟移动床原理实现固液相连续逆向分离;异构化工艺 采用IsomarTM工艺技术和乙苯异构型催化剂I-400,可充分利用C 8芳烃资源,最大限度地生产1,4-二甲苯。 2二甲苯异构化技术 2.1甲苯一甲醇烷基化工艺 以甲苯和甲醇为原料,在一定的反应条件和催化剂存在的条件下,就会发生烷基化反应,从而得到对二甲苯以及其他附加产品,这个过程就是甲苯一甲醇烷基化工艺。甲苯一甲醇烷基化工艺以分子筛为催化剂,采用氢气或氮气或水蒸气为反应载气,对二甲苯选择性可达到百分之九十以上。甲苯一甲醇烷基化工艺作为一种新型 的生产工艺,与传统生产工艺相比具有诸多优点。首先,极大地降低了原料的消耗,

煤制芳烃行业

煤制芳烃行业 煤制芳烃作为新兴的芳烃生产技术,近年来才受世人关注,由于发展时间较短,目前尚未有完全工业化生产的装置。在一众煤制芳烃的生产技术中,甲醇制芳烃是发展较早、技术相对成熟的生产路线,目前已有成功运行的中试装置,未来有望实现工业化生产,成为新型煤化工行情专区领域的耀眼新星。 1、煤制芳烃:具有潜力的新兴芳烃生产技术 1.1、甲醇制芳烃是煤制芳烃中相对成熟的技术 煤制芳烃是新兴的芳烃生产技术。煤制芳烃是指以煤为原料,通过煤气化行情股吧买卖点技术进行芳烃的合成。煤制芳烃作为新兴的芳烃生产技术,近年来才受世人关注。以煤为原料生产芳烃技术可分两大类:合成气直接制芳烃技术;合成气制甲醇后再生产芳烃的合成气间接制芳烃技术。合成气间接制芳烃技术又分为:1从甲醇起步,以生产芳烃BTX为目的的甲醇芳构化技术;2以生产对二甲苯为目的的甲苯甲基化技术;3以生产烯烃联产芳烃的组合技术。 甲醇制芳烃是煤制芳烃中的相对成熟的路线。煤制芳烃由于发展时间较短,目前尚未有完全工业化生产的装置。在一众煤制芳烃的生产技术中,甲醇制芳烃是发展较早、技术相对成熟的生产路线,目前已有成功运行的中试装置。甲醇芳构化技术是在择形分子筛催化剂的催化作用下进行的,其反应机理主要包括3个关键步骤:甲醇脱水生成二甲醚,甲醇或二甲醚脱水生成烯烃,烯烃最终经过聚合、烷基化、裂解、异构化、环化、氢转移等过程转化为芳烃和烷烃。 理论上若甲醇完全转化为芳烃,则每生产1吨苯、甲苯或二甲苯分别需要消耗甲醇2.46吨、2.43吨、2.42吨,同时副产大量的氢气和水。而实际过程中还伴有其他副反应的发生,使得芳烃的总选择性降低,通常需要3吨以上甲醇才能获得1吨BTX. 1.2、甲醇制芳烃技术的前世今生 甲醇制芳烃的起源:Mobil甲醇芳构化技术。甲醇芳构化的研究起源于20世纪70年代美国Mobil石油行情专区公司开发的甲醇转化为汽油的MTG路线。采用ZSM-5沸石分子筛择形催化剂,可使甲醇全部转化,生成丰富的烃类,尤其对高辛烷值汽油具有优良的选择性,同时也获得了少量的芳烃产物。MTG是世界上甲醇制烃领域最早实现工业化的路线,以ZSM-5催化剂最为成熟。随后Mobil公司在20世纪80年代的研究发现,经改性的ZSM-5分子筛催化剂具有更高的芳烃选择性,该研究停留在实验阶段,未进行工业化。随着石油能源的日渐紧缺,原作为石油化工产物的芳烃变得紧俏,使甲醇转化为芳烃的产业应运而生,从而形成了甲醇芳构化制芳烃MTA这一概念。

合成气催化转化制甲烷反应工艺的研究

合成气催化转化制甲烷反应工艺的研究 在我国当下空气污染情况令人堪忧,雾霾现象十分严重,其主要起因是以煤在能源结构的所占比例过重。故改变能源结构,将煤炭资源清洁化迫在眉睫。 将固体高污染燃料煤经过气化过程生成合成气。再通过甲烷化以得到清洁能源甲烷。 且工业实际操作中,常常是多级反应器,第一段反应的产物添加一定原料气之后直接进入下一段反应器,故下一段反应器的入口气中含有一定含量的水蒸气与CO2。现在研究表明一定含量的水蒸汽可以抑制积碳的生成,但是过大含量的水蒸气由于水合反应会导致载体结构的破坏。 文献记载在甲烷化反应中CO与CO2的甲烷化是一个竞争反应。目前文献中很少有人做原料气中含有一定量水蒸气与CO2的稳定性实验。 故本文将合成气催化转化制甲烷反应工艺作为核心研究内容,模拟工业环境下催化剂甲烷化的长时间稳定性,了解水蒸气与CO2对催化剂甲烷化的影响。本文载体使用工业成型拉西环与三叶草γ-Al2o3,使用等体积浸渍法制备了不问NiO负载量,添加不同改性助剂,添加不同助剂含量的一系列催化剂。 利用石英管固定床反府器进行催化剂性能评价,利用XRD、 TPR、BET、TEM、TG等对其结构进行表征。用工业成型拉西环载体制备7.5%、11.2%、18.7、26.1%、37.4%、44.8%一系列不同NiO负载量的催化剂,发现较优NiO含量为18.7%和26.1%。 不同助剂改性载体,分别添加碱土金属氧化物(MgO、CaO、BaO),稀土金属氧化物(La2O3、CeO2、Sm2O3)和过渡金属氧化物(Fe2O3、CoO、CuO、 ZrO2、TiO2、MoO3),发现助剂对催化剂的活性有促进作用,其中碱土金属Mg,与稀土金属La为

合成气制甲醇

合成气制甲醇(合成气可以由煤、焦炉煤气、天然气等生产) 一、甲醇合成工艺技术 合成甲醇工艺技术概况: 自从1923年德国BASF公司首次用一氧化碳在高温下用锌铬催化剂实现了甲醇合成工业化之后,甲醇的工业化合成便得以迅速发展。当前,合成法甲醇生产几乎成为目前世界上生产甲醇的唯一方法。半个多世纪以来,随着甲醇工业的迅速发展,合成甲醇的技术也得以迅速改进。目前世界上合成甲醇的方法主要有以下几种: 1、高压法(19.6~29.4 MPa) 这是最初生产甲醇的方法,采用锌铬催化剂,反应温度为360~400℃,压力19.6~29.4Mpa。随着脱硫技术的发展,高压法也在逐步采用活性高的铜系催化剂,以改善合成条件,达到提高效率和增产甲醇的效果。高压法虽然有70多年的历史,但是,由于原料及动力消耗大,反应温度高,投资大,成本高等问题,其发展长期以来处于停滞状态。 2、低压法(5.0~8.0 MPa) 这是20世纪60年代后期发展起来的甲醇合成技术。低压法基于 高活性的铜系催化剂。铜系催化剂活性明显高于锌铬催化剂,反应温度低 (240~270℃),在较低的压力下获得较高的甲醇收率,而且选择性好,减少了副作用,改善了甲醇质量,降低了原材料的消耗。此外,由于压力低,不仅动力消耗比高压法降低很多,而且工艺设备的制造也比高压法容易,投资得以降低,总之低压法比高压法有显著的优越性。 3、中压法(9.8~12.0 MPa) 随着甲醇单系列规模的大型化(目前已有日产2000吨的装置甚至更大单系列的装置),如采用低压法,势必导致工艺管道和设备非常庞大,因此在低压法的基础上,适当提高合成压力,即成为中压法。中压法仍采用与低压法相同的铜系催化剂,反应温度也与低压法相同,因此它具有与低压法相似的优点,但由于提高了合成压力,相应的动力消耗略有增加。目前,世界上新建或扩建的甲醇装置几乎都采用低压法或中压法,其中尤以低压法为最多。英国I.C.I公司和德国Lurgi公司是低压甲醇合成技术的代表,这两种低压法的差别主要在甲醇合成反应器及反应热回收的形式有所不同。目前世界上合成甲醇主要采用低压法工艺技术,它是大型甲醇 装置的发展主流。甲醇合成系统包括合成气压缩(等压合成除外)、甲醇合成热量回收、甲醇精馏等工序,其核心设备是甲醇合成塔。有多种形式的合成塔在工业化装置中应用,经实际验证都是成熟可靠的。但在选择中要精心比较。 二、甲醇精制 甲醇精制目前工业上采用的有两塔流程和三塔流程,两塔流程已能生产优质的工业品甲醇,但从节能降耗角度出发,选择三塔流程是较好的。三塔流程将以往的主精馏塔分为加压精馏塔和常压精馏塔,将加压精馏塔塔顶出来的甲醇蒸汽作为常压精馏塔的热源,降低了蒸汽消耗。通常情况下可降低能耗30%,但投资略有增加

合成气的生产

第五章合成气的生产 5.2由天然气制合成气 5.2.1概述 1.水蒸气转化法在高温和催化剂存在下,烷烃与水蒸气反应生产合成气的方法称为水蒸气转化法。当以天然气为原料时,又称甲烷蒸汽转化法,是目前工业生产应用最广泛的方法。 2.部分氧化法部分氧化法是指用氧气(或空气)将烷烃部分氧化制备合成气的方法。反应式表示为, 部分氧化法多用于以石脑油或重油为原料的合成气生产。 3. 自热式催化转化部分氧化法(ATR工艺) CH4的部分氧化和蒸汽转化组合在一个反应器进行。反应器上部为无催化剂的燃烧段,CH4的不完全燃烧,放出热量。 反应器下部为含催化剂的转化段,利用燃烧段反应放出的热量,进行吸热的水蒸气转化反应。 催化剂为:颗粒状镍催化剂,以含氧化锰和氧化铝的尖晶石为载体,具有很高的活性和耐高温性能,可采用较高空速进行反应。 4.甲烷-二氧化碳催化转化法(Sparg工艺) 催化剂上易结炭:改进镍基转化催化剂、开发新型抗积炭催化剂和优化反应条件等。

调节原料混合气的CO2/CH4H2O/CH4之比,转化后合成气中H2/CO在1.8—2.7之间变动 5.2.2天然气蒸汽转化的基本原理 一、主要反应 天然气中所含的多碳烃类与水蒸气发生类似反应 在—定条件下,转化过程可能发生成碳反应 二、催化剂和工艺条件: 1.催化剂 催化剂的基本条件:高活性、高强度、抗析碳。 活性组分:镍是目前天然气蒸汽转化催化剂的唯一活性组分。在制备好的催化剂中,镍以NiO形式存在,含量一般为10%一30%(质量)。 助催化剂:抑制熔结过程,使催化剂有较稳定的高活性,延长使用寿命并提

高抗硫抗析碳能力。金属氧化物,如Cr2O3、A12O3、MgO、TiO等。助催化剂用量一般为镍含量的10%(质量)以下。 载体:使镍的晶粒尽量分散,较大比表面。催化剂的载体是熔点在2000℃以上的金属氧化物,它们能耐高温,且有很强的机械强度。常用的载体有A12O3、MgO、CaO、K2O等。 2.工艺条件 甲烷蒸汽转化过程中控制的主要工艺条件是温度、压力、水碳比、空气加入量等。同时还要考虑到炉型、原料、炉管材料、催化剂等对这些参数的影响。参数的确定,不仅要考虑对本工序的影响,也要考虑对压缩、合成等工序的影响,合理的工艺条件最终应在总能耗和投资上体现出来。 (1)温度:甲烷蒸汽转化为可逆吸热反应。从化学平衡和反应速率考虑,提高温度对转化反应有利,可以降低残余甲烷含量。但温度的升高,受催化剂耐热程度和炉管材质等条件的限制。HK40材料制成的合金钢管,炉壁最高温度不超过930℃,所以炉管出口气体温度应维持在830℃以下。 (2)压力:甲烷蒸汽转化反应是摩尔数增加的反应。从化学平衡来看,增加压力对反应不利。目前工业生产都采用加压操作。 A加压下转化可以大大地节省动力:甲烷转化后气体体积增加4—5倍,从节省动力的角度看是有利的。与常压相比,操作压力采用 1.06lMPa,可节省动力约38%;当在6.0MPa下操作时,甚至可以省去原料气压缩机。 B加压操作可以提高后部工序的设备生产能力。随着压力的升高,能量消耗减少的程度也逐渐下降。

热转化制合成气工艺应用

热转化制合成气工艺应用 信息来源:中国免费论文网发布日期:2006-04-26 ◇字体:[大中小] 摘要:介绍了自热转化工艺(ATR)的基本原理和技术特点,以及在工业应用中的改进和完善。该工艺具有流程简单、操作灵活、H2/CO可调等特点,在天然气等的加工利用上具有良好的应用前景。 关键词:自热转化工艺合成气转化炉转化催化剂原料 巴陵石油化工有限责任公司化工厂制氢装置于1976年投产,设计液氨生产能力为1.5×104(t/a,以催化裂化干气(以下简称干气)为原料,经脱硫后采用自热武催化部分氧化工艺(以下简称自热转化工艺或ATR)制得合成气,再经中低变、脱碳和甲烷化工序后送压缩机,最后进至合成生产液氨。因产品调整,1997年合成部分停产,氢氮气全部供加氢装置。 为解决原料干气不足的问题,我厂相继试验用液态烃和石脑油作生产原料,都获得了成功,实现了干气、液态烃和石脑油单独或混合作原料连续进行生产,并结合生产运行情况自主研制了转化催化剂,改进了转化炉混合器,确保了“安稳长满优”生产,满足了加氢装置对氢气的需求。 1 基本原理 自热转化工艺将部分氧化与蒸汽转化相结合,其最大特点是氧化反应(即燃烧)与转化反应在同一个转化炉内完成,转化反应所需的热量由氧化反应提供,不需外界提供热量。这也是区别于外加热的蒸汽转化工艺的最大不同之处,由此决定了其一系列不同特点,在后续篇幅中将作详细介绍。 自热转化工艺的化学反应比较复杂,主要有以下三种反应(以CH4为例)。 1.1 部分氧化反应 烃类、蒸汽和富氧空气充分混合后进入转化炉催化剂层,首先进行氧化反应。相对烃类可燃物而言氧气不足,因此只有一部分烃类物质与氧气发生反应,且主要生成CO 面非CO2。这是一个强放热过程,反应方程式如下: 2CH4+3O2—2CO+4H2O+Q 氧化反应放出大量的热使物料温度从200℃急剧上升至1 000℃以上。 由于氧气不足,且氧化反应平衡常数很大,氧化反应进行得非常彻底,因此转化炉出口氧气含量微乎其微,可忽略不计。 1.2蒸汽转化反应 在高温下烃类物质与水蒸汽进行转化反应,这是一个强吸热过程: CH4+H2O—CO+3H2—Q 随着反应的进行,物料和床层温度逐步下降。

合成气制乙二醇

工艺选择 目前,乙二醇制备技术路线有 3 种:石油路线、煤路线和生物路线。 1.石油路线生产乙二醇 石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路 线法为环氧乙烷直接水合法。 环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、2.23 MPa 操作条件下,反应0.5 h,生成乙二醇含量约10%的乙二 醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。 优点:技术成熟,应用面广,收率为90%。 缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。 2.煤路线生产乙二醇 该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。目前国内合成气路线法乙二醇生产装置均采 用间接法。 实际工程应用的间接法为草酸酯法。即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO 2为催化剂, 150 ℃条件下进行DMO 的低压加氢制取乙二醇。该方法转化率达99.8% ,乙 二醇选择性 95.3%。 优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资

源相对丰富的资源国情。 缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。 3.生物路线生产乙二醇 自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、 小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作 为生物路线生产乙二醇的原料。中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨 催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达 61%, 是一种极具工业应用前景的绿色工艺路线。 优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境 友好技术。 缺点:收率低,技术难度大,目前达不到工业化生产要求。 目前,国内外大型乙二醇的生产均为石油法,其主要原料为乙烯和氧气,用银催化剂,甲烷或氮气做致稳剂,乙烯直接氧化成环氧乙烷,然后再生成乙二醇。全球环氧乙烷生产技术大部分使用的是英荷Shell 化学公司、美国科学设计公司( SD) 和美国 UCC 3 家公司的技术。 国内乙二醇生产企业在实际生产中因存在原料采购、技术壁垒及

煤制芳烃简介

煤制芳烃简介 一、产品市场情况 我国高质量芳烃产品的生产主要来自石油技术路线,由乙烯裂解生产芳烃产品。随着对芳烃需求的日益增长,作为芳烃生产原料的石油资源,面临着越来越严重的短缺局面,已成为制约我国芳烃发展的主要瓶颈之一。 芳烃为大宗基础有机化工原料,目前我国年消费量超过2000万吨。是化纤、工程塑料及高性能塑料等的关键原料,广泛用于服装面料、航空航天、交通运输、装饰装修,电器产品、移动通讯等。 目前芳烃97%以上来源依赖于石油原料,由于受到产能影响,多年来对外依存都接近总需求量的50%。芳烃产品中产能最大、与国民经济密切相关的对二甲苯,2012年的产量是773万吨,表观消费量1382万吨,自给率55.9%。2012年,我国芳烃进口量达609万吨,对外依存度为44%。截止2013年国内PX产能仅896万吨,对外依存度达46%。预测2015PX进口1000万吨,投资空间3000亿元。 同时,中国PX产能增长一直比较缓慢。一些拟建或建成的PX装臵因种种原因未能按计划投产,导致国内PX产不足需矛盾加剧。随着厦门、福州、大连、咸阳等PX项目因当地群众抗议而被迫搁浅。中国PX正遭遇后续项目断档的危机,这为煤制芳烃的成长与发展提供了巨大的空间。 ?页岩气大规模开发,已经将石油化工领域‘三烯三苯’格局打破,将页岩气作为原料生产烯烃,产品大部分是乙烯,丙烯很少,几乎没有芳烃。造成了国际上芳烃价格的上涨。未来十年内芳烃还会处于紧缺状态,5-6年内价格还会上涨。 与芳烃缺口形成鲜明对比的是甲醇的产能过剩。来自氮肥工业协

会统计数据显示,2012年我国甲醇产量为3164万吨,同比增加 19.08%,装臵开工负荷仅61.3%。近年来,我国每年芳烃缺口约为600万至700万吨,如果按1吨芳烃消耗3吨甲醇计算,那么仅用来制芳烃的甲醇就将达到每年2000多万吨。 截止2013底,我国只建成陕西华电榆横煤化工有限公司万吨级中试装臵和内蒙庆华集团10 万吨甲醇制芳烃装臵,国内总产能达11万吨。陕西华电榆横煤制芳烃示范项目于2011年3月正式开工建设,先行建设万吨级煤制芳烃中试装臵,同时启动百万吨级工业示范项目,规模为300万吨煤制甲醇和100万吨芳烃装臵。2012年,万吨级甲醇制芳烃中试试验装臵在陕西榆林煤化工基地建成。2013年1 月13日,第一次投料原料甲醇转化率高于99.99%,油相产物中甲基苯(主要指甲苯、二甲苯和三甲苯)的含量达到90%以上。截止1月15日中午15时,原料甲醇累计进料约100吨,装臵平稳运转54小时,工业试验装臵实现了一次点火成功,一次投料试车成功,打通关键流程。2013年3月18日,该项中试技术通过了国家能源局委托和化学工业联合会组织的科技成果鉴定。中试结果显示,3.07 吨甲醇就可以生产1吨芳烃,并副产大量氢气,工艺废水不含氨氮,废气不含硫氮。2013年3月,由赛鼎公司设计的内蒙庆华集团10 万吨甲醇制芳烃装臵一次试车成功,项目顺利投产。这是赛鼎运用与中科院山西煤化所合作开发的?一种甲醇一步法制取烃类产品的工艺?专利技术设计的我国第一套甲醇制芳烃装臵。 另外,国内煤制芳烃新建拟建项目5个,总产能445万吨,在建产能165万吨。见表1。 表1我国建成和在建煤制芳烃项目万吨 建成项目

合成气制乙二醇工艺 化学

一、EG目前市场及存在的问题 我国聚酯产业的快速发展对EG 产品的需求十分旺盛,加之产品市场缺口量大,从而为EG 产能增长尤其是煤制EG 新增产能释放提供了可观的市场空间,总体市场前景是令人乐观的,但是还存在以下几个不容忽视的问题: 第一,我国EG 装置产能低,产品主要依赖进口,同时石油路线EG 成本高、缺乏市场竞争力。 第二,我国煤制EG 虽然发展较快,但仍处于起步阶段,其核心技术( 主要是草酸酯加氢催化剂) 仍有待长周期工业运行的验证,另外煤制EG还存在煤耗高、水耗高、碳排放量大等缺陷,大规模发展煤制EG 受到资源条件、环境容量等方面因素制约。 第三,国外主要采用乙烷裂解制乙烯,生产成本低,其EG 产品价廉质优,而且主要出口到中国市场,因此无论是国产石油路线EG 还是煤制EG,都仍将受到进口EG 产品的强烈冲击。我国乙二醇供需状况: 二、选择该工艺的理由 与环氧乙烷水化法比较,该新型路线从合成气出发,首先由CO气相催化偶联合成草酸酯,草酸酯再催化加氢制备乙二醇,符合我国煤多油少的国情,通过煤基合成气制乙二醇,对国家经济发展具有战略意义,而且相对于石油化工路线来说,经济效益也较好。该方法工艺流程简单、能耗小、乙二醇的选择性相对较高,成为最有工业应用前景的反应。 煤制乙二醇经济性分析: 名称规格单耗单价成本 原辅材料

一氧化碳≥98.2%800m30.5 400 氢气≥99.5%1600m30.8 1280 氧气≥99%260m30.1 26 亚硝酸甲酯 4.4kg 522 甲醇≥99%130kg 2260 公用工程 新鲜水5t 523 循环水440t 0.5 220 电1100kwh 0.6 660 蒸汽 1.7 MPa 3.2t 120 384 蒸汽 1.0 MPa 3.6t 110 396 蒸汽0.5MPa 1.64t 100 164 压缩空气50m3150 合计3887 三、合成的工艺路线及简要工艺流程 草酸酯加氢制乙二醇工艺 此路线为两个反应过程组成: 首先,CO 与亚硝酸酯发生偶联反应,生成草酸酯和一氧化氮,一氧化氮在醇和氧气条件下发生再生反应,生成亚硝酸酯;其次,生成的草酸酯在催化剂的存在下与氢气发生加氢还原。反应原理及方程式如下: CO 偶联:2CO+ 2RONO →( COOR) 2+2NO NO 再生:2NO +2ROH +1/2O2 →2RONO+ H 2O 反应过程中并不消耗NO 与RONO,由CO 制草酸酯的总反应如下: 2CO +2ROH+1/2 O2→ ( COOR) 2+H 2O 草酸酯加氢机理: 首先草酸酯酯跟氢气发生反应生成中间产物烷基醇酸酯,然后中间产物再加氢生成乙二醇。由于醇羟基活泼性较高,在氢气存在下乙二醇可以进一步加氢生成副产物乙醇。方程式如下: 主反应: ( COOR) 2+2H2 →CH2OHCOOR+ROH CH2OHCOOR+2H2→(CH2OH)2+ROH 总反应:(COOR)2 + 4H2→(CH2OH)2 + 2ROH 烷基R 可为甲基、乙基、丙基、丁基等,RONO可由甲醇、乙醇、丙醇、丁醇等为原料制得。 副反应:(CH2OH)2+H2→CH3CH2OH+H2O 工艺流程图:

相关文档
最新文档