高中数学 应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏新高考
“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键.
应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题.2013年应用考题是解不等式模型,2014年应用考题可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,2015、2016年应用考题都先构造函数,再利用导数求解.2016、2017年应用考题是立体几何模型,2017年应用考题需利用空间中的垂直关系和解三角形的知识求解.
[常考题型突破]
函数模型的构建及求解
[例1](2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?
[方法归纳]
解函数应用题的四步骤
[变式训练]
1.(2017·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量w (单位:百千克)与肥料费用x (单位:百元)满足如下关系:w =4-3x +1,且投入的肥料费用不超过5百元.此外,还需要投入其他
成本(如施肥的人工费等)2x 百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L (x )(单位:百元).
(1)求利润函数L (x )的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
2.(2017·南通三模)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用
为f (t )万元,经测算f (t )=⎩⎨⎧
5,0 , 8-1t ,1 3 (1)用t 表示线段EF 的长; (2)求修建该参观线路的最低费用. 基本不等式的实际应用 [例2] (2017·南京考前模拟)某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q (万件)与广告费x (万元)之间的函数关系为Q =4x +1x +1 (x ≥0).已知生产此产品的年固定投入为4.5万元, 每生产1万件此产品仍需再投入32万元,且能全部销售完.若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和. (1)试将年利润W(万元)表示为年广告费x(万元)的函数; (2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少? [方法归纳] 利用基本不等式求解实际应用题的注意点 (1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解. (2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围对应函数的单调性求解. [变式训练] (2017·苏州期末)某湿地公园内有一条河,现打算建一座桥(如图1)将河两岸的路连接起来,剖面设计图纸(图2)如下, 其中,点A ,E 为x 轴上关于原点对称的两点,曲线段BCD 是桥的主体,C 为桥顶,并且曲线段BCD 在图纸上的图形对应函数的解析式为y =8 4+x 2(x ∈[-2,2]),曲线段AB ,DE 均为开口向上的抛 物线段,且A ,E 分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B ,D )的切线的斜率相等. (1)求曲线段AB 在图纸上对应函数的解析式,并写出定义域; (2)车辆从A 经B 到C 爬坡,定义车辆上桥过程中某点P 所需要的爬坡能力为:M =(该点P 与桥顶间的水平距离)×(设计图纸上该点P 处的切线的斜率)其中M P 的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,用已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥? 三角函数的实际应用 [例3] (2017·江苏高考)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度; (2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度. [方法归纳] 解三角形应用题是数学知识在生活中的应用,要想解决好,就要把实际问题抽象概括,建立相应的数学模型,然后求解. 解三角形应用题常见的两种情况: 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. 实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程组,解方程组得出所要求的解. [变式训练] 如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ. (1)将AN,AM用含θ的关系式表示出来; (2)如何设计(即AN,AM为多长),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)? [课时达标训练] 1.(2017·苏锡常镇一模)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC(如图),设计要求彩门的面积为S(单位:m2),高为h(单位:m)(S,h为常数),彩门的下底BC 固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l. (1)请将l表示成关于α的函数l=f(α); (2)当α为何值时l最小?并求l的最小值.