华杯小高组决赛真题演练4-教师版
2012年—2015五届华杯赛小高年级组试题及标准答案
第十九届华罗庚金杯少年数学邀请赛
决赛试题A(小学高年级组)
一、填空题(每小题10分,共80分)
1.如右图,边长为12米的正方形池塘的周围是草地,池塘边A,B,C,D处各有一根木桩,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在处的木桩上.
1×9+2×8+3×7+…+9×1=165
二、填空题(每小题10分,满分40分)
7.将乘积 化为小数,小数点后第2013位的数字是________.
【答案】9
【解析】
循环节有5位,2013≡3(mod5),第2013位和第3位一样,是9.
8.一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因为井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙从井底爬到井口时所花的时间为________分钟.
【答案】
【解析】设三个进水口的效率分别是a、b、c,出水口的效率为m;
依题意有
,得
所以同时打开三个进水口需要 = 小时
10.九个同样的直角三角形卡片,用卡片的锐角拼成一圈,可以拼成类似右图所示的平面图形.这种三角形卡片中的两个锐角中较小的一个的度数有________种不同的可能值.(右图只是其中一种可能的情况)
4.某日,甲学校买了56千克水果糖,每千克8.06元.过了几日,乙学校也需要买同样的56千克水果糖,不过正好赶上促销活动,每千克水果糖降价0.56元,而且只要买水果糖都会额外赠送5%同样的水果糖.那么乙学校将比甲学校少花()元.
(A)20(B)51.36(C)31.36(D)10.36
华杯赛高中组试题及答案
华杯赛高中组试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B解析:函数f(x)=x^2+2x+1可以写成f(x)=(x+1)^2,这是一个开口向上的抛物线,其最小值出现在顶点处,即x=-1时,f(-1)=1。
2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值是()。
A. 3B. 5C. 7D. 9答案:C解析:根据递推关系,a2=2a1+1=2*1+1=3,a3=2a2+1=2*3+1=7。
3. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,判断三角形ABC的形状是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B解析:根据勾股定理的逆定理,若a^2+b^2=c^2,则三角形ABC为直角三角形。
4. 已知函数f(x)=x^3-3x,求f'(x)的值是()。
A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A解析:对f(x)=x^3-3x求导,得到f'(x)=3x^2-3。
二、填空题(每题5分,共20分)5. 已知函数f(x)=x^2-4x+3,求f(2)的值是______。
答案:-1解析:将x=2代入函数f(x)=x^2-4x+3,得到f(2)=2^2-4*2+3=-1。
6. 已知等差数列{an}的首项a1=2,公差d=3,求a5的值是______。
答案:11解析:根据等差数列的通项公式an=a1+(n-1)d,得到a5=2+(5-1)*3=11。
7. 已知双曲线方程为x^2/a^2-y^2/b^2=1,其中a=2,b=1,求双曲线的渐近线方程是______。
答案:y=±x解析:双曲线的渐近线方程为y=±(b/a)x,代入a=2,b=1,得到y=±x。
8. 已知函数f(x)=sin(x)+cos(x),求f'(π/4)的值是______。
小学组华杯赛试题及答案
小学组华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上4等于20,这个数是多少?A. 4B. 5C. 6D. 7答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 30B. 50C. 60D. 70答案:B4. 一个数的5倍减去3等于12,这个数是多少?A. 3B. 2C. 1D. 0答案:A二、填空题(每题5分,共20分)5. 一个数加上10等于20,这个数是______。
答案:106. 一个数的4倍是24,这个数是______。
答案:67. 一个数的2倍加上3等于15,这个数是______。
答案:68. 一个数的3倍减去5等于10,这个数是______。
答案:5三、计算题(每题10分,共20分)9. 计算下列算式:(23 + 45) × (12 - 8)答案:68 × 4 = 27210. 计算下列算式:(36 ÷ 4) + (54 ÷ 6)答案:9 + 9 = 18四、解答题(每题15分,共30分)11. 一个班级有48名学生,如果每排坐8名学生,可以坐满几排?答案:48 ÷ 8 = 6(排)12. 一个长方形的长是15厘米,宽是9厘米,求它的周长。
答案:(15 + 9) × 2 = 24 × 2 = 48(厘米)五、应用题(每题20分,共20分)13. 小明有36个苹果,他打算每4个苹果装一袋,可以装几袋?答案:36 ÷ 4 = 9(袋)。
解析第20届华杯赛决赛试题WORD范本可编辑
解析第20届华杯赛决赛试题WORD范本可编辑解析第20届华杯赛决赛试题第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看科雅数学:彭泽老师谷运增老师杨秀情老师彭艳老师提供详解校区地址:金河路尊城国际1305 小南街128号福华新起点五层第二十届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组) 答案及详解(时间:2017年4月11日10:00-11:30)答案:内容需要下载文档才能查看内容需要下载文档才能查看的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树13棵。
详解:甲其余三人a+2a=60 a=20 乙其余三人b+3b=60内容需要下载文档才能查看b=15第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看丙其余三人c+4c=60内容需要下载文档才能查看内容需要下载文档才能查看内容需要下载文档才能查看c=12 丁=60-20-15-12=133、当时间为5点8分时,钟表面上的时针与分针成度的角。
详解:5:00时,分针与时针夹角为25*6=150 过八分钟,分针走8*6°=48°,时针走8*0.5=4°内容需要下载文档才能查看内容需要下载文档才能查看5:08时,夹角为150-(48-4)=1064. 某个三位数是2的`倍数,加1是3 的倍数,加2是44是6的倍数,那么这个数最小为详解:这个数除以3余2,除以4余2,除以526N=[3.4.5.6]n+2=60n+2 最小3位数为60*2+2=122没有三个国家两两都是敌国,个6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是,最小的是。
详解:设这四个数字为abcd 共A4=4*3*2*1=24个以a开头=以b开头=以c开头=以d开头的个数=24/4=6个4第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看百位,十位,个位每个字母都出现6次和为b(a+b+c+d)*1111=106656 a+b+c+d=16abcd最大为9421,最小为12497. 见右图,三角形ABC的面积为1,DO:OB=1:3,EO:OA=4:5,内容需要下载文档才能查看内容需要下载文档才能查看若个位是0、0、0,a*b*c末三位为000 若个位是0、5、5,a*b*c末三位为250/750/500 所以有4种可能值二、解答下列各题(每小题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由。
第23届小高组答案
第二十三届华罗庚金杯少年数学邀请赛决赛试题·练习用参考答案(小学高年级组)一、填空题(每小题 10 分, 共 80 分)二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程)9. 【答案】:2018.n 2 + 3 =411解:因为 n 2-1 1 += 1 + 2( n 2-1n -1 -)(2≤n ≤2017) ,所以 n + 1 x = 2016 + 2(1 - 1 + 1 - 1 + + 1 - 1)3 24 2016 2018 = 2016 + 2(1 + 1 - 1 - 1)= 2019 -2 2017 20182 ⨯ 4035 2017 ⨯ 2018= 2019 -40352035153,所以[x ] = 201810. 【答案】35,7【解答】以该七边形任意一顶点为端点的对角线上共有 4+6+6+4=20 个交点, 每个交点均由 2 条对角线相交所得,即由 4 个顶点确定,故共有交点20⨯ 7÷ 4 = 35个.已在该图中出现的,以这些交点为顶点的每一个三角形,应由 3 条对角线相交围成,即由 6 个顶点确定.7 个顶点任选 6 个,共 7 种方法,故该图中以这些 交点为顶点的三角形共 7 个.11. 【答案】可以.题号1 2 345678答案927 125608ECADB1009511356770【解答】证法 1:由于S = abc + bca + cab = 111⨯ (a + b + c ) = 3⨯ 37 ⨯ (a + b + c ) ,由已知27 | abc , 得9| abc ,故9 | (a + b + c ) ,因此27 | S ,所以27 | bca + cab .证法2:考虑_____a -9 b = 9 c - 9 b 0 c -,由已知27 | abc ,得3| abc ,故3 | (a + b + c ) ,因此27 | 9(a + b + c ) ,所以27 | abc - bca ,可得27 | bca .同理27 | cab .证得27 | bca + cab . 12. 【答案】90︒【解答】易知 DE // GF , HK = 7 厘米, DEFG 是个梯形,它的面积= 1(7 + 19)⨯ 7 = 91 (平方厘米),2因此,三角形 ABC 的面积=131- 91 = 40 (平方厘米).作 AP ⊥ BC 于 P ,则三角形 ABC 的面积=40= 1 AP ⨯ BC = 1 AP ⨯10 , 2 2 所以 AP = 8 厘米=AB ,因此 P 点与 B 点重合,因此 AB ⊥ BC , 即∠ABC = 90 .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13. 【答案】n = 520 , m = 745 ,A 能不 2 和 3 整除。
奥数第十八届华杯赛决赛小高年级(A)卷试题及解析
奥数第十八届华杯赛决赛小高年级〈A 〉卷试题及解析决赛试题A 〈小学高年级组〉一、填空题〈每小题 10分, 共80分〉1.计算: 19×0.125+281×81-12.5=________. 解析:原式=〈19+281-100〉×0.125=200×0.125=252.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2013年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。
所以A-1=315,A=316。
4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰三角形PAB . 则三角形PAC 的面积等于________平方厘米.解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。
根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。
S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2,S △PAC=48+36-12×12÷2=12 cm 2。
第十九届华杯赛·小学高年级组·武汉
1 【解析】在 A 点时活动区域的面积是一个半径为 4 米的半圆,即 42 8 平方米。 2
在 B、D 点时活动区域的面积都是一个半径为 4 米的半圆加一个
1 2 1 1 4 12 8 平方米。 2 4 4
1 半径为 1 米的圆,即 4
第十九届华杯赛·小学高年级组·B 卷
综上所述,共有 17 种。 10. 【答案】10%
【考点】比例应用题 【解析】设杯子的容积为单位“1” ,则小球的体积为 10% 1
因为它们的体积比为 10 : 5 : 3 .,所以中球的体积为
1 。 10
1 5 1 = ,大球的体积为 10 3 6
1 10 1 1 = 。最终只有大球在杯子中,所以三次排除盐水的总体积是 。所以盐水只剩下 3 10 3 3
14.从连续自然数1,2,3,…,2014 中取出n 个数,使这n 个数满足:任意取其中两个数, 不会有一个数是另一个数的7 倍.试求n 的最大值,并说明理由.
激发兴趣 培养习惯 塑造品格
第十九届华杯赛·小学高年级组·B 卷
第十九届华罗庚金杯少年数学邀请赛 决赛试题 B(小学高年级组)参考答案
。 2)第一层 2 个,第二层 6 个:
。 2)第一层 3 个,第二层 5 个:
, 二、分 3 层时,分为 3 类:
。
1)第一层 1 个,第二层 2 个,第三层 5 个:
,
,
。
2)第一层 1 个,第二层 3 个,第三层 4 个:
,
。
激发兴趣 培养习惯 塑造品格
5.如果
〇 7 4 < 成立,则“〇”与“□”中可以填入的非零自然数之和最大为 11 □ 5
第9届华杯赛决赛试题及解答
8.
一 个最简 真分 数
干 位 的 数 字 之 和 等 于 2004 , 求 M 的 值 。
9.
小 丽 计 划 用 31 元 买 走 每 支 2 元 、3 元 、4 元 三 种 不 同 价 格 的 圆 珠 笔 , 每种至少买 1 支,问她最多 能买格 纸 上 ( 如 左 下 图 ) , 用铅笔涂其 中的 5 个方格,要求 每横行和 每竖列被 涂方格 的个数 都是奇 数。如果 两种涂 法经过 旋转 后相同, 则认为它 们是相 同类型 的涂法 ,否则是 不同类 型的涂 法。 例如下中 图和右下 图是相 同类型 的涂法 。最多有 多少种 不同类 型的 涂法?说明理由 。
675
钟,则蚂蚁乙从 洞穴 B 到达洞 穴 C 时爬 行了( 洞穴 C 到达洞穴 A 时爬行了( ) 米。
)米,蚂蚁 丙从
6.
如 下 图 ,甲 、乙 二 人 分 别 在 A ,B 两 地 同 时 相 向 而 行 ,于 E 处 相 遇 后 , 甲 继 续 向 B 地 行 走 ,乙 则 休 息 了 14 分 钟 ,再 继 续 向 A 地 行 走 。甲 和 乙到达 B 和 A 后立即折返, 仍在 E 处相遇 。 已 知 甲 每 分 钟 行 走 60 米 , 乙 每 分 钟 行 走 80 米 , 则 A 和 B 两 地 相 距 〔 )米。
二 、 解 答 下 列 各 题 , 要 求 写 出 简 要 过 程 ( 每 题 10 分 ) 7. 李 家 和 王 家 共 养 了 521 头 牛 ,李 家 的 牛 群 中 有 67 % 是 母 牛 ,而 王 家 的牛群中仅有下
1 是母牛,李 家和王家 各养了多少 头牛? 13 M ,化成小 数。 , 如果 从小 数点后 第一 位起连 续若 7
677
第21届“华杯赛”决赛小高组C组试题和参考答案
- 1 -
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C 参考答案(小学高年级组)
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 C 参考答案 (小学高年级组) 一、填空题(每小题 10 分, 共 80 分)
题号 答案 1 2 五 3 0 4 12 5 81 6 23 7 1 8 24
1
2 3
二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程) 9. 答案:525 米 10.答案:156 个 11.答案:24 种 12.答案:15 分钟 三 解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程) 13.答案:5050,2394 14.答案:8 人
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的 6 个, 并在这串数的最后再写上擦去的 6 个数的和,得到新的一串数,再做同样 的操作,直到黑板上剩下的数不足 6 个. 问:(1) 最后黑板上剩下的这些数 的和是多少?(2) 最后所写的那个数是多少? 14. 数学竞赛,填空题 8 道,答对 1 题,得 4 分,未答对,得 0 分;问答题 6 道,答对 1 道,得 7 分,未答对,得 0 分. 参赛人数 400 人,至少有多少 人的总分相同?
-1-
图2
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C (小学高年级组)
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 甲、乙两人,在一圆形跑道上同时同地出发,反向跑步. 已知甲的速度是每 分钟 180m,乙的速度是每分钟 240m,在 30 分钟内,它们相遇了 24 次, 问跑道的长度最多是多少米? 10. 一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是 27:25,甲多乙少, 若从甲中至少取出 4 个,加入乙中,则乙多甲少,问这筐苹果有多少个? 11. 图 3 是一个等边三角形,等分为 4 个小的等边三角形,用红和 黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能 涂一种颜色. 涂完后, 如果经过旋转, 等边三角形的涂色相同, 则认为是相同的涂色,则共有多少种不同的涂法?
华杯赛小高近5年真题(附详解)20C
A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,
“华”与 1 的和是质数,只能“华” 2 ,进而“杯” 3 .
ቤተ መጻሕፍቲ ባይዱ
4
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
120
4 3
30+ 40 3
最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)
第二十一届华杯赛决赛小高组模拟试题B 答案1、637【解答】原式=910891078910678910106372!3!4!5!⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++=。
2、32【解答】她爷爷正常是60岁退休,应该是1939年出生的兔,1945年是鸡年,1957年又是鸡年,这一年她爷爷才18岁,不到结婚年龄,因而1969年的鸡年,应该是她爸爸的出生年,否则,下一个鸡年是1981年,到2000年才19岁,也不能当父亲,故2001年,小琴的爸爸32岁。
3、23【解答】乙已经开了9小时,甲再开9小时,此时15-9=6小时,两个一起放水还需要6小时注满。
由已知,要达到乙开6小时的注水量,甲还需要开6×43=8小时,故甲还需要9+6+8=23小时注满水池。
4、51【解答】10个数中有5个奇数,5个偶数,从5个偶数中取出3个,共有10种不同的取法;从5个偶数中取1个,从5个奇数中取2个,共有50种不同的取法,所以和为偶数的不同取法共有60种,其中{}0,1,3,{}0,1,5,{}0,1,7,{}0,2,4,{}0,2,6,{}0,3,5,{}1,2,3,{}1,2,5,{}1,3,49种取法的和小于10.综上,满足条件的不同取法共有51种。
5、2【解答】将棋子放中间行的白色方格中,就可以唯一地确定一种放法,其中棋子放左边方格和右边方格是相同放法,故不同放法只有2种。
6、201【解答】连接EF ,三角形BCF 的面积=41,三角形BEF 的面积=41×31=121,三角形ECF 的面积=61,三角形BED 的面积=61,三角形FED 的面积=三角形BED 的面积-三角形BEF 的面积=121。
由共边定理,面积面积EGF ECF ∆∆=面积面积DFG DFC ∆∆=GF CF ,面积DFG -12161∆=面积DFG 41∆=GF CF ,解得DFG ∆的面积=201。
7、14从表中可以看出,满足这样条件的(m,n )数对有14个。
第二十届“华杯赛”决赛小高组试题A答案解析
此时对应的数是115、552 或 232、435 .
10.酒店有 100 个标准间,房价为 400 元/天,但入住率只有 50%,若每降低 20 元的房价, 则能增加 5 间入住,求合适的房价,使酒店收到的房费最高.
【考点】组合、最值 【难度】☆☆☆ 【答案】22500 【分析】初始状况是:400 元、50 间, 设降价了 x 个 20 元, 房费是: (400 20x)(50 5x) 100(20 x)(10 x)
7.一次数学竞赛有 A、B、C 三题,参赛的 39 个人中,每个至少答对了一道题.在答对 A 的
人中,只答对 A 的比还答对其它题目的多 5 人;在没答对 A 的人中,答对 B 的是答对 C 的
2 倍;又知道只答对 A 的等于只答对 B 的与只答对 C 的人数之和,那么答对 A 的最多有
______________人. 【考点】组合、容斥原理、最值问题 【难度】☆☆☆☆ 【答案】23 【分析】根据题意得,如下图所示:只答对 A 的人数是 3b a ,答对 A 还答对其他题目的人
S D G I F A 84 若从 2 以上开始, S 77 ,不可能,所以这十一个数是 1~11 则 S=66,则 D G I F A 18 8 4 3 2 1 7 5 3 2 1 6 5 4 2 1 分(1)(2)(3)情况讨论: (1) H 12 矛盾 (2) E 7 矛盾 (3)
个数和为 6 a b c d 1111 73326 ,得 a b c d 11 ,此时只有数字 1、2、
3、5. 这些四位数中最大的是 5321.
6.如右图所示,从长、宽、高分别为15cm , 5cm , 4cm 的 长方体中切割走一块长、宽、高分别为 ycm , 5cm , xcm 的
18~22届华杯赛【小高组】决赛试题打印版
18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。
华杯赛决赛试题及答案
华杯赛决赛试题及答案一、选择题1. 下列哪个选项是正确的?A. 2 + 3 = 5B. 3 + 4 = 7C. 5 - 2 = 2D. 4 - 3 = 2答案:A2. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 零C. 正数D. 任意实数答案:C二、填空题1. 圆的周长公式是 ________ 。
答案:2πr2. 一个直角三角形的两个直角边长分别为3和4,斜边长为________ 。
答案:5三、简答题1. 请解释什么是质数,并给出一个质数的例子。
答案:质数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。
例如,2是一个质数,因为它只能被1和2整除。
2. 什么是勾股定理,并给出一个应用的例子。
答案:勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
例如,如果一个直角三角形的两个直角边长分别为3和4,根据勾股定理,斜边的长度应该是√(3² + 4²) = 5。
四、计算题1. 计算下列表达式的值:(3 + 4) × (8 - 2) ÷ 2答案:352. 一个数的平方是36,求这个数的值。
答案:±6五、证明题1. 证明:对于任意正整数n,n² - 1总是能被8整除。
答案:对于任意正整数n,可以表示为n = 8k + r,其中k是整数,r是0到7之间的整数。
那么n² - 1 = (8k + r)² - 1 = 64k² +16kr + r² - 1 = 8(8k² + 2kr) + (r² - 1)。
由于r² - 1是8的倍数或者-1,所以n² - 1能被8整除。
2. 证明:在一个直角三角形中,如果斜边是直角边的两倍,那么这个三角形是等腰直角三角形。
答案:设直角三角形的直角边长分别为a和b,斜边为c。
根据题意,c = 2a。
15届华杯决赛4小学试题及(答案)doc.
15届华杯决赛4小学试题及(答案)doc.一、选择题(每题5分,共30分)1. 下列哪个选项是正确的?A. 2+3=5B. 3+4=7C. 5+5=10D. 6+7=13答案:C2. 哪个数字是最小的质数?A. 1B. 2C. 3D. 4答案:B3. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 9答案:C4. 下列哪个分数是最小的?A. 1/2B. 2/3C. 3/4D. 4/5答案:A5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:A6. 下列哪个图形的周长最长?A. 边长为3cm的正方形B. 长为4cm、宽为2cm的长方形C. 半径为2cm的圆D. 边长为2cm的等边三角形答案:C二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。
答案:32. 一个数除以5的商是6,余数是1,那么这个数是______。
答案:313. 一个数的倒数是1/4,那么这个数是______。
答案:44. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5或-5三、解答题(每题10分,共50分)1. 一个长方形的长是宽的两倍,如果宽是4cm,那么长是多少cm?并计算长方形的周长。
答案:长是8cm,周长是24cm。
2. 一个数的3倍加上4等于20,求这个数。
答案:这个数是4。
3. 一个数的一半加上3等于10,求这个数。
答案:这个数是14。
4. 一个数的平方减去4等于20,求这个数。
答案:这个数是6或-6。
5. 一个数的5倍减去3等于22,求这个数。
答案:这个数是5。
第十二届“华杯赛”浙江赛区复赛试题及答案(四年级组)-小学数学四年级下册-竞赛试题及答案-人教课标版
第十二届“华杯赛”浙江赛区复赛试题及答案(四年级组)小学数学四年级下册竞赛试题及答案人教课标版一、填空题(每题10分, 共80分)1、计算:123456+234567+345678+456789+567901+679012+790123+901234=__________.2、国庆节接受检阅的一列车队共52辆, 每辆车长4米, 每相邻两辆车相隔6米, 车队每分钟行驶105米。
这列车队要通过536米长的检阅场地, 要分钟。
3、把长2厘米宽1厘米的长方形如图(1)一层、两层、三层地摆下去, 摆完第十五层, 这个图形的周长是厘米。
4、北京某四合院子正好是个边长10米的正方形, 在院子中央修了一条宽2米的“十字形”甬路, 如图(2)这条“十字形”甬路的面积是平方米。
图(1)图(2)5、哥哥和弟弟共有故事书120本, 哥哥的故事书本数是弟弟的3倍, 哥哥有故事书本, 弟弟有故事书本.6、甲、乙两个粮仓共存粮320吨, 后来从甲粮仓运出40吨, 给乙粮仓运进20吨, 这时甲仓存粮是乙仓的2倍, 甲、乙两个粮仓原来各存粮分别为吨和吨.7、今年爸爸的年龄是小芳年龄的3倍, 几年前, 爸爸的年龄是小芳年龄的5倍, 再几年前, 爸爸的年龄是小芳年龄的7倍.他们的年龄差在20岁至30岁之间, 爸爸今年岁.8、篮中有许多李子, 如果将其中的一半又1个给第一个人, 将余下的一半又2个给第二个人, 然后将剩下的一半又3个给第三个人, 篮中刚好一个也不剩, 篮中原来有个李子.二、解答题(共70分, 要求写出解答过程)9、如果小方给小明一个玻璃球, 两人的玻璃球数相等;如果小明给小方一个玻璃球, 则小方的玻璃球数就是小明的两倍.问小明、小方原来各有多少个玻璃球?(本题15分)10、原计划有420块砖让若干学生搬运, 每人运砖一样多, 实际增加了一个学生, 这样每个学生就比原计划少搬2块.问:原有学生多少人?(本题15分)11、把99粒棋子放在两种型号的17个盒子里, 每个大盒子里放12粒, 每个小盒子里放5粒, 恰好放完.问大、小盒子各多少个?(本题20分)12、有A、B、C、D、E五个小足球队参加足球比赛, 到现在为止, A队赛了4场, B队赛了3场, C队赛了2场, D队赛了1场.那么E队赛了几场?(本题20分)第十二届“华杯赛”浙江赛区复赛试题(三年级组)参考答案一、填空(每题10分, 共80分)题号 1 2 3 4 5 6 7 8答案 4098760 10 90 36 90, 30 240, 80 36 34注:第5题、6题, 每空5分.填空题参考详解:1.4098760解:123456+234567+345678+456789+567901+679012+790123+901234=(123456+901234)+(234567+790123)+(345678+679012)+(456789+56 7901)=1024690+1024690+1024690+1024690=1024690×4=40987602.10解:因为车队行驶的路程等于检阅场地的长度与车队长度的和。
第十九届华杯赛决赛小学高年级组试题A答案详解
第十九届华罗庚金杯少年数学邀请赛决赛试题A (小学高年级组)一、填空题(每小题 10 分, 共80 分)1. 如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB =BC =CD =3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上. 为了使羊在草地上活动区域的面积最大, 应将绳子拴在 处的木桩上. 【考点】圆与扇形 【答案】B【解析】拴在B 处活动区域最大,为43圆。
2. 在所有是20的倍数的正整数中, 不超过2014并且是14的倍数的数之和是 . 【考点】最小公倍数,等差数列 【答案】14700【解析】[]14014,20=,141402014=⎥⎦⎤⎢⎣⎡,()1470014321140=+++⨯ .3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有 种. 【考点】计数 【答案】20【解析】解法一:枚举法(1)三奇数:135、137、157、357,4个; (2)三偶数:246、248、268、468,4个;(3)两奇一偶:136、138、158、147、358、257,6个; (4)两偶一奇:247、258、146、148、168、368,6个; 共4+4+6+6=20种.解法二:排除法1~8中任取三个数,有5638=C 种不同的取法其中三个连续数有6种(123~678)两个连续数有5+4+4+4+4+4+5=30种(如124、125、126、127、128等)则满足题意的取法有56—6—30=20种.4. 如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为平方厘米.【考点】格点与面积【答案】56.5【解析】如图(见下页),通过分割和格点面积公式可得小马总面积为56.5个正方形,即面积为56.5平方厘米。
华杯赛决赛试题及答案
华杯赛决赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=2x^2-4x+3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 一个圆的直径是10cm,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:B3. 一个数列的前三项是1, 2, 4,若数列满足a_n = a_(n-1) +a_(n-2),求第四项a_4的值。
A. 6B. 7C. 8D. 9答案:C4. 已知三角形ABC的三边长分别为a, b, c,且a^2 + b^2 = c^2,判断三角形ABC的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B二、填空题(每题5分,共20分)5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,求其体积。
答案:24cm³6. 一个等差数列的前三项是2, 5, 8,求第五项的值。
答案:117. 已知一个等腰三角形的底边长为6cm,两腰长均为5cm,求其周长。
答案:16cm8. 一个数的平方是36,求这个数。
答案:±6三、解答题(每题15分,共30分)9. 已知函数g(x)=x^3-6x^2+9x+1,求g(2)的值。
答案:g(2) = 2^3 - 6*2^2 + 9*2 + 1 = 8 - 24 + 18 + 1 = 310. 一个正五边形的边长为a,求其内角和。
答案:一个正五边形的内角和为(5-2)*180° = 540°。
四、证明题(每题15分,共15分)11. 证明:若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则三角形ABC是直角三角形。
答案:根据勾股定理,若三角形ABC的三边长a, b, c满足a^2 + b^2 = c^2,则三角形ABC是直角三角形,其中c为斜边。
证明如下:设三角形ABC的边长分别为a, b, c,且a^2 + b^2 = c^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八届华罗庚金杯少年邀请赛决赛试题B (小学高年级组)一、填空题(每小题 10分, 共80分)1.计算: 19×0.125+281×81+12.5=________. 解析:原式=(19+281+100)×0.125 =400×0.125 =50 2.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的2月10日是________九的第________天. 解析:31-21+1+31+10=52,52÷9=5…7,2013年的元旦是六九的第7天.3.某些整数分别被131********,,,除后, 所得的商化作带分数时, 分数部分分别是112927252,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被131********,,,除后, 所得的商分别为A A A A 11139117957,,,; )1(111311211113)1(911921911)1(7972179)1(5752157−++=−++=−++=−++=A A A A A A A A ,,,显然,当A-1是[5,7,9,3]的时候满足题意。
所以A-1=3465,A=3466。
4.如图所示, P, Q 分别是正方形ABCD 的边AD 和对角线 AC 上的点, 且PD:AP =4:1, QC: AQ =2:3, 如果正方形ABCD 的面积为25, 那么三角形PBQ 的面积是 .解析:连接QD,做QE ⊥BC 于E, QF ⊥AD 于F, QG ⊥CD 于G, 正方形ABCD 的面积为25,所以AD=EF=5, QC: AQ =2:3,根据正方形对称性,所以QE=QG=2,QF=3, PD:AP =4:1, AP=1,PD=4。
S △PQB=S 正- S △CQB-S △DQC-S △PQD-S △PAB =25-2×5÷2×2-4×3÷2-1×5÷2=25-10-6-2.5=6.55.有一筐苹果, 甲班分, 每人3个还剩10个; 乙班分, 每人4个还剩11个; 丙班分, 每人5个还剩12个. 那么这筐苹果至少有________个.解析:10≡1(mod3)=1;11≡3(mod4)=3;12≡5(mod5)=2,苹果数除以3余1,除以4少1,除以5多2。
满足除以3余1,除以4少1的数最小是7,7刚好除以5余2,又因为苹果数大于12,[3,4,5]=60,那么这筐苹果至少有7+60=67个.6.两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形, 其中, 小积木的粘贴面的四个顶点分别是大积木的粘贴面各边不是中点的一个四等分点.如果大积木的棱长为4, 则这个立体图形的表面积为________.解析:如图所示,四个三角形面积都是1×3÷2=1.5,所以小积木一个面的面积是42-1.5×4=10。
这个立体图形的表面积为大积木的表面积加上小积木四个面的面积。
所以面积为6×42+4×10=136。
E G F7.甲、乙两车分别从A, B 两地同时出发相向而行, 甲车每小时行40千米, 乙车每小时行60千米. 两车分别到达B 地和A 地后, 立即返回. 返回时, 甲车的速度增加二分之一, 乙车的速度不变. 已知两车两次相遇处的距离是50千米, 则A, B 两地的距离为_______千米.解析:V 甲:V 乙=40:60=2:3,相遇时两车时间相等,S 甲:S 乙=2:3,设全程为“1”,第一次相遇时相遇点距离A 地全程52的地方。
当甲车到达B 地时,乙车已到达A 地,又走了23-1=21个全程。
此时甲车速度为40+40÷2=60km/h ,两车速度相同,一起走完剩下的21,两车各走41,所以第二次相遇距离A 地全程21+41=43的地方。
所以全程为:50÷(43-52)=71000km 。
8.用“学”和“习”代表两个不同的数字, 四位数“学学学学”与“习习习习”的积是一个七位数, 且它的个位和百万位数字与“学”所代表的数字相同, 那么“学习”所能代表的两位数共有 个.解析:乘积七位数个位和百万位数字为学,所以习为1,学学学学=学×1111,学学学学×习习习习=学×11112=学×1234321,又因为乘积百万位数字为学,所以学只能为2,3,4;那么“学习”所能代表的两位数共有3个.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9.右图中, 不含“*”的长方形有多少个?解析:所有长方形个数减去包含“*”的长方形个数等于不含“*”的长方形个数。
所有长方形个数:(1+2+3+4+5+6)×(1+2+3+4)=210个包含一个“*”的长方形个数:(1+2+2+2+2+1)×(1+2+2+1)×2=120个包含两个“*”的长方形个数:(1+2+1)×(1+2+1)=16个不含“*”的长方形个数:210-120+16=106个提醒:包含“*”的长方形的长与宽必须经过含“*”基本长方形的边。
10. 如右图, 三角形ABC 中, AD = 2BD, AD = EC, BC = 18, 三角形AFC 的面积和四边形DBEF 的面积相等, 那么AB 的长度是多少?解析:设三角形ABC 面积为“1”,AD = 2BD,所以S △DCB=31, 三角形AFC 的面积和四边形DBEF 的面积相等,都加上三角形EFC ,面积也应该相等,所以S △AEC=31,所以, EC=31BC=31×18=6,AD = EC, AD=32AB ,所以AB=6÷32=9 11. 若干人完成了植树2013棵的任务, 每人植树的棵数相同. 如果有5人不参加植树, 其余的人每人多植2棵不能完成任务, 而每人多植3棵可以超额完成任务. 问:共有多少人参加了植树?解析:2013=3×11×61=1×2013=3×671=11×183=33×61快速检验(2013-5)×(1+2)>2013(671-5)×(3+2)>2013(11-5)×(183+2)<2013; (11-5)×(183+3)<2013(11+2)×(183-5)>2013; (11+3)×(183-5)>2013(33+2)×(61-5)<2013; (33+3)×(61-5)>2013(33-5)×(61+2)<2013; (33-5)×(61+3)<2013只有56×35=1960<2013, 56×36=2016>2013,所以答案为61人解法二:原有x 人植树,每人植y 棵。
xy=2013,(x-5)(y+2)<2013;(x-5)(y+3)>2013xy-5y+2x-10<2013;xy-5y+3x-15>2013即5y-2x+10>0 3x-5y-15>0,x,y 成对,有以下几种情况(1,2013),(3,671),(11,183),(33,61),y 与x 可以交换,代入检验的(33,61)可以,且人数为61。
12.由四个完全相同的正方体堆积成如右图所示的立体, 则立体的表面上(包括底面)所有黑点的总数至多是________.解析:将黑点数转化为1,2,3,4,5,6,根据图可知,2与4,6,3,1相邻,则2与5相对,4与6,1相邻,则4与3相对,1与6相对。
最左边的正方体左右两个面上是1和6,可以重叠6;最右边的正方体重叠6;最上面的正方体重叠5;正中间左右两个面一起重叠7,上面重叠1。
所以正方体重叠面上的黑点最多是7+6+5+6+1=25,立体的表面上所有黑点的总数至少是4×7×3—25=59。
三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13.用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形. 若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同, 则认为两个拼成的正方形相同. 问: 可以拼成几种两条对角线都是其对称轴的正方形图形?解析:用 代替所以答案为4种。
14.对于155个装有红、黄、蓝三种颜色球的盒子, 有三种分类方法: 对于每种颜色, 将该颜色的球数目相同的盒子归为一类. 若从1到30之间所有的自然数都是某种分类中一类的盒子数, 那么, 1) 三种分类的类数之和是多少?2) 说明, 可以找到三个盒子, 其中至少有两种颜色的球, 它们的数目分别相同.解析:记第一种、第二种和第三种分类分别分了i , j , k 类, 每类的盒子数目分别为a 1,a 2,a 3,…,a i ;b 1,b 2,b 3,…,b j ;c 1,c 2,c 3,…,c k 。
令n=i+j+k1) 因为 a 1,a 2,a 3,…,a i ;b 1,b 2,b 3,…,b j ;c 1,c 2,c 3,…,c k 包含了1到30的所有整数, 所以n ≥30,另一方面,3×155=a 1+a 2+a 3+…+a i +b 1+b 2+b 3+…+b j +c 1+c 2+c 3+…+c k≥1+2+3+…+30=23130 =465=3×155 所以n=i+j+k=30 , 三种分类各自分类的类数之和是30.2) 不妨设a 1=30, 记这30个盒子的类为A 类. 因为i+j+k =30, 必有j ≤14或k ≤14, 不妨设j ≤14. A 类的30个盒子分到这不超过14个类中去, 必有一类至少有三个盒子, 这三个盒子里的红球数相同并且黄球数也相同.☆ ★ ★ ☆ ★ ☆ ☆ ★ ★ ☆ ☆ ★ ☆ ★ ★ ☆ ★ ☆ ★ ☆ ☆ ★ ☆ ★ ★ ☆ ★ ☆ ☆ ★ ☆ ★★ ☆ ☆ ★ ☆ ★ ★ ☆ ☆ ★ ★ ☆ ★ ☆ ☆ ★ ☆ ★ ☆ ★ ★ ★ ☆ ☆ ☆ ☆ ★ ★ ★ ☆ ★ ☆★ ☆。