数学特殊符号集

合集下载

数学常用符号集

数学常用符号集

1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。

8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。

“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。

9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“||”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。

12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算A<=>B 命题A 与B 等价关系A=>B 命题 A与 B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当↑命题的“与非”运算(“与非门”)↓命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”φ空集∈属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R]关系R的“复合”(或下面加≠)真包含∪集合的并运算∩集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系 R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称 f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

特殊符号

特殊符号

Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΔδ:德尔塔DelteΕε:艾普西龙EpsilonΖζ:捷塔ZetaΕη:依塔EtaΘθ:西塔ThetaΙι:艾欧塔IotaΚκ:喀帕Kappa∧λ:拉姆达LambdaΜμ:缪MuΝν:拗NuΞξ:克西XiΟο:欧麦克轮Omicron∏π:派PiΡρ:柔Rho∑σ:西格玛SigmaΤτ:套TauΥυ:宇普西龙UpsilonΦφ:fai PhiΧχ:器ChiΨψ:普赛PsiΩω:欧米伽Omega符号大全:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

符号意义∞无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥大于等于≤小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈A a属于集合A#A 集合A中的元素个数初中物理公式:物理量(单位)公式备注公式的变形速度V(m/S)v= S:路程/t:时间重力G (N)G=mg m:质量g:9.8N/kg或者10N/kg密度ρ(kg/m3)ρ=m/V m:质量V:体积合力F合(N)方向相同:F合=F1+F2方向相反:F合=F1—F2 方向相反时,F1>F2浮力F浮(N) F浮=G物—G视G视:物体在液体的重力浮力F浮(N) F浮=G物此公式只适用物体漂浮或悬浮浮力F浮(N) F浮=G排=m排g=ρ液gV排G排:排开液体的重力m排:排开液体的质量ρ液:液体的密度V排:排开液体的体积(即浸入液体中的体积)杠杆的平衡条件F1L1= F2L2 F1:动力L1:动力臂F2:阻力L2:阻力臂定滑轮F=G物S=h F:绳子自由端受到的拉力G物:物体的重力S:绳子自由端移动的距离h:物体升高的距离动滑轮F= (G物+G轮)S=2 h G物:物体的重力G轮:动滑轮的重力滑轮组F= (G物+G轮)S=n h n:通过动滑轮绳子的段数机械功W(J)W=Fs F:力s:在力的方向上移动的距离有用功W有总功W总W有=G物hW总=Fs 适用滑轮组竖直放置时机械效率η= ×100%功率P(w)P=W:功t:时间压强p(Pa)P=F:压力S:受力面积液体压强p(Pa)P=ρgh ρ:液体的密度h:深度(从液面到所求点的竖直距离)热量Q(J)Q=cm△t c:物质的比热容m:质量△t:温度的变化值燃料燃烧放出的热量Q(J)Q=mq m:质量q:热值常用的物理公式与重要知识点一.物理公式单位)公式备注公式的变形串联电路电流I(A)I=I1=I2=……电流处处相等串联电路电压U(V)U=U1+U2+……串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)= + +……欧姆定律I=电路中的电流与电压成正比,与电阻成反比电流定义式I=Q:电荷量(库仑)t:时间(S)电功W(J)W=UIt=Pt U:电压I:电流t:时间P:电功率电功率P=UI=I2R=U2/R U:电压I:电流R:电阻电磁波波速与波长、频率的关系C=λνC:物理量单位公式名称符号名称符号质量m 千克kg m=pv温度t 摄氏度°C速度v 米/秒m/s v=s/t密度p 千克/米3 kg/m3 p=m/v力(重力)F 牛顿(牛)N G=mg压强P 帕斯卡(帕)Pa P=F/S功W 焦耳(焦)J W=Fs功率P 瓦特(瓦)w P=W/t电流I 安培(安)A I=U/R电压U 伏特(伏)V U=IR电阻R 欧姆(欧)R=U/I电功W 焦耳(焦)J W=UIt电功率P 瓦特(瓦)w P=W/t=UI热量Q 焦耳(焦)J Q=cm(t-t°)比热c 焦/(千克°C)J/(kg°C)真空中光速3×108米/秒g 9.8牛顿/千克15°C空气中声速340米/秒初中物理公式汇编【力学部分】1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F (压力差)(2)、F浮=G-F (视重力)(3)、F浮=G (漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1 L1=F2 L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/ n (竖直方向)11、功:W=FS=Gh (把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/ nF(竖直方向)(2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向)【热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K【电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2 (分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] (4)、I1/I2=R2/R1(分流公式)(5)、P1/P2=R2/R17定值电阻:(1)、I1/I2=U1/U2(2)、P1/P2=I12/I22(3)、P1/P2=U12/U228电功:(1)、W=UIt=Pt=UQ (普适公式)(2)、W=I2Rt=U2t/R (纯电阻公式)9电功率:(1)、P=W/t=UI (普适公式)(2)、P=I2R=U2/R (纯电阻公式)【常用物理量】1、光速:C=3×108m/s (真空中)2、声速:V=340m/s (15℃)3、人耳区分回声:≥0.1s4、重力加速度:g=9.8N/kg≈10N/kg5、标准大气压值:760毫米水银柱高=1.01×105Pa6、水的密度:ρ=1.0×103kg/m37、水的凝固点:0℃8、水的沸点:100℃9、水的比热容:C=4.2×103J/(kg?℃)10、元电荷:e=1.6×10-19C11、一节干电池电压:1.5V12、一节铅蓄电池电压:2V13、对于人体的安全电压:≤36V(不高于36V)14、动力电路的电压:380V15、家庭电路电压:220V16、单位换算:(1)、1m/s=3.6km/h(2)、1g/cm3 =103kg/m3(3)、1kw?h=3.6×106J初中物理公式汇编【力学部分】1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F (压力差)(2)、F浮=G-F (视重力)(3)、F浮=G (漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1 L1=F2 L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/ n (竖直方向)11、功:W=FS=Gh (把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/ nF(竖直方向)(2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向)【热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K【电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2 (分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)](4)、I1/I2=R2/R1(分流公式)(5)、P1/P2=R2/R17定值电阻:(1)、I1/I2=U1/U2(2)、P1/P2=I12/I22(3)、P1/P2=U12/U228电功:(1)、W=UIt=Pt=UQ (普适公式)(2)、W=I2Rt=U2t/R (纯电阻公式)9电功率:(1)、P=W/t=UI (普适公式)(2)、P=I2R=U2/R (纯电阻公式)【常用物理量】1、光速:C=3×108m/s (真空中)2、声速:V=340m/s (15℃)3、人耳区分回声:≥0.1s4、重力加速度:g=9.8N/kg≈10N/kg5、标准大气压值:760毫米水银柱高=1.01×105Pa6、水的密度:ρ=1.0×103kg/m37、水的凝固点:0℃8、水的沸点:100℃9、水的比热容:C=4.2×103J/(kg?℃)10、元电荷:e=1.6×10-19C11、一节干电池电压:1.5V12、一节铅蓄电池电压:2V13、对于人体的安全电压:≤36V(不高于36V)14、动力电路的电压:380V15、家庭电路电压:220V16、单位换算:(1)、1m/s=3.6km/h(2)、1g/cm3 =103k数学符号大全:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

特殊符号大全数学

特殊符号大全数学
表示左边的数不小于右边的数

逻辑异或符号
在二进制运算中,表示相同中,表示对应元素相乘

总和符号
表示对一系列数的求和

积分符号
表示对函数的积分

偏导数符号
表示对多元函数的一个变量的导数

无穷大符号
表示无限大
π
圆周率
数值约为3.14159
e
自然对数的底数
数值约为2.71828
在三角函数中,表示一个角度;在统计学中,表示参数
λ
希腊字母Lambda
在数学和物理学中,常用于表示波长、拉姆达函数等
πr²
圆面积公式
表示圆的面积,其中r是半径

指数函数
表示e(自然对数的底数)的x次方
log₁₀(x)
常用对数
表示以10为底的x的对数
logₑ(x)
自然对数
表示以e为底的x的对数
→p
向量符号
sin
正弦函数
在三角函数中,表示一个角度的正弦值
cos
余弦函数
在三角函数中,表示一个角度的余弦值
tan
正切函数
在三角函数中,表示一个角度的正切值
ln
自然对数函数
表示一个正数的自然对数
∫₀¹
定积分符号
表示从0到1的定积分
d/dx
微分符号
表示对变量x的导数
Δ
希腊字母Delta
通常表示变化、增量或差值
θ
希腊字母Theta
表示对变量x的乘积

属于符号
表示一个元素属于一个集合

不属于符号
表示一个元素不属于一个集合

子集符号

数学符号最最全

数学符号最最全

常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷ ±+- × ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪ⅺ∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙‖α β γ δ ε δ ε ζ Γ大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法Ββ beta beta 贝塔Γγ gamma gamma 伽马Γδ deta delta 德耳塔Δε epsilon epsilon 艾普西隆Εδ zeta zeta 截塔Ζε eta eta 艾塔Θζ theta ζita西塔Ηη iota iota 约塔Κθ kappa kappa 卡帕∧ι lambda lambda 兰姆达Μμ mu miu 缪Νν nu niu 纽Ξξ xi ksi 可塞Οο omicron omikron 奥密可戎∏π pi pai 派Ρπ rho rou 柔∑ζ sigma sigma 西格马Τη tau tau 套Υυ upsilon jupsilon 衣普西隆Φθ phi fai 斐Φχ chi khai 喜Χψ psi psai 普西Ψω omega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值∑表示求和,通常是某项指数。

常用数字,字母,特殊符号

常用数字,字母,特殊符号
▁▂▃▄▅▆▇加我▇▆▅▄▃▂▁ 特殊符号 ☎ ☏☜ ☞ ☺ ☻ ☼ ♠ ♡ ♢ ♣ ♤ ♥ ♦ ♧ ☎ ♩ ♪ ♫ ♬ ♭ ♯
绘表符号 ─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨ ┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋═║╒╓╔╕╖ ╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╳╔ ╗╝╚ ╬ ═ ╓ ╩ ┠ ┨┯ ┷┏ ┓┗ ┛┳⊥﹃﹄ ┌╭╮╯╰ ├ └
€ &euro; £ &pound; ¥ &yen;
„ &bdquo; … &hellip; · &middot; › &rsaquo; ª&ordf; ˆ &circ; “ &ldquo; — &mdash; ’ &rsquo; º &ordm; † &dagger; ‹ &lsaquo; – &ndash; ‚ &sbquo; ” &rdquo; ‡ &Dagger; ‘ &lsquo; ‰ &permil; ­ &shy; ˜ &tilde;
Α &Alpha; Η &Eta; Μ &Mu; Π &Pi; Θ &Theta; Β &Beta; Γ &Gamma; Ν &Nu; Ψ &Psi; Υ &Upsilon; Χ &Chi; Ι &Iota; Ω &Omega; Ρ &Rho; Ξ &Xi; Δ &Delta; Κ &Kappa; Ο &Omicron; Σ &Sigma; Ζ &Zeta; Ε &Epsilon; Λ &Lambda; Φ &Phi; Τ &Tau; ς &sigmaf;

数学所有符号

数学所有符号

数学所有符号
数学中的符号有许多种,以下列举一些常用的数学符号:
几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆)、≡(全等于)、△(三角形)。

代数符号:∝(正比于)、∧(和)、∨(或)、~(等于)、∫(积分)、≠(不等于)、≤(小于等于)、≥(大于等于)、≈(约等于)、∞(无穷大)。

运算符号:+(加号)、-(减号或负号)、×(乘号)、÷(除号)。

集合符号:∪(并集)、∩(交集)。

特殊符号:∑(求和符号)、π(圆周率)。

推理符号:|a|(绝对值)、⊥(垂直符号)、∽(相似符号)。

排列组合符号:C-组合数、A-排列数、N-元素的总个数、R-参与选择的元素个数。

其他特殊符号:√(平方根)、∑(求和符号)。

以上列举的数学符号仅供参考,具体使用中的数学符号可能会因学科、专业和领域而有所不同。

数学符号[宝典]

数学符号[宝典]

1、希腊字母:α——阿尔法β——贝塔γ——伽马Γ——德尔塔μ——可sei ψ——可赛ω——奥秘噶κ——米哟ι——南木打ζ——西格玛η——套θ——fai2、数学运算符:ⅲ—连加号ⅱ—连乘号ⅻ—并ⅺ—补ⅰ—属于ⅿ—因为ⅾ—所以ⅳ—根号‖—平行↌—垂直ⅶ—角↍—弧↋—圆ⅴ—正比于ⅵ—无穷ⅼ—积分Ↄ—约等ↆ—恒等3、三角函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体序号大写小写英文注音国际音标注音中文注音1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Θ θ kappa kap 卡帕11 Ι ι lambda lambd 兰布达12 Κ κ mu mju 缪13 Λ λ nu n ju 纽14 Μ μ xi ksi 克西15 Ν ν omicron omik`ron 奥密克戎16 Ξ π pi pai 派17 Ο ξ rho rou 肉18 Π ζ sigma `sigma 西格马19 Ρ η tau tau 套20 ΢ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Σ χ chi phai 西23 Τ ψ psi psai 普西24 Υ ω omega o`miga 欧米伽希腊字母的正确读法是什么?1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Κ θ kappa kap 卡帕11 ⅸι lambda lambd 兰布达12 Μ κ mu mju 缪13 Ν λ nu nju 纽磁阻系数14 Ξ μ xi ksi 克西15 Ο ν omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρ ξ rho rou 肉18 ∑ ζ sigma `sigma 西格马19 Σ η tau tau 套20 Τ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Υ χ chi phai 西23 Φ ψ psi psai 普西角速;24 Χ ω omega o`miga 欧米伽希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΓδ:德尔塔DelteΔε:艾普西龙Epsilonδ :捷塔ZetaΕε:依塔EtaΘζ:西塔ThetaΗη:艾欧塔IotaΚθ:喀帕Kappaⅸι:拉姆达LambdaΜκ:缪MuΝλ:拗NuΞμ:克西XiΟν:欧麦克轮Omicron∏π:派PiΡξ:柔Rho∑ζ:西格玛SigmaΣη:套TauΤυ:宇普西龙UpsilonΦθ:fai PhiΥχ:器ChiΦψ:普赛PsiΧω:欧米伽Omega数学符号大全各种符号的英文读法'exclam'='!''at'='@''numbersign'='#''dollar'='$''percent'='%''caret'='^''ampersand'='&''asterisk'='*''parenleft'='(''parenright'=')''minus'='-''underscore'='_''equal'='=''plus'='+''bracketleft'='''braceright'='}''semicolon'=';''colon'=':''quote'=''''doublequote'='"''backquote'=''''tilde'='~''backslash'='\''bar'='|''comma'=',''less'='<''period'='.''greater'='>''slash'='/''question'='?''space'=' '~~~~~~~~~~~~~~~~~~~~~~。 hyphen 连字符' apostrophe 省略号;所有格符号— dash 破折号‘ ’single quotation marks 单引号“ ”double quotation m arks 双引号( ) parentheses 圆括号square brackets 方括号Angle bracket{} Brace《》French quotes 法文引号;书名号... ellipsis 省略号¨ tandem colon 双点号" ditto 同上‖ parallel 双线号/ virgule 斜线号& ampersand = and~ swung dash 代字号§ section; division 分节号Ⅾ arrow 箭号;参见号+ plus 加号;正号- minus 减号;负号ª plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号= is equal to 等于号ↅ is not equal to 不等于号ↆ is equivalent to 全等于号ↄ is equal to or approximately equal to 等于或约等于号Ↄ is approximately equal to 约等于号< is less than 小于号> is more than 大于号↉ is not less than 不小于号↊ is not more than 不大于号ↇ is less than or equal to 小于或等于号ↈ is more than or equal to 大于或等于号% per cent 百分之…‟ per mill 千分之…ⅵ infinity 无限大号ⅴ varies as 与…成比例ⅳ (square) root 平方根ⅿ since; b ecause 因为ⅾ hence 所以ↁ equals, as (proportion) 等于,成比例ⅶ angle 角↍ semicircle 半圆↋ circle 圆◈ circumference 圆周π pi 圆周率△ triangle 三角形↌ perpendicular to 垂直于ⅻ union of 并,合集ⅺ intersection of 交,通集ⅼ the integral of …的积分ⅲ (sigma) summation of 总和© degree 度† minute 分‡ second 秒#number …号‣ Celsius system 摄氏度@ at 单价x'是x prime(比如转置矩阵)x"是x double-prime数学符号大全1 几何符号↌ⅷⅶ↍↋ↆↄ△‖2 代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3运算符号×÷ⅳª4集合符号ⅻⅺⅰⅰↇↈ⊆⊂5特殊符号ⅲπ(圆周率)6推理符号|a| ↌ↂ△ⅶⅺⅻↅↆªↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §↎↏←↑→↓↔↕↖↗ΓΓΘΛΞΟΠ΢ΦΥΦΧαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫﹬﹭﹮﹯ﹰﹱﹲﹳⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊?↋↌↠↍‣上述符号所表示的意义和读法(中英文参照)+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号ↄis approximately equal to 约等于≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤ is less than or equal to 小于或等于≥ is more than or equal to 大于或等于%per cent 百分之…∞ infinity 无限大号√ (square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角↍semicircle 半圆↋circle 圆○ circumference 圆周△triangle 三角形↌perpendicular to 垂直于ⅻintersection of 并,合集∩ union of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和°degree 度′ minute 分〃second 秒#number …号@at 单价符号意义ⅵ无穷大PI 圆周率|x| 函数的绝对值ⅻ集合并ⅺ集合交ↈ大于等于ↇ小于等于ↆ恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分 x - floor(x)ⅼf(x)δx 不定积分ⅼ[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0ⅲ[1ↇkↇn]f(k) 对n进行求和,可以拓广至很多情况如:ⅲ[n is prime][n < 10]f(n)ⅲⅲ[1ↇiↇjↇn]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm↌n m与n互质a ⅰ A a属于集合A#A 集合A中的元素个数ⅰⅱⅲⅳⅵⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↂↃↄↅↆↇↈ↞↟?↋↌ &#8226;数学符号大全收藏运算符: ± × ÷ ↀ∫ ⅽↆↄ≈ ↂⅴ↝≠ ↆ≤ ≥ ↞↟↉↊/√ ‰ ∑ ∏ &关系运算符:ⅸⅹ集合符号:ⅻⅺⅰ↜⊆序号:↎↏←↑→↓↔↕↖↗ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫﹬﹭﹮﹯ﹰﹱﹲﹳ≈㈠㈡㈢㈣㈤㈥㈦㈧㈨㈩其它:~ ± × ÷ ∑ⅻⅺⅰ√ⅷⅶ↋ↆↄ≈ↂ≠↉↊≤≥∞ⅿⅾ☈☇‣⦅‰☆★○●◉◇◆□■△▲ⅮⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ*ΟαβγδεζηθικλμνξποστυφχψωΑ Β Γ Δ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ ΢ Σ Τ Υ Φ Ωα β γ δ ε ζ η θ ι κ λ μ μ ν ξ π ο σ τ υ φ χψ ωⅬⅭⅮⅯ↖↗↘↙∞ ⅾⅿↀↁ° ′ ″ ‣▝↠△↋ⅶ↍↌ⅷ〓〔〈〉《》「」『』〕〖【】()[]{}ﹶ§ № •#&@☆★○● ◉△▲◇◆□ ■〒▙▛▚▘☇☈ⅬⅭⅮⅯ↖↗↘↙ⅰ∏∑↌↠∕√ⅴ∞↛ⅶ↜ⅷⅸⅹⅺⅻ∫ⅽⅾⅿↀↁↂ≈ↄ↝≠ↆ≤≥↞↟↉↊﹞﹟﹠﹡﹢﹣﹤﹥﹦﹧﹨﹩!﹖﹗"#$%&'*\^_`|~⦅⦆ﹴ。﹵「▝↋↍▔▕■□▲△▖▗◆◇◈◉●▘▙▚▛★☆▜☇☈、。

常用数学符号大全

常用数学符号大全

常用数学符号大全常用数学符号大全1、几何符号≱‖θδΩΩΦΦφφΨ﹟∠≲≰≡≌△° |a| ≱∸∠∟‖|2、代数符号? ∝∧∨~∫ ≤ ≥ ≈ ∞ :〔〕[ ]〈〉《》「」『』】【〖3、运算符号× ‚ √ ± ≠ ≡≮≯﹟4、集合符号∪∩ⅰΦ ? ¢5、特殊符号∑ π(圆周率)@#☆★◈●◉◇◆□■▓⊿※¥Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ ΨΩ∏6、推理符号ⅬⅭⅮⅯ↖↗↘↙∴∵∶∷T ? ü7、标点符号` ˉ ˇ ¨ 、· ‘’8、其他& ; §℃№ $£¥‰ ℉☈☇≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ εδ ε ζ η θ ι κλ μ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ∕ √ ∝∞ ∟∠∣‖∧∨∩∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲指数0123:o123 〃? ? ?符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥ 大于等于≤ 小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ⅰA a属于集合ACard(A) 集合A中的元素个数|a| ≱∸△∠∩∪≠ ∵∴≡± ≥ ≤ ⅰⅬⅭⅮⅯ↖↗↘↙‖∧∨&frac14; &frac12; &frac34;§≳≴≵≶≷≸≹≺≻≼α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏∑∕√∝∞∟∠∣‖∧∨∩∪∫∮∴∵∶∷∸≈≌≈≠≡≤≥≤≥≮≯⊕≰≱⊿≲为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成√(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高。

最全数学特殊符号大全

最全数学特殊符号大全

常用数学符号大全[标签:数学]1 几何符号↌ⅷⅶ↍↋ↆↄ△2 代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3运算符号×÷ⅳ±4集合符号ⅻⅺⅰ5特殊符号ⅲπ(圆周率)6推理符号|a| ↌ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §↎↏←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰⅱⅲ↚ⅳⅴⅵ↛ ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↌↠↍℃指数0123:o123上述符号所表示的意义和读法(中英文参照)+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号= is equal to 等于号ↅ is not equal to 不等于号ↆ is equivalent to 全等于号ↄ is approximately equal to 约等于Ↄ is approximately equal to 约等于号< is less than 小于号> is more than 大于号ↇ is less than or equal to 小于或等于ↈ is more than or equal to 大于或等于% per cent 百分之…ⅵ infinity 无限大号ⅳ (square) root 平方根X squared X的平方X cubed X的立方ⅿ since; because 因为ⅾ hence 所以ⅶ angle 角↍ semicircle 半圆↋ circle 圆○ circumference 圆周△ triangle 三角形↌ perpendicular to 垂直于ⅻ intersection of 并,合集ⅺ union of 交,通集ⅼthe integral of …的积分ⅲ (sigma) summation of 总和° degree 度′ minute 分〃 second 秒#number …号@ at 单价下面是赠送的广告宣传方案不需要的朋友可以下载后编辑删除!!!!!广告宣传方案每个人在日常生活中都有意、无意的接受着广告的洗礼,继而有意或无意的购买、使用广告中的产品和服务。

数学特殊符号大全

数学特殊符号大全

数学特殊符号大全数学特殊符号大全数学符号是数学语言的基础,用于表示各种数学概念、运算和关系。

以下是一些常见的数学特殊符号及其含义:1.+:加号,表示两个数相加。

2.-:减号,表示两个数相减。

3.×:乘号,表示两个数相乘。

4.÷:除号,表示一个数除以另一个数。

5.=:等号,表示两边的数值相等。

6.≠:不等号,表示两边的数值不相等。

7.:大于号,表示左边的数大于右边的数。

8.<:小于号,表示左边的数小于右边的数。

9.≥:大于等于号,表示左边的数大于或等于右边的数。

10.≤:小于等于号,表示左边的数小于或等于右边的数。

11.∞:无穷大符号,表示无穷大。

12.∑:求和符号,表示多个数的和。

13.∏:求积符号,表示多个数的积。

14.∂:偏导数符号,表示函数对某个变量的偏导数。

15.∫:积分符号,表示函数的积分。

16.∮:环路积分符号,表示函数在闭合曲线上的积分。

17.∝:正比符号,表示两个量成正比关系。

18.∽:相似符号,表示两个图形相似。

19.≌:全等符号,表示两个图形全等。

20.⊥:垂直符号,表示两条直线垂直。

21.∥:平行符号,表示两条直线平行。

22.∠:角度符号,表示角的度数。

23.⌒:弧形符号,表示弧的长度。

24.⊕:异或符号,表示两个数的异或运算。

25.∧:逻辑与符号,表示两个命题同时成立。

26.∨:逻辑或符号,表示两个命题至少有一个成立。

27.→:向量符号,表示向量的大小和方向。

28.∂/∂x:偏导数符号,表示函数对x的偏导数。

29.∫f(x)dx:不定积分符号,表示函数f(x)的原函数。

30.∫(a,b)f(x)dx:定积分符号,表示函数f(x)在区间[a,b]上的积分值。

31.lim f(x):极限符号,表示函数f(x)在自变量趋于某个值时的极限值。

32.∑(i=1,n)a_i:求和符号,表示a_1到a_n的和。

33.∏(i=1,n)a_i:求积符号,表示a_1到a_n的积。

数学常用符号集

数学常用符号集

CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
ξ ο π ρ σ τ υ φ χ ψ ω

特殊数学符号大全

特殊数学符号大全

以下是常见的特殊数学符号的大全:加号(+):表示两个数相加。

减号(-):表示一个数减去另一个数。

乘号(×):表示两个数相乘。

除号(÷):表示一个数除以另一个数。

等号(=):表示两个数相等。

大于号(>):表示一个数大于另一个数。

小于号(<):表示一个数小于另一个数。

大于等于号(≥):表示一个数大于或等于另一个数。

小于等于号(≤):表示一个数小于或等于另一个数。

不等号(≠):表示两个数不相等。

正无穷(∞):表示无限大。

负无穷(-∞):表示无限小。

累加符号(∑):表示求和。

累乘符号(∏):表示求积。

平方根(√):表示一个数的平方根。

绝对值(|x|):表示一个数的非负值。

百分号(%):表示一个数除以100的结果。

π(pi):表示圆周率,约等于3.14159。

阶乘(!):表示一个正整数的阶乘,例如5!表示5的阶乘,等于5 ×4 ×3 ×2 ×1 = 120。

无穷小量(ε):表示一个无限接近于零的数。

集合符号:并集(∪):表示两个集合的并集。

交集(∩):表示两个集合的交集。

子集(⊆):表示一个集合是另一个集合的子集。

真子集(⊂):表示一个集合是另一个集合的真子集,即子集但不等于。

为空集(∅):表示一个集合中没有任何元素。

全集(U):表示所有可能元素的集合。

逻辑符号:逻辑与(∧):表示逻辑与操作。

逻辑或(∨):表示逻辑或操作。

非(∼):表示逻辑非操作。

蕴含(→):表示逻辑蕴含关系。

等价(≡):表示逻辑等价关系。

否定(∄):表示不存在。

微积分符号:微分符号(d):表示微分操作。

积分符号(∫):表示积分操作。

偏导数(∂):表示偏导数。

极限符号(lim):表示极限操作。

级数符号(∑):表示级数求和。

梯度(∇):表示向量的梯度。

整除符号(|):表示一个数能够整除另一个数。

微分号(δ):表示微小变化。

取整符号(⌊x⌋):表示向下取整。

取余符号(mod):表示取余操作。

数学符号

数学符号

点击查看>>数学实用工具:数学符号大全1、几何符号↌ ⅷ ⅶ ↍ ↋ ↆ ↄ △2、代数符号ⅴ ⅸ ⅹ ~ⅼ ↅ ↇ ↈ Ↄ ⅵ ↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。

4、集合符号ⅻ ⅺ ⅰ5、特殊符号ⅲ π(圆周率)6、推理符号|a| ↌ ↂ △ ⅶ ⅺ ⅻ ↅ ↆ ± ↈ ↇ ⅰ ⅬⅭ Ⅾ Ⅿ ↖ ↗ ↘ ↙ ⅷ ⅸ ⅹ&; §↎ ↏ ← ↑ → ↓ ↔ ↕ ↖ ↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ ⅥⅦ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰ ⅱ ⅲ ↚ ⅳ ⅴ ⅵ ↛ ⅶ ↜ ⅷ ⅸ ⅹ ⅺ ⅻ ⅼ ⅽⅾ ⅿ ↀ ↁ ↂ Ↄ ↄ ↝ ↅ ↆ ↇ ↈ ↞ ↟ ↉ ↊ ⊕ ↋ ↌↠ ↍ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。

8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。

“Ⅾ ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“↌”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。

9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

常用数学符号大全特殊字符特殊符号

常用数学符号大全特殊字符特殊符号

常⽤数学符号⼤全特殊字符特殊符号1、⼏何符号 ⊥∥∠⌒⊙≡≌△⊆⊇ Δ ΛΣ∅⋅ ◊ ο◦ 2、代数符号 ∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),⽐(:),微分(dx),积分(∫),曲线积分(∮)等。

4、集合符号 ∪∩∈ 5、特殊符号 ∑ π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪ ≠ ≡ ± ≥ ≤ ∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ Γ Δ ΘΛΞΟΠΣΦΧΨΩ αβγδεζηθικλ µ ν ξοπρστυφχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ ∈∏ ∑ ⁄ √ ∝ ∞ ∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒ ≠ ≡ ≤ ≥ ≦≧≮≯⊕⊙⊥ ⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,⾃然对数底e,圆周率π。

8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是⼤于符号,“<”是⼩于符号,“≥”是⼤于或等于符号(也可写作“≮”),“≤”是⼩于或等于符号(也可写作“≯”),。

“→ ”表⽰变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平⾏符号,“⊥”是垂直符号,“∝”是成正⽐符号,(没有成反⽐符号,但可以⽤成正⽐符号配倒数当作成反⽐)“∈”是属于符号,“??”是“包含”符号等。

9、结合符号 如⼩括号“()”中括号“[]”,⼤括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三⾓形(△),直⾓三⾓形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),⾓(∠), ∵因为,(⼀个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

最全数学特殊符号大全

最全数学特殊符号大全

常用数学符号大全[标签:数学]1 几何符号⊥∥∠⌒⊙≡≌△2 代数符号∝∧∨~∫≠≤≥≈∞∶3运算符号×÷√±4集合符号∪∩∈5特殊符号∑π(圆周率)6推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o123上述符号所表示的意义和读法(中英文参照)+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号= is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌ is approximately equal to 约等于≈ is approximately equal to 约等于号< is less than 小于号> is more than 大于号≤ is less than or equal to 小于或等于≥ is more than or equal to 大于或等于% per cent 百分之…∞ infinity 无限大号√ (square) root 平方根X squared X的平方X cubed X的立方∵ since; because 因为∴ hence 所以∠ angle 角⌒ semicircle 半圆⊙ circle 圆○ circumference 圆周△ triangle 三角形⊥ perpendicular to 垂直于∪ intersection of 并,合集∩ union of 交,通集∫the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃 second 秒#number …号@ at 单价首农礼品卡 NXYnHT8P8888。

常用数学符号大全

常用数学符号大全
2
± × ÷ = ≠ ≡
plus or minus 正负号 is multiplied by 乘号 is divided by 除号 is equal to 等于号 is not equal to 不等于号 is equivalent to 全等于号
≌ is approximately equal to 约等于 ≈ < > ≤ ≥ % ∞ √ is approximately equal to 约等于号 is less than 小于号 is more than 大于号 is less than or equal to 小于或等于 is more than or equal to 大于或等于 per cent 百分之… infinity 无限大号 (square) root 平方根
不可不知的数学符号
数学符号具有抽象性、简洁性、一般性。抽象性说数学是极为抽象的,不只是说它研究 的是一般规律,事实上,其他学科也研究一般规律。而数学抽象性的一个表现是它的研究对 象是抽象的符号。这些抽象的符号又几乎可以用来表示任何事物、现象,使得数学可以成为 所有科学的基础。很多时候,数学研究表现为对符号的处理:排列、运算等。简洁性如一些 简单的现代符号所代表的内涵极为丰富,而它通过语言符号、或者过去的(数学)符号来表 示是非常复杂的: 一般性现代数学符号几乎适用于所有对象。 数学符号的种类可以简单地划 分为:名称符号,用于表达对象,如函数;关系符号,用于表达两个(多个)数学对象之间的 数学关系,如垂直、相似、大于等;运算符号,用于表示一种运算,如四则运算、积分运算、
α κBiblioteka β λγ μδ ν
ε
ζ
η
θ
ι
ξ ψ
ο ω
π
ρ
σ

关于数学符号大全

关于数学符号大全

关于数学符号大全数学符号的发明及使用比数字要晚,但其数量却超过了数字。

现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

今天小编在这给大家整理了数学符号大全,接下来随着小编一起来看看吧!数学符号大全常见数学符号数学符号的历史例如加号曾经有好几种,现在通用“+”号。

“+”号是由拉丁文“et”(“和”的意思)演变而来的。

十六世纪,意大利科学家塔塔里亚用意大利文“plu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。

“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。

也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。

以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。

到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。

乘号曾经用过十几种,现在通用两种。

一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。

德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号。

他自己还提出用“п”表示相乘。

可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。

他认为“×”是“+”斜起来写,是另一种表示增加的符号。

“÷”最初作为减号,在欧洲大陆长期流行。

直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。

后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。

平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。

“√”是由拉丁字线“r”变,“——”是括线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档