2018年必修一-函数图象的平移和翻折

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年必修一-函数图象的平移和翻折

一、图象的平移变换

①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到

②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意:

(1)可以将平移变换化简成口诀:左加右减,上加下减

(2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-=

二、图象的对称变换

①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称

④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。

⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。

⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形

课堂练习

1、把函数y =

1

1

+x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y=

x -21 B. y=-x 1 C. y=x

1

D. y=21-x 2、函数y=|x|-1的图像是( )

A. B. C. D. 3、函数y=|

2

1(x-1)2

-3|的单调递增区间是

4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返

回b km(b

A B C D

5、向高为H 的瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图所示,那么水

6、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下

图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是

(

)

7、函数b

x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )

A .0,1<>b a

B .0,1>>b a

C .0,10><

D .0,10<<

8.函数y=-lg(x+1)的图象大致是

9. ()()()10,1x

f x a b a a =-+>≠的图象不经过第二象限,则必有( )。

(A )

01,0a b <<> (B )01,0a b <<< (C )1,1a b >< (D )1,0a b >≥

10.设函数

()()0,1x

f x a

a a -=>≠,()24f =,则( )

。 (A )()()21f f ->- (B )()()12f f ->- (C )()()12f f > (D )()()22f f -> 11. 为了得到函数3

lg

10

x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )

A .向左平移3个单位长度,再向上平移1个单位长度

B .向右平移3个单位长度,再向上平移1个单位长

C .向左平移3个单位长度,再向下平移1个单位长度

D .向右平移3个单位长度,再向下平移1个单位

12. 若10<

(A )()⎪⎭

⎫ ⎝⎛>⎪⎭

⎫ ⎝⎛>41312f f f (B )()⎪⎭

⎫ ⎝⎛>>⎪⎭

⎫ ⎝⎛31241f f f

(C )()11234

f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭

⎝⎭

(D )()11243f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭

13. 下列函数的大致图像:

(1)y =l o g 2|x | (2)y =|l o g 2(x -1)| (3)y =1

2+-x x

(

4

)

y

=

|

x

-2|(x +1

)

三角函数图象的平移和伸缩

函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.

既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩

sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)

平移个单位长度

得sin()y x ϕ=+的图象()ωωω

−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)

1

到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)

为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)

k k k ><−−−−−−−→向上或向下平移个单位长度

得sin()y A x k ϕ=++的图象. 先伸缩后平移

sin y x =的图象(1)(01)

A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)

得sin y A x =的图象(01)(1)

1

()

ωωω

<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象

(0)(0)

ϕϕϕω

><−−−−−−−→向左或向右平移

个单位

得sin ()y A x x ωϕ=+的图象(0)(0)

k k k ><−−−−−−−→向上或向下平移个单位长度

得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛

⎫=++ ⎪⎝

⎭的图象.

解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛

⎫=+ ⎪⎝

⎭的

图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛

⎫=+ ⎪⎝⎭的图象;③将所得图象

的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛

⎫=+ ⎪⎝

⎭的图象;④最后把所得图象沿y 轴向上

平移1个单位长度得到π2sin 214y x ⎛

⎫=++ ⎪⎝

⎭的图象.