数字证书原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字证书原理

文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明了加密算法的作用,以及数字证书的出现所起的作用。接着对数字证书做一个详细的解释,并讨论一下windows中数字证书的管理,最后演示使用makecert生成数字证书。如果发现文中有错误的地方,或者有什么地方说得不够清楚,欢迎指出!

1、基础知识

这部分内容主要解释一些概念和术语,最好是先理解这部分内容。

1.1、公钥密码体制(public-key cryptography)

公钥密码体制分为三个部分,公钥、私钥、加密解密算法,它的加密解密过程如下:

∙加密:通过加密算法和公钥对内容(或者说明文)进行加密,得到密文。加密过程需要用到公钥。

∙解密:通过解密算法和私钥对密文进行解密,得到明文。解密过程需要用到解密算法和私钥。注意,由公钥加密的内容,只能由私钥进行解密,也就是说,由公钥加密的内容,如果不知道私钥,是无法解密的。

公钥密码体制的公钥和算法都是公开的(这是为什么叫公钥密码体制的原因),私钥是保密的。大家都以使用公钥进行加密,但是只有私钥的持有者才能解密。在实际的使用中,有需要的人会生成一对公钥和私钥,把公钥发布出去给别人使用,自己保留私钥。

1.2、对称加密算法(symmetric key algorithms)

在对称加密算法中,加密使用的密钥和解密使用的密钥是相同的。也就是说,加密和解密都是使用的同一个密钥。因此对称加密算法要保证安全性的话,密钥要做好保密,只能让使用的人知道,不能对外公开。这个和上面的公钥密码体制有所不同,公钥密码体制中加密是用公钥,解密使用私钥,而对称加密算法中,加密和解密都是使用同一个密钥,不区分公钥和私钥。

// 密钥,一般就是一个字符串或数字,在加密或者解密时传递给加密/解密算法。前面在公钥密码体制中说到的公钥、私钥就是密钥,公钥是加密使用的密钥,私钥是解密使用的密钥。

1.3、非对称加密算法(asymmetric key algorithms)

在非对称加密算法中,加密使用的密钥和解密使用的密钥是不相同的。前面所说的公钥密码体制就是一种非对称加密算法,他的公钥和是私钥是不能相同的,也就是说加密使用的密钥和解密使用的密钥不同,因此它是一个非对称加密算法。

1.4、RSA简介

RSA是一种公钥密码体制,现在使用得很广泛。如果对RSA本身有兴趣的,后面看我有没有时间写个RSA的具体介绍。

RSA密码体制是一种公钥密码体制,公钥公开,私钥保密,它的加密解密算法是公开的。由公钥加密的内容可以并且只能由私钥进行解密,并且由私钥加密的内容可以并且只能由公钥进行解密。也就是说,RSA的这一对公钥、私钥都可以用来加密和解密,并且一方加密的内容可以由并且只能由对方进行解密。

1.5、签名和加密

我们说加密,是指对某个内容加密,加密后的内容还可以通过解密进行还原。比如我们把一封邮件进行加密,加密后的内容在网络上进行传输,接收者在收到后,通过解密可以还原邮件的真实内容。

这里主要解释一下签名,签名就是在信息的后面再加上一段内容,可以证明信息没有被修改过,怎么样可以达到这个效果呢?一般是对信息做一个hash计算得到一个hash值,注意,这个过程是不可逆的,也就是说无法通过hash值得出原来的信息内容。在把信息发送出去时,把这个hash值加密后做为一个签名和信息一起发出去。接收方在收到信息后,会重新计算信息的hash值,并和信息所附带的hash值(解密后)进行对比,如果一致,就说明信息的内容没有被修改过,因为这里hash计算可以保证不同的内容一定会得到不同的hash值,所以只要内容一被修改,根据信息内容计算的hash值就会变化。当然,不怀好意的人也可以修改信息内容的同时也修改hash值,从而让它们可以相匹配,为了防止这种情况,hash值一般都会加密后(也就是签名)再和信息一起发送,以保证这个hash值不被修改。至于如何让别人可以解密这个签名,这个过程涉及到数字证书等概念,我们后面在说到数字证书时再详细说明,这里您先只需先理解签名的这个概念。

2、一个加密通信过程的演化

我们来看一个例子,现在假设―服务器‖和―客户‖要在网络上通信,并且他们打算使用RSA(参看前面的RSA简介)来对通信进行加密以保证谈话内容的安全。由于是使用RSA 这种公钥密码体制,―服务器‖需要对外发布公钥(算法不需要公布,RSA的算法大家都知道),自己留着私钥。―客户‖通过某些途径拿到了―服务器‖发布的公钥,客户并不知道私钥。―客户‖具体是通过什么途径获取公钥的,我们后面再来说明,下面看一下双方如何进行保密的通信:

2.1 第一回合:

―客户‖->―服务器‖:你好

―服务器‖->―客户‖:你好,我是服务器

―客户‖->―服务器‖:????

因为消息是在网络上传输的,有人可以冒充自己是―服务器‖来向客户发送信息。例如上面的消息可以被黑客截获如下:

―客户‖->―服务器‖:你好

―服务器‖->―客户‖:你好,我是服务器

“客户”->“黑客”:你好// 黑客在―客户‖和―服务器‖之间的某个路由器上截获―客户‖发给服务器的信息,然后自己冒充―服务器‖

“黑客”->“客户”:你好,我是服务器

因此―客户‖在接到消息后,并不能肯定这个消息就是由―服务器‖发出的,某些―黑客‖也可以冒充―服务器‖发出这个消息。如何确定信息是由―服务器‖发过来的呢?有一个解决方法,因为只有服务器有私钥,所以如果只要能够确认对方有私钥,那么对方就是―服务器‖。因此通信过程可以改进为如下:

2.2 第二回合:

―客户‖->―服务器‖:你好

―服务器‖->―客户‖:你好,我是服务器

―客户‖->―服务器‖:向我证明你就是服务器

―服务器‖->―客户‖:你好,我是服务器{你好,我是服务器}[私钥|RSA]

// 注意这里约定一下,{} 表示RSA加密后的内容,[ | ]表示用什么密钥和算法进行加密,后面的示例中都用这种表示方式,例如上面的{你好,我是服务器}[私钥

|RSA]就表示用私钥对―你好,我是服务器‖进行加密后的结果。

为了向―客户‖证明自己是―服务器‖,―服务器‖把一个字符串用自己的私钥加密,把明文和加密后的密文一起发给―客户‖。对于这里的例子来说,就是把字符串―你好,我是服务器‖和这个字符串用私钥加密后的内容{你好,我是男人}[私钥|RSA] 发给客户。

―客户‖收到信息后,她用自己持有的公钥解密密文,和明文进行对比,如果一致,说明信息的确是由男人发过来的。也就是说―客户‖把{你好,我是服务器}[私钥|RSA]这个内容用公钥进行解密,然后和―你好,我是服务器‖对比。因为用―服务器‖用私钥加密后的内容,由并且只能由公钥进行解密,私钥只有―服务器‖持有,所以如果解密出来的内容是能够对得上的,那说明信息一定是从―服务器‖发过来的。

相关文档
最新文档