带电粒子在电场或重力场中的运动1
等效法处理带电粒子在电场和重力场中的运动
度垂直时,速度最小.设F合与竖直方向夹角为θ,
则 tan θ=mEqg=43,则 θ=37°,故 F 合=sinE3q7°=54mg.
设此时的速度为 v,由于合力恰好提供小球圆周运动的向心力,
由牛顿第二定律得:5m4 g=mvR2
解得 v=
5gR 4
从A点到该点由动能定理:
-mgR(1+cos 37°)-3m4gR(13+sin 37°)=12mv2-12mv02 解得 v0=25 gR
答案
3 4h
解析 剪断细线,小球在竖直方向做自由落体运动,水平方向做加速度为a的
匀加速运动,
由Eq=ma x=12at2 h=12gt2 联立解得:x=43h
(3)现将细线剪断,带电小球落地前瞬间的动能.
答案
25 16mgh
解析 从剪断细线到落地瞬间,由动能定理得:Ek=mgh+qEx=2156mgh.
最高点
mg
重力场 竖直面内
E 最高点
最低点 重力场、电场 光滑地面上 mg=FN qE为等效重力 qE=mv2/R
E 最高点
最低点 重力场、电场 光滑地面上
题型二 用“等效法”处理带电粒子在电场和重力场中的运动能力考点 师生共研
1.等效重力法
将重力与电场力进行合成,如图3所示,则F合为等效重力场中
专题解读
1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合 运用,高考常以计算题出现.
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、 运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用 能量观点解题.
3.用到的知识:受力分析、运动分析、能量观点.
题型三 电场中的力电综合问题
高三物理带电粒子在场中的运动1
正因为这类问题涉及知识面大、能力要求高, 而成为近几年高考的热点问题,题型有选择、填 空、作图等,更多的是作为压轴题的说理、计算 题.
感悟· 渗透· 应用
分析此类问题的一般方法为:首先从粒子 的开始运动状态受力分析着手,由合力和初速 度判断粒子的运动轨迹和运动性质,注意速度 和洛伦兹力相互影响这一特点,将整个运动过 程和各个阶段都分析清楚,然后再结合题设条 件,边界条件等,选取粒子的运动过程,选用 有关动力学理论公式求解
则微粒在电场线方向移动距离: 1 qE 2 1 qE 2 4 3 v x t t v cos t m s= 2 m 3 2 m 5
感悟· 渗透· 应用
【解题回顾】本题的关键有两点: (1)根据平衡条件结合各力特点画出三力关系; (2)将匀变速曲线运动分解
感悟· 渗透· 应用
【解题回顾】数学方法与物理知识相结合是解决 物理问题的一种有效途径.本题还可以用下述方 法求出下边界.设P(x,y)为磁场下边界上的一点, 经过该点的电子初速度与x轴夹角为,则由图3-8 可知:x=rsin, y=r-rcos 得: x2+(y-r)2=r2 所以磁场区域的下边界也是半径为r,圆心为 (0,r)的圆弧
图3-3
感悟· 渗透· 应用
微粒在电、磁场中做匀速直线运动时,三力应 满足如图3-2所示关系,得tan=qE/mg= 3 , a 3 2 2 f= ( qE ) ( mg ) ,f=qvB,解之得v=2m/s.撤去 磁场后,将微粒运动分解为水平、竖直两方向的 匀变速直线运动,水平方向只受电场力qE,初速 度vx,竖直方向只受重力mg,初速度vy,如图3-3 所示,微粒回到同一条电场线的时间 t=2vy/g=2vsin(/3)/g= 3 /5s.
带电粒子在电场中的运动
带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。
若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。
若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。
带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。
可知
而
所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。
转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。
高一物理《带电粒子在电场中的运动》知识点总结
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
带电粒子在电场重力场中运动
带电粒子在复合场中运动模型例析教学目标:带电粒子的运动问题是高考的一个考查热点,本节课主要是复习带电粒子在复合场中的运动,通过例题的讲解和习题的训练,要求学生能将力学中的研究方法,灵活地迁移到复合场中,分析解决力、电综合问题.教学重点:要用力和运动的观点来分析带电体的运动模型,同时也要体会用功和能的观点列式求解的简捷.复合场是指电场、磁场和重力场并存,或其中某两场并存,或其中某两场并存,或分区域存在。
带电粒子在复合场中运动,物理情景比较复杂,是每年高考命题的热点;这部分内容从本质上讲是一个力学问题,应根据力学问题的研究思路和运用力学的基本规律求解。
笔者对带电粒子在复合场中运动的基本类型和解法归纳如下,供同学们学习时参考。
一:求解带电粒子在复合场中运动的基本思路1:带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为: 2:确定研究对象;3:进行受力分析(注意重力是否能忽略);4:根据粒子的运动情况,运用牛顿运动定律结合运动学公式、动能定理或能量关系列方程式求解. 二:带电粒子在复合场中运动的受力特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E 及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
重力、电场力可能做功而引起带电粒子能量的转化。
三:带电粒子在复合场中运动的物理模型类型一:带电粒子在复合场中的直线运动1、当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2、当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动 例1例2:18、安徽省利辛二中2010届高三上学期第四次月考如图,一带负电的()()2202202sin c 12os cos cos tan sin tan 2,2sin co ,os s c qE mg mgE q d l U mgl q gl v Ed qE ma a g A D l v v ax x v αααααααααα-粒子在两板间运动时受到电场力和重力的作用,粒子在竖直方向平衡有=得=由图中几何关系=则两板间的电压==水平方向有=得=从到过程中微粒做匀减速直线运动有-=-其中==解得解析:xV 。
高中物理基础知识及例题(学案) 带电粒子在重力场与电场中的运动
带电粒子在重力场与电场中的运动[学习目标] 1.会应用运动和力、功和能的关系分析带电粒子在复合场中的直线运动问题.2.会应用运动和力、功和能的关系分析带电粒子在复合场中的类平抛运动问题和圆周运动问题.一、带电粒子在复合场中的直线运动讨论带电粒子在复合场中做直线运动(加速或减速)的方法(1)动力学方法——牛顿运动定律、运动学公式.当带电粒子所受合力为恒力,且与速度方向共线时,粒子做匀变速直线运动,若题目涉及运动时间,优先考虑牛顿运动定律、运动学公式.在重力场和电场叠加场中的匀变速直线运动,亦可以分解为重力方向上、静电力方向上的直线运动来处理.(2)功、能量方法——动能定理、能量守恒定律.若题中已知量和所求量涉及功和能量,那么应优先考虑动能定理、能量守恒定律.例1如图所示,水平放置的平行板电容器的两极板M、N接直流电源,两极板间的距离为L=15 cm.上极板M的中央有一小孔A,在A的正上方h处的B点有一小油滴自由落下.已知带正电小油滴的电荷量q=3.5×10-14C、质量m=3.0×10-9kg.当小油滴即将落到下极板时速度恰好为零.两极板间的电势差U=6×105 V.(不计空气阻力,取g=10 m/s2)(1)两极板间的电场强度E的大小为多少?(2)设平行板电容器的电容C=4.0×10-12 F,则该电容器所带电荷量Q是多少?(3)B点在A点正上方的高度h是多少?针对训练1(多选)如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一恒压直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与静电力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动二、带电粒子的类平抛运动带电粒子在电场中的类平抛运动的处理方法:1.运动分解的方法:将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在这两个方向上分别列运动学方程或牛顿第二定律.2.利用功能关系和动能定理分析:(1)功能关系:静电力做功等于电势能的减少量,W电=E p1-E p2.(2)动能定理:合力做功等于动能的变化,W=E k2-E k1.例2如图所示,空间存在一方向竖直向下的匀强电场,O、P是电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B.A不带电,B的电荷量为q(q>0),A从O点发射时的速度大小为v0,到达P点所用时间为t,B从O点到达P点所用时间为t2.重力加速度为g,求:(1)电场强度E的大小;(2)B运动到P点时的动能;(3)OP间的电势差U OP的大小.针对训练2(多选)如图所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行金属板左侧中点以相同的初速度v0垂直于电场方向进入板间匀强电场,最后落在A、B、C 三点,可以判断()A.落到A点的小球带正电,落到B点的小球不带电,落到C点的小球带负电B.三个小球在电场中运动的时间相等C.三个小球到达极板时的动能关系为E k C>E k B>E k AD.三个小球在电场中运动时的加速度关系为a A<a B<a C三、带电粒子在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和静电力的合力,也有可能是单独的静电力.例3(多选)(2022·广州市高二期末)如图所示,在竖直放置的半径为R的光滑半圆弧绝缘细管的圆心O处固定一点电荷,将质量为m,带电荷量为+q的小球从圆弧管的水平直径端点A由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力.已知重力加速度为g,下列说法正确的是()A.O处固定的点电荷带负电B.小球滑到最低点B时的速率为2gRC.B点处的电场强度大小为2mg qD.小球不能到达光滑半圆弧绝缘细管水平直径的另一端点C例4(2021·六安市高二期中)如图所示,一个竖直放置的半径为R的光滑绝缘环,置于水平方向的匀强电场中,电场强度为E,有一质量为m、电荷量为q的带正电荷的空心小球套在环上,并且Eq=mg.(1)当小球由静止开始从环的顶端A 下滑14圆弧长到位置B 时,小球的速度为多少?环对小球的压力为多大?(2)小球从环的顶端A 滑至底端C 的过程中,小球在何处速度最大?最大速度为多少?专题强化5 带电粒子在重力场与电场中的运动探究重点 提升素养例1 (1)4×106 V/m (2)2.4×10-6 C (3)0.55 m解析 (1)由匀强电场的场强与电势差的关系式可得两极板间的电场强度大小为E =UL =4×106 V/m.(2)该电容器所带电荷量为Q =CU =2.4×10-6 C. (3)小油滴自由落下,即将落到下极板时,速度恰好为零 由动能定理可得:mg (h +L )-qU =0 则B 点在A 点正上方的高度是h =qU mg -L =3.5×10-14×6×1053.0×10-9×10m -15×10-2 m =0.55 m. 针对训练1 BD [对带电粒子受力分析如图所示,F 合≠0,A 错误.由图可知静电力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中重力mg 不做功,静电力Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误.F 合恒定且F 合与v 0方向相反,粒子做匀减速直线运动,D 正确.] 例2 (1)3mg q (2)2m (v 02+g 2t 2) (3)3mg 2t 22q解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a ,OP 的竖直高度为h , 根据牛顿第二定律:mg +qE =ma 由运动学公式和题给条件有:h =12gt 2=12a (t 2)2 联立解得:E =3mg q(2)设小球B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,根据动能定理有: mgh +qEh =E k -12m v 12h =12gt 2 且小球B 水平方向位移:x =v 1t2=v 0t联立得:E k =2m (v 02+g 2t 2) (3)OP 间电势差为U OP =Eh 由(1)知E =3mgq联立解得:U OP =3mg 2t 22q.针对训练2 ACD [不带电小球、带正电小球和带负电小球在平行金属板间的受力如图所示:由此可知不带电小球做平抛运动,a 1=Gm ,带正电小球做类平抛运动a 2=G -F m ,带负电小球做类平抛运动,a 3=G +F ′m.根据题意,三小球在竖直方向都做初速度为0的匀加速直线运动,到达下极板时,竖直方向的位移h 相等, 根据t =2ha得,带正电小球运动时间最长,不带电小球次之,带负电小球运动时间最短. 三小球在水平方向都不受力,做匀速直线运动,则落在板上时水平方向的距离与下落时间成正比,故水平位移最大的A 是带正电的小球,B 是不带电的小球,C 是带负电的小球,故A 正确,B 错误;根据动能定理,三小球到达下板时的动能等于这一过程中合外力对小球做的功.由受力图可知,带负电小球所受合力最大,为G +F ′,做功最多,动能最大,带正电小球所受合力最小,为G -F ,做功最少,动能最小,则小球到达极板时的动能关系为E k C >E k B >E k A ,故C 正确.因为落在A 点的小球带正电,落在B 点的小球不带电,落在C 点的小球带负电,所以a A =a 2,a B =a 1,a C =a 3,所以a A <a B <a C ,故D 正确.]例3 AB [小球从A 点由静止释放,运动到B 点的过程中,电场力不做功,则由机械能守恒定律可得mgR =12m v 2,即到达B 点的速度为v =2gR ,故B 正确;由题意可知,小球沿细管滑到最低点B 时,对管壁恰好无压力,则在B 点小球受重力和电场力,小球带正电受向上的电场力,则O 处固定的点电荷带负电,故A 正确;在B 点由牛顿第二定律k QqR 2-mg =m v 2R ,E =k Q R 2=3mgq ,故C 错误;根据点电荷的电场分布特点,可知电场线沿着半圆轨道的半径方向,所以小球从A 点运动到C 点的过程中,电场力不做功,即小球从A 点运动到C 点的过程中,机械能守恒,即小球可以到达光滑半圆弧绝缘细管水平直径的另一端点C ,故D 错误.] 例4 (1)4gR 5mg (2)BC 弧的中点2(2+1)gR解析 (1)从A 到B 根据动能定理得:mgR +qER =12m v B 2-0,解得:v B =4gR .根据牛顿第二定律得:F N -qE =m v B 2R ,解得:F N =5mg .根据牛顿第三定律得,环对小球的压力为5mg .(2)由于小球所受的静电力与重力都是恒力,它们的合力也是恒力,小球从A 处下滑时,静电力与重力的合力先与速度成锐角,做正功,动能增大,速度增大,后与速度成钝角,做负功,动能减小,速度减小,所以当合力与速度垂直时速度最大,由于qE =mg ,所以速度最大的位置位于BC 圆弧的中点,设为D 点. 则从A 到D 过程,根据动能定理得: mg (R +22R )+qE ·22R =12m v m 2 解得:v m =2(2+1)gR .。
带电粒子在复合场中的运动题型总结 学生版--2024高考二轮复习
带电粒子在复合场中的运动题型总结一.带电粒子在重力场、电场及磁场混合场中的运动1(2023秋•合肥期末)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,带电微粒由a 点进入该区域并刚好沿ab 直线向上运动,下列说法正确的是()A.微粒可能做匀变速直线运动B.微粒可能带正电C.微粒的电势能一定减小D.微粒的机械能一定减少2(2024•泉州二模)如图所示,速度选择器MN 两极板间的距离为d ,板间匀强磁场的磁感应强度大小为B ,O 为速度选择器中轴线上的粒子源,可沿OO ′方向发射速度大小不同、带电荷量均为q (q >0)、质量均为m 的带电粒子,经速度选择器后,粒子先后经过真空中两平行边界的匀强磁场区域到达足够大荧光屏;匀强磁场的磁感应强度分别为B 1、B 2,对应边界的宽度分别为d 1、d 2。
调节滑片P 可改变速度选择器M 、N 两极板间的电压,使粒子沿OO ′方向垂直磁场B 1边界进入B 1,经磁场B 1偏转后进入B 2,最后荧光屏恰好未发光,粒子重力不计,则MN 两极板间的电压大小是()A. B.C. D.3(2024•西城区校级开学)如图所示,两平行极板水平放置,两板间有垂直纸面向里的匀强磁场和竖直向下的匀强电场,磁场的磁感应强度为B 。
一束质量均为m 、电荷量均为+q 的粒子,以不同速率沿着两板中轴线PQ 方向进入板间后,速率为v 的甲粒子恰好做匀速直线运动;速率为v 2的乙粒子在板间的运动轨迹如图中曲线所示,A 为乙粒子第一次到达轨迹最低点的位置,乙粒子全程速率在v 2和3v 2之间变化。
研究一般的曲线运动时,可将曲线分割成许多很短的小段,这样质点在每一小段的运动都可以看作圆周运动的一部分,采用圆周运动的分析方法来处理。
不计粒子受到的重力及粒子间的相互作用,下列说法正确的是()A.两板间电场强度的大小为BvB.乙粒子从进入板间运动至A位置的过程中,在水平方向上做匀速运动C.乙粒子偏离中轴线的最远距离为D.乙粒子的运动轨迹在A处对应圆周的半径为4(2024•深圳一模)如图所示,整个空间存在一水平向右的匀强电场和垂直纸面向外的匀强磁场,光滑绝缘斜面固定在水平面上。
带电粒子在电场中的运动1
2 .若F合≠0,且与初速度方向在 同一直线上,带电粒子将做加速或 减速直线运动。(变速直线运动)
带电粒子的加速
• 仅在电场力作用下,初速度与电场共线:
qU =
1 2
mv2—
1 2
mv02
d
v = v02 2qU / m
m v0
v
q
若 v0 = 0 则
qU =
1 2
mv2
v = 2qU / m
带电粒子的偏转
带电粒子在电场中的偏转
v⊥
v
++++++
φபைடு நூலகம்
v0
-q
dd
v0
y
φ
l/2
- - - l- - -
§1-9带电粒子在电场中的运动
带电粒子在电场中的运动情况
1.若带电粒子在电场中所受合力为 零时,即F合=0时,粒子将保持静 止状态或匀速直线运动状态。
例、水平放置的两平行金属板相距为 d,充电后其间形成匀强电场,一带 电量为q,质量为m的液滴从下板边 缘射入电场,并沿直线恰从上板边缘 射出,求两金属板间的电势差为多少?
u
例、用一根绝缘绳悬挂一个带电小球, 小球的质量为1.0×10-2kg,所带的电 荷是为+2.0×10-8C,现加一水平方向
的匀强电场,平衡时绝缘绳与竖直方向 成300,求该匀强电场的场强?若剪断
绝缘绳,带电小球将做什么运动?
3 .若F合≠0,且与初速度方向不 在同一直线上,带电粒子将做曲线 运动
带电粒子在重力场和电场中的运动
B.小球到B点的速度最大
C.小球可能能够到达A点,且到A点时的速度不为零
D.小球运动到A点时所受绳的拉力最大
3、“竖直上抛运动”
在竖直向下的匀强电场中,以V0初速度竖直向上发射一个质量为 m带电量为q的带正电小球,求上升的最大高度。
4、竖直平面内的圆周运动 【知识回顾】
如图3-1所示,绝缘光滑轨道AB部分为倾角为30°的斜 面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆 轨道相切。整个装置处于场强为E、方向水平向右的匀 强电场中。现有一质量为m的带正电,电量为q 3mg
3E
小球,要使小球能安全通过圆轨道,在O点的初速度应 为多大?
E O R
5、类平抛运动 水平放置带电的两平行金属板,相距d,质量为m的微粒 由板中间以某一初速平行于板的方向进入,若微粒不带 电,因重力作用在离开电场时,向下偏转d/4,若微粒 带正电,电量为q,仍以相同的初速度进入电场,微粒 恰好不再射出电场,则两板的电势差应为多少?并说明 上下板间带电性?
用长为R的细线栓一个质量为m的小球,刚好能在 竖直平面内做圆周运动。求: (1)小球在什么位置速度最小,为多少,此时绳 的拉力为多大? (2)小球在什么位置速度最大,为多少,此时A绳 的拉力为多大?
特点: 最低点: (B点) 物体自由时可以平衡的位置 最高点: (A点) 最低点关于圆心对称的位置
TR B
重力环境对比: 小球在A—B—C之间往复运动,则α 、β的关系为: A.α = β B.α > β C.α < β D.无法比较
如图所示,在水平方向的匀强电场中的O点,用长为l的轻、软绝 缘细线悬挂一质量为m的带电小球,当小球位于B点时处于静止状 态,此时细线与竖直方向(即OA方向)成θ角.现将小球拉至细 线与竖直方向成2θ角的C点,由静止将小球释放.若重力加速度为 g ,则对于此后小球的受力和运动情况,下列判断中正确的是
电场中带电粒子的运动轨迹
电场中带电粒子的运动轨迹电场是由电荷产生的一种物理现象,而带电粒子则是电场中最基本的存在形式。
在电场中,带电粒子的运动轨迹受到电场力的影响,从而呈现出各种有趣的运动形式。
本文将探讨电场中带电粒子的运动轨迹及其相关特性。
一、静电场中的带电粒子运动轨迹静电场是指电场随时间不变的情况,即没有电荷的运动或改变。
在静电场中,带电粒子受到的力就是电场力,其大小与带电粒子电荷量以及电场强度有关。
根据静电场中带电粒子的运动特点,轨迹可分为以下几种情况:1. 电荷为正的带电粒子在均匀电场中的运动轨迹当电荷为正的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相同。
由于正电荷受到的电场力的方向与位移方向相反,因此电荷会受到一个向相反方向的加速度。
根据运动学原理,带电粒子的运动轨迹将是一个向相反方向的抛物线。
2. 电荷为负的带电粒子在均匀电场中的运动轨迹当电荷为负的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相反。
由于负电荷受到的电场力的方向与位移方向相同,因此电荷会受到一个向正方向的加速度。
同样根据运动学原理,带电粒子的运动轨迹将是一个向正方向的抛物线。
3. 电荷在非均匀电场中的运动轨迹在非均匀电场中,电场强度在空间中存在差异。
当带电粒子置于非均匀电场中时,受到的电场力的大小和方向将随着粒子位置的变化而改变。
因此,带电粒子的运动轨迹将不再是简单的抛物线,而是受到电场强度变化的影响而呈现出复杂的形态。
二、运动轨迹的特性除了在不同类型的电场中呈现不同的运动轨迹外,带电粒子的运动轨迹还具备一些特性,对于分析电场中的粒子运动非常重要。
1. 对称性在均匀电场中,带电粒子的运动轨迹是对称的,即垂直于电场强度方向的轨迹形状相同。
这表明带电粒子在均匀电场中的运动是相互独立的,并且与具体位置无关。
2. 粒子速度带电粒子在电场中具有初速度时,其运动轨迹将发生变化。
初速度的大小及方向将决定粒子在电场中的路径。
例如,初速度的大小过大可能导致粒子脱离电场,而初速度的方向则会影响运动轨迹的弯曲程度。
带电粒子在电场中的运动
带电粒子在电场中的运动专题精析一、匀变速运动不计重力的带电粒子进入匀强电场,做匀变速运动。
如果平行进人匀强电场,则在电场中做匀变速直线运动;如果垂直进入匀强电场,则在电场中做匀变速曲线运动(类平抛运动);如果既不垂直也不平行地进入匀强电场,做类斜抛运动,可将速度分解,沿电场线方向做匀变速运动,垂直于电场线方向做匀速运动。
一般情况下带电粒子所受电场力远大于重力,可以不计重力,认为只有电场力作用。
电场力做功,由动能定理,有W =qU =ΔE k ,此式与电场是否匀强电场无关与带电粒子的运动性质、轨迹形状也无关。
当电荷量为q 质量为m 、初速度为v 的带电粒子经电压U 加速后,速度变为v t ,由动能定理,有qU =mv 20-mv 20。
若v 0=0,则有v t =2qUm ,这个关系式对任意静电场都是适用的。
带电粒子垂直进入匀强电场讨论速度偏转角与位移偏转角的关系。
解析:电荷的受力、速度、位移有如下关系⎩⎪⎨⎪⎧∑F x =0 ∑F y =Eq =ma,⎩⎨⎧v x =v 0v y =at ,⎩⎨⎧x =v 0t y =12at 2 某段时间内平抛物体的速度偏转角θ和位移偏转角α之间有tan θ=2tan α,其中tan θ=v y v x =gt v 0,tanα=y x =12gt2v 0t =gt 2v 0当带电粒子以一定速度垂直于电场线方向进入匀强电场时,其运动是类平抛运动。
如图1所示,设带电粒子质量为m ,电荷量为q ,以速度。
垂直于电场线方向飞入匀强偏转电场,偏转电压为U 1。
若粒子飞出电场时偏转角为θ,有tanθ=at v 0=qU 1dm ×lv 0v 0=qU 1l mv 20 d在图中作出粒子离开偏转电场时速度的反向延长线,与初速度方向交于O 点,O 点与电场边缘的距离为x ,有x =ytanθ=12at2tanθ=qU 1l 2/(2mdv 20)qU 1l /(mdv 20)=l 2 粒子从偏转电场中射出时,就像是从极板中间的l2处沿直线射出。
2024高考物理一轮复习--带电粒子在电场中的运动(三)--等效重力场、交变电场中的运动
等效重力场、交变电场、力电综合问题一、带电粒子在力电等效场中的圆周运动1.等效重力场物体仅在重力场中的运动是最常见、最基本的运动,但是对于处在匀强电场和重力场中物体的运动问题就会变得复杂一些.此时可以将重力场与电场合二为一,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.2.3.举例二、带电粒子在交变电场中的运动1.此类题型一般有三种情况:一是粒子做单向直线运动(一般用牛顿运动定律求解);二是粒子做往返运动(一般分段研究);三是粒子做偏转运动(一般根据交变电场的特点分段研究)。
2.分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系。
3.注重全面分析(分析受力特点和运动特点),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件。
4.交变电场中的直线运动(方法实操展示)5.交变电场中的偏转(带电粒子重力不计,方法实操展示)U -t 图轨迹图v y -t 图三、电场中的力、电综合问题1.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
2.处理带电粒子(带电体)运动的方法(1)结合牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)用包括电势能和内能在内的能量守恒定律处理思路 ①利用初、末状态的能量相等(即E 1=E 2)列方程。
①利用某些能量的减少等于另一些能量的增加列方程。
(3)常用的两个结论①若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变。
高中物理精品PPT课件《带电粒子在电场中的运动》(23张)
下面我们来探讨带电粒子的偏转
二、带电粒子的偏转
+++++++++
d
q、m +
v0
U
--------
l
二、带电粒子的偏转
+++++++++
d v0
q、m +
UF
--------
l
1.q的受力怎样? -q的受力又怎样? 2.水平方向和竖直方向的运动性质怎样? 3.与学过的哪种运动形式类似? zxxk
二、带电粒子的偏转
带电粒子 沿垂直电场的方向进入匀强电场,
做类平抛运动:
垂直电场方向:zxxk 做匀速直线运动 平行电场方向: 做初速度为0的匀加速直线运动
二、带电粒子的偏转
+++++++++
d
q、m +
v0
UF
--------
偏移距离
y
+θ
v0
l
4.如何求粒子的偏移距离?
vy v
偏转角
5.如何求粒子的出射速度大小及偏转角?
解:垂直电场方向:飞行时间
t
l v0
平行电场方向:加速度 a F eU
m md
偏移距离
y
1 2
at 2
1 2
eUl2 mv02d
qUl
偏移角
vy a
tin
t
vy v0
高考物理专题讲义——带点粒子在电场中的运动
专题3 带电粒子在场中的运动带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化.一、安培力1.安培力:通电导线在磁场中受到的作用力叫安培力.【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间.3.安培力公式的适用条件;①一般只适用于匀强磁场;②导线垂直于磁场;③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端;如图所示,几种有效长度;④安培力的作用点为磁场中通电导体的几何中心;⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.【说明】安培力的计算只限于导线与B垂直和平行的两种情况.二、左手定则1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定.2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直.4.安培力F、磁感应强度B、电流I三者的关系①已知I、B的方向,可惟一确定F的方向;②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;③已知F、I的方向时,磁感应强度B的方向不能惟一确定附:在高中物理部分有三种“定则”①左手定则②右手定则③安培定则(用的是右手)①左手定则:1.用于判断通电直导线在磁场中的的受力方向2.用于判断带电粒子在磁场中的的受力方向方法:伸开左手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,让磁感线穿入手心,并使四指指向电流的方向,大拇指所指的方向就是通电导线所受安培力的方向(书上定义)②右手定则:1.用于判断运动的直导线切割磁感线时,感应电动势的方向。
2025高考物理总复习带电粒子在电场中运动的综合问题
0
又 t1= t2
联立解得
故在
4 5
9
t1= T= T
25
25
7
0~50 T
时间内发出的粒子均可打到 B 上,所以一个周期内发出的粒子打
7
到 B 上所占百分比约为 η=50 ×100%=14%。
归纳总结
带电粒子在交变电场中运动的研究类型和方法及注意问题
类型:通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形。
大小为2 =
23,sin 37°=0.6,cos 37°=0.8。求:
(1)物块第一次到达B点时的速度大小v1以及B、C两点间的距离x;
(2)小球过P点时的速度大小v以及S、C两点间的距离L;
(3)小球的质量。
2
答案 (1)gt1 10g1 -23R
(2)
5
2
9
R
5
(3)3m
解析 (1)物块从 A 点运动到 B 点的过程,根据牛顿第二定律有
解得
d=2
0
。
=
2 0 2
T
9
(3)若
φ=4φ0,d=5
2 0
,t0=2 ,设经过 t1 时间向上加速运动、再经过 t2 时间向
上减速运动的粒子恰好能打在 B 金属板上,粒子沿垂直金属板方向的运动有
1
2
0
·
2
·1 +
0
1
·
t1·
t2
2
·
·2 2 =d
行分析与研究。这类问题中常用到的基本规律有运动学公式、牛顿定律、
带电粒子在电场中的运动知识要点归纳
带电粒子在电场中的运动1.研究对象分类1)基本粒子及各种离子:如电子、质子、α粒子等,因为质量很小,所以重力比电场力小得多,重力可忽略不计.2)带电颗粒或微粒,如尘埃、液滴、小球等质量较大,其重力一般情况下不能忽略.2.带电粒子在电场中的加速直线运动1)若粒子作匀变速运动,则可采用动力学方法求解,即先求加速度a =qE qUm md=,然后由运动学公式求速度.2)用能量的观点分析:合外力对粒子所作的功等于带电粒子动能的增量.即:2201122qU mv mv =-,此式对于非匀强电场、非直线运动均成立.【例1】下列粒子从初速度为零的状态经过加速电压为U 的电场之后,哪种粒子的速度最大()a 粒子氚核质子钠离子+a N练习:1.如图所示,A 板接地,B 板电势为U ,质量为m 的带电粒子(重力不计)以初速度v 0水平射入电场,若粒子电量为-q ,则粒子到达B 板时的速度大小为_____________;若粒子电量为+q ,它到达B 板时速度大小为______________。
2.如图所示P 和Q 为两平行金属板,板间电压为U ,在P 板附近有一电子由静止开始向Q 板运动,关于电子到达Q 板时的速率,下列说法正确的是:( )A .两板间距越大,加速的时间越长B .两板间距离越小,电子到达Q 板时的速度就越大C .电子到达Q 板时的速度与板间距离无关,仅与加速电压有关D .电子的加速度和末速度都与板间距离无关3.一个质子(11H)和一个α粒子(42He),开始时均静止在平行板电容器的正极板上,同时释放后,在到达负极板时( )A .电场力做功之比为1∶2B .它们的动能之比为2∶1C .它们的速率之比为2∶4D .它们运动的时间之比为1∶14.真空中水平放置的两金属板相距为d ,两板电压是可以调节的,一个质量为m 、带电量为+q 的粒子,从负极板中央以速度v o 垂直极板射入电场,当板间电压为U 时,粒子经d/4的距离就要返回,若要使粒子经d/2才返回,可采用的方法是( )A 、v o 增大1倍B 、使板间电压U 减半C 、v o 和U 同时减半D 、初速增为2v o ,同时使板间距离增加d/2: 5.如图所示,电量和质量都相同的带正电粒子以不同的初速度通过A 、B 两板间的加速电场后飞出,不计重力的作用,则:( )A 、它们通过加速电场所需的时间相等B 、它们通过加速电场过程中动能的增量相等C 、它们通过加速电场过程中速度的变化量相等D 、它们通过加速电场过程中电势能的减少量相等6.如图1所示,从F 处释放一个无初速的电子向B 板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为E)( )A .电子到达B 板时的动能是E eV B .电子从B 板到达C 板动能变化量为零 C .电子到达D 板时动能是3E eV D .电子在A 板和D 板之间做往复运动7.如图所示在一匀强电场中,有两个平行的电势不同的等势面A 和C ,在它们的正中间放入一个金属网B ,B 接地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)滑块甲从 C 经 B 到 A 的过程中,重力做正功,电场力 和摩擦力做负功,则由动能定理,有 mgR-q1E(R+L)-μmgL=0, mg-q1E 1 解得 L= · R= R. 4 μmg+q1E
(4)由碰撞过程中甲、乙系统动量守恒,有 vB 2gR mvB=2mv,解得 v= = . 2 4 由于碰后能做匀速运动,说明电场力方向向右,可知碰后 的整体带负电,即知碰前乙应该带负电. 由碰后的整体受力平衡,有 μ· 2mg=(q2-q1)E, 2μmg 5mg 解得 q2= E +q1= . 4E
mg 【解析】(1)mg=qE,E= q 2 v2 v 0 0 FQ′+mg-qE=m ,FQ′=m R R v2 0 依牛顿第三定律,FQ=FQ′=m R ,方向竖直向上 (2)①A 球沿轨道做圆周运动: 由于电场力 F=2Eq =2mg>mg,因此 A 球通过 P 点时有最小速度 v2,则 有: v2 2 2Eq-mg=m ,v2= gR R 又由动能定理得: 1 2 1 2 mg· 2R-2Eq· 2R= mv2- mv1,v1= 5gR 2 2
【解析】选 D,带电粒子在板间做类平抛运动,
1qU 2 qU x 2 x=v0t,y= t= , v 2dm 2dm 0 y U1 y1 x22 1 12 1 U∝ 2,∴ = ·x = ×2 = . x U2 y2 1 2 8
如图所示,从炽热的金属丝飘出的电子(速度可视为零), 在真空中被加速电场加速,然后从金属板的小孔穿出,沿平行 于偏转电场的板面射入.已知加速电场电压为 U0,偏转电场板 间电压为 U,极板长为 l.两板间距离为 d,电子的重力不计. 求: (1)电子进入偏转电场时的速度 v0; (2)电子射出偏转电场时沿垂直于板面方向的偏移距离 y.
(1)若滑块从水平轨道上距离B点x= 3R的A点由静止释放,滑块到达与 圆心O等高的C点时速度为多大? (2)在(1)的情况下,求滑块到达C点 时受到轨道的作用力大小.
解析 (1)设滑块到达 C 点时的速度为 v,由动能定理有 1 2 qE(x+R)-μmgx-mgR= mv -0, 2 3mg 而 qE= , 4 解得 v= gR. (2)设滑块到达 C 点时受到轨道的作用力大小为 F, v2 径向方向有:F-qE=m R , 7 解得 F= mg. 4 7 答案 (1) gR (2) mg 4
带电粒子在电场与重力场中 的运动
一、带电粒子(仅受电场力)在匀强电场中的运动 1.带电粒子在电场中的加速 带电粒子沿与电场线平行的方向进入电场,带电粒子
加(减)速 运动.有两种分析方法: 将做__________
(1)用动力学观点分析:(适用于匀强电场) 求时间 t,求末速度 v.
qE U a= m ,E= d ,v2-v2 0=2ad. d= v0t+1/2 at
[解析]
(1)由 v2=2gh
得 v= 2gh.
(2)在极板间带电小球受重力和电场力,有 mg-qE=ma mgh+d 得 E= qd mgCh+d 由 U=Ed、Q=CU 得 Q= . q 1 2 (3)由 h= gt1 0=v+at2 t=t1+t2 2 h+d 联立可得 t= h 2h . g 0-v2=2ad
3 (2015 年南通模拟)如图所示,BCDG 是光滑绝缘的 圆形轨道, 4 位于竖直平面内,轨道半径为 R,下端与水平绝缘轨道在 B 点 平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量 为 m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受 3 到的电场力大小为 mg ,滑块与水平轨道间的动摩擦因数为 4 0.5,重力加速度为 g.
mgh+d mgCh+d (1) 2gh (2) qd q h+d (3) h
2h
பைடு நூலகம்
g
[解题指导] 1.在极板外,小球做自由落体运动,由v2=2gh 可求出小球到达小孔处的速度. 2.小球在两极板间运动时,由牛顿第二定律和 运动学公式,可求出电场强度E.再由U=Ed、Q=CU可 求出电容器所带电荷量. 3.由运动学公式可分别求出电场内和电场外两 个阶段的运动时间t1、t2,进而可求出总时间t.
4.带电粒子在重力场电场中的曲线运动分析
1.如图所示,平行金属板 A、B 水 平正对放置,分别带等量异号电 荷.一带电微粒水平射入板间, 在 重力和电场力共同作用下运动,轨迹如图中虚线 所示,那么( C ) A.若微粒带正电荷,则 A 板一定带正电荷 B.微粒从 M 点运动到 N 点电势能一定增加 C.微粒从 M 点运动到 N 点动能一定增加 D.微粒从 M 点运动到 N 点机械能一定增加
1 2 【解析】(1)由 eU0= mv0知, 2 电子进入偏转电场时的速度 v0= 2eU0
m
①
(2) 电子进入偏转电场后做类平抛运动, 水平方向 l=v0t ②
1 2 竖直方向 y= at ③ 2
eU a= md
④
Ul2 由①②③④式得 y= 4dU0
3.带电粒子的偏转(限于匀强电场,不计重力) (1)两个结论 ①不同的带电粒子从静止开始经过同一电场加速后 再从同一偏转电场射出时的速度偏转角总是相同的. 1 2 qUl Ul 证明:由 qU0= mv0及 tan θ= 得 tan θ= . 2 mdv2 2 U d 0 0 ②粒子经电场偏转后,合速度的反向延长线与初速度 延长线的交点 O 为粒子水平位移的中点,即 O 到电场边缘 的距离为 (类平抛运动虚射点推论). 2
l
(2)带电粒子在匀强电场中偏转的功能关系 当讨论带电粒子的末速度 v 时也可以从能量的角度进行求
1 2 1 2 U 解:qUy= mv - mv0,其中 Uy= y,指初、末位置间的电势差. 2 2 d
(单选)如图所示,质子(H)和α粒子(He)以 相同的初动能垂直射入偏转电场(粒子不计重 力),则这两个粒子射出电场时的侧位移y之比 为( ) A.1∶1 B.1∶2 C.2∶1 D.1∶4
(1)求滑块甲的带电量 q1 和电性; (2)求滑块下滑通过 B 点时的速度大小 vB; (3)求水平轨道上 A、B 两点之间的距离 L; (4)现在 B 处放置一个质量与甲相同的滑块乙:然后还让甲 从 C 点由静止释放,在 B 点与刚由静止释放的乙发生碰撞,碰 后粘在一起沿水平轨道做匀速运动.忽略甲、乙之间的静电力 作用,求碰后的共同速度 v 和碰前乙滑块的带电量 q2 及电性. 3mg gR 1 【答案】(1) 带正电 (2) (3) R 4E 2 4
3.带电粒子在电场、重力场中的直线运动
1) .应用牛顿运动定律处理带电粒子的直线运动 带电粒子沿与电场线平行的方向进入匀强电场, 受到的 电场力与速度方向在一条直线上, 带电粒子做匀变速直线运 动. 根据带电粒子的受力情况, 用牛顿运动定律和运动学公 式确定带电粒子的速度、位移、时间等. 2) .用动能定理处理带电粒子在电场中的直线运动 对带电粒子进行受力分析, 确定有哪几个力做功, 做正 功还是负功;确定带电粒子的初、末状态的动能,根据动能 定理列方程求解.
(2)基本公式
l 运动时间:t= (板长为 l,板间距离为 d,板间电压为 U); v0
qU F qE md 加速度:a= = =________ ; m m
2
qUl 2 1 2dmv0 ; 离开电场偏转距离:y= at =________
2 偏转角:tan
2
qUl 2 v at dmv0 θ= = =________.
(4)
2gR 4
5mg 4E
带负电
【解析】(1)静止在 D 处时甲的受力如 图所示,可知甲应带正电,并且有 q1E = mgtan α,解得 mgtan α 3mg q1 = E = (带正电). 4E (2)小滑块从 C 到 B 的过程中,只有重 力和电场力对其做功,根据动能定理,有 1 2 mgR-q1ER= mvB, 2 解得 vB= 2mg-q1ER = m gR . 2
(2012·新课标全国卷)(多选)如图所示,平行 板电容器的两个极板与水平地面成一角度, 两极板与一直流电源相连.若一带电粒子恰 能沿图中所示水平直线通过电容器,则在此 过程中,该粒子 ( ) A.所受重力与电场力平衡 B.电势能逐渐增加 C.动能逐渐增加 D.做匀变速直线运动
(2014·安徽理综)如图所示,充电后的平行板电容 器水平放置,电容为C,极板间距离为d,上极板正 中有一小孔.质量为m、电荷量为+q的小球从小孔 正上方高h处由静止开始下落,穿过小孔到达下极 板处速度恰为零(空气阻力忽略不计,极板间电场 可视为匀强电场,重力加速度为g).求: (1)小球到达小孔处的速度; (2)极板间电场强度大小 和电容器所带电荷量; (3)小球从开始下落运动到 下极板处的时间.
【答案】B EqL2 1 2 EL2q 【解析】由 y= 和 Ek0= mv0,得:y= 可知,y 2mv2 2 4 E 0 k0 与 q 成正比,B 正确.
•带电粒子在电场中的直线运动与偏转运动分析
1.带电粒子在电场中运动时重力的处理 (1)基本粒子:如电子、质子、α粒子、离子等,除 有说明或明确的暗示以外,一般都不考虑重力. (2)带电颗粒:如液滴、油滴、尘埃、小球等,除有 说明或明确的暗示以外,一般都不能忽略重力. 2.带电粒子在电场中的平衡 解题步骤: (1)选取研究对象; (2)进行受力分析,注意电场力的方向特点; (3)由平衡条件列方程求解.
2
(2)用功能观点分析:(适用于任何电场),求末速度 v
1 2 1 2 qU= mv - mv0. 2 2
2.带电粒子在匀强电场中的偏转 如果带电粒子以初速度 Vo 垂直于场强方向进入匀强 电场中,不考虑重力时,带电粒子在电场中将做类平抛运 动,如图所示.
(1)类平抛运动的一般处理方法 匀速直线 将粒子的运动分解为沿初速度方向的____________ 运 匀加速直线 运动.根据 动和沿电场方向的_____________ 运动的合成与分解 的知识就可解决有关问题. ___________________