天气雷达回波的分类与识别

合集下载

雷达回波的识别技术优秀课件.ppt

雷达回波的识别技术优秀课件.ppt
雷达回波的识别技术优秀
(二)风速不变、风向随高度变化的各种图象
当风速随高度保持不变时,各种颜色的多普勒速度带 都收敛于显示区的中心,即雷达所在处。多普勒速度 零值带的曲率表明了风向随高度的变化,逆转风产生 一个反型S的零值带而顺转风产生一个S型的零值带。 当风向随高度先顺转后逆转时,S 型带随雷达距离的 增加(高度增加)而转变为反S带。
一、回波强度分析技术
由雷达反射率因子Z值大小即可判别回波强弱.
瑞利散射
另外,回波形态特征、回波特殊结构和形态、 回波移动特点可知回波强度
雷达回波的识别技术优秀
二、脉冲多普勒天气雷达径向速度场分析技术与方法
对多普勒径向速度场基本特征的研究,可按
•零径向速度线; •朝向雷达分量(负)、离开雷达分量(正)范围、分布及中心; •强多普勒径向速度梯度带
Perpendicular
(a)环境风场的平面图:固定风速为40海里/小时,风向在地面为 南风(图象中心),均匀地经西南风变为图象边缘处的西风。(b) 相应的单多普勒速度图象。(c)说明如何利用多普勒零值曲线来解 释水平均匀流场的风向。(a)中的箭头长度正比于风速。颜色表示 多普勒速度值:正值(红色,桔黄色)表示离开雷达,负值(绿色, 兰色)表示朝向雷达。
雷达回波的识别技术优秀
风速随高度增加(地面为0)、风向随高度顺转的垂直风廓线(左图) 以及相应的多普勒速度图象(右图)。多普勒速度负值是朝向雷达 而正值是离开雷达,图象东部和西部边缘的颜色突变代表了己被了 混淆的更大的速度值,因为它们超出了±50海里/小时的奈科斯特速 度间隔。雷达位于图象中心。
雷达回波的识别技术优秀
雷达回波的识别技术优秀
Single Doppler Interpretation

短波天气雷达数据质量控制与分类识别研究

短波天气雷达数据质量控制与分类识别研究

短波天气雷达数据质量控制与分类识别研究第一章绪论短波天气雷达(S-Band Weather Radar)已成为现代气象学重要的观测手段之一。

它通过发射短波电磁波,接收反射回波,实现对降水、风向风速等气象要素的探测。

然而,S-Band天气雷达的反射回波受到气象环境的影响,存在数据质量问题。

为了提高S-Band天气雷达探测效果和数据质量,需要对其数据进行质量控制和分类识别。

本文首先介绍了S-Band天气雷达的基本原理和数据质量影响因素,然后分析了数据质控和分类识别的目的和重要性,最后提出了一种综合应用的方法。

第二章 S-Band天气雷达数据质量影响因素S-Band天气雷达探测结果受到多种气象因素的影响。

其中,降水和非降水干扰、雷达本身的技术性问题、地物效应以及天气现象多样性是影响S-Band天气雷达数据质量的主要因素。

1. 降水和非降水干扰在一些特殊的气象条件下,S-Band天气雷达可能接收到来自其他物体反射的微波信号。

例如在海岸线上,雷达可能接收到海浪、潮汐、海鸟和飞机等非降水目标产生的回波信号。

此外,在闪电活动密集的时候,雷达接收到来自闪电放电的电磁波,造成雷达的接收通道失真。

2. 雷达本身的技术性问题S-Band天气雷达技术性问题也会造成数据质量下降。

例如,雷达天线所处高度、反射面精度、期间观测误差、系统同步不足和长时间观测等,这些因素都会影响雷达反射回波的扫描功率和观测范围。

3. 地物效应地物效应是由地面和人造干扰物体(如建筑物、桥梁、车辆和污染)引起的雷达回波的变化。

地物效应会干扰雷达的观测,造成探测误差,同时也会对数据质量产生负面影响。

4. 天气现象多样性S-Band天气雷达观测的天气现象多种多样,包括降水、冰晶和雨滴等。

不同类型的天气现象对雷达回波信号的特征不同,所以S-Band天气雷达数据质量受到了天气现象多样性的影响。

第三章 S-Band天气雷达数据质量控制S-Band天气雷达数据质量控制是提高雷达数据质量的关键步骤。

雷达回波识别

雷达回波识别
• 在大气层中,形成超折射的气层通常只是近 地面很薄的气层(100-1000m),所以适当 提高仰角,雷达波能穿透超折射层,超折射 回波大大减少。
7月2日 01:12
2.3同波长干扰
产生原因:近距离有两部以上波长相同的雷达同时工作,一 部雷达发射出来的电磁波能量通过地物或降水的散射,进 入另一部雷达接收机。 特点:单条或多条线状,点线状回波带,从中心以等间隔 呈螺旋状向四周放射。
(/groups/birdrad/COMMENT.HTM)
Laughlin, TX (KDLF) Precipitation Mode Bat Roost Rings
(/groups/birdrad/COMMENT.HTM)
Class 1 雷达回波的识别和分析
内容
回波探测 非气象回波 降水回波 非降水回波
1.回波探测
h h 0 rsi n r 2 /2 ( R m ')
1.1探测内容
1、回波位置(PPI、RHI对应地理位置) 2、回波高度 (1)PPI测高公式(2)RHI直接计算 注:a无回波!=无降水(衰减)b地物遮挡 影响最大探测距离 3、回波强度(Z)显示方式色阶 4、回波形状 a均匀片状;b孤立块状;c涡旋结 构;带状 5、回波性质 a气象目标物 b非气象目标物 6、回波移向、移速 7、回波演变趋势(新生->成熟->消亡(强度、 范围、高度)
台湾气象 部门有四部S 波段多普勒天 气雷达,均设 置在沿海,常 年易覌测到海 浪回波,给出 典型的回波图 像。
34
0311 号热带风暴“环高”
2.6天线辐射特性造成的虚假回波
形成原因:天线旁瓣、尾瓣发射的电磁波在近距离遇到特别强的降 雨中心,产生回波,此外主瓣的宽度也会造成虚假回波。

民用航空气象地面观测规范第14章 多普勒天气雷达知识

民用航空气象地面观测规范第14章  多普勒天气雷达知识

第十四章多普勒天气雷达知识第一节引言RADAR(Radio Detection and Ranging)是一个利用电磁波进行探测、定位的仪器。

最早用于军事目的,后来在气象部门也逐渐得到使用。

它具有准确、客观和实时的特点。

近年来,多普勒雷达的技术也逐渐成熟,它除了保持常规天气雷达的特点外,还通过计算频率(相位)的变化,提取风场的一些特征,因而更具有使用价值。

我国新一代天气雷达建设是我国20世纪末、21世纪初的一项跨世纪气象现代化工程。

我国新一代天气雷达组网的目标和原则是:在我国东部沿海和多强降水地区和四川盆地的大部分地区,布设S波段(波长10cm)新一代天气雷达;在我国强对流天气发生和活动比较频繁、经济比较发达的中部地区,布设C波段(波长5cm)新一代天气雷达;其它地区,即我国第一地形阶梯地域的青、新、藏等流域暂不布设全国组网的站点;但省(区)会所在地和重要地区根据气象服务工作的需要和可能,按统一业务布点要求设置新一代C波段天气雷达,作为局地监测和服务使用。

计划在全国部署158部新一代天气雷达。

图14-1为其中的126部的站点示意图。

截止到2005年5月份为止,已布设80余部新一代天气雷达。

图14-1我国新一代天气雷达网站新一代天气雷达将全部选用S和C两种波段,选取全相干体制,其主要探测和测量对象,包括降水、热带气旋、雷暴、中尺度气旋、湍流、龙卷、冰雹、融化层等,并具备一定的晴空回波的探测能力。

第二节多普勒天气雷达的基本工作原理粒子对电磁波作用的两种基本形式是散射和吸收。

气象目标对雷达电磁波的散射作用是雷达探测大气的基础。

当天气雷达间歇性地向空中发射电磁波(称为脉冲式电磁波)时,它以近于直线的路径和接近光波的速度在大气中传播,在传播的路径上,若遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。

粒子产生散射的原因是:粒子在入射电磁波的作用下被极化,感应出复杂的电荷分布和电流分布,它们也要以同样的频率发生变化,这种高频率变化的电荷分布和电流分布向外辐射的电磁波,就是散射波。

713天气雷达回波资料在冰雹与对流性强降水中的识别指标

713天气雷达回波资料在冰雹与对流性强降水中的识别指标

713天气雷达回波资料在冰雹与对流性强降水中的识别指标天气雷达是一种常用的气象观测仪器,它能够通过回波资料识别出各种天气现象。

在冰雹和对流性强降水的识别中,天气雷达的回波资料可以提供一些指标,帮助气象预报员进行准确的判断和预报。

以下是一些常见的识别指标:1.雷达回波强度:回波强度是雷达探测到的天气现象的信号强度,通常以dBZ为单位。

冰雹和对流性强降水往往伴随着较高的回波强度,因此可以通过回波强度的大小来初步判断是否存在冰雹和对流性强降水。

2. 雷达回波高度:雷达回波的高度可以提供冰雹和对流性强降水的垂直分布信息。

冰雹的高度通常较低,一般在2~6km之间;而对流性强降水的高度较大,通常在6~10km之间。

因此,通过回波的垂直分布可以初步判断是否存在冰雹和对流性强降水。

3.强回波峰值高度:强回波峰值高度指的是回波中最强的那一层的高度。

在冰雹和对流性强降水中,由于存在较大的降水粒子和冰雹,峰值高度通常较低。

因此,强回波峰值高度的变化也可以作为冰雹和对流性强降水的指标之一4. D0/ZDR:D0值是雷达对目标物体的直径大小进行估计的一个参数,通常用于冰雹的识别。

对于冰雹而言,D0值较大,通常在1~3cm之间。

而ZDR值则是雷达回波信号中的液态水含量和固态水含量之间的差异,冰雹的ZDR值通常较大。

因此,通过D0和ZDR值的分析可以对冰雹进行更准确的识别。

总结起来,冰雹和对流性强降水在天气雷达回波资料中的识别可以从回波强度、回波高度、强回波峰值高度、D0和ZDR等指标入手。

通过对这些指标的综合分析,可以更准确地判断和预报冰雹和对流性强降水的出现情况,提供有效的气象服务。

一次强对流天气雷达回波分析

一次强对流天气雷达回波分析

一次强对流天气雷达回波分析一、引言强对流天气是一种特殊的天气现象,其常伴随着暴雨、雷电、龙卷风等极端气象事件。

这些极端天气现象可能会给人民生命和财产带来重大威胁,因此强对流天气的警报和监测非常重要。

雷达是一种有效的气象监测工具,可以用于监测强对流天气的发生和发展,提供准确的预警信息。

本文将对强对流天气雷达回波分析的基本原理、技术方法和应用进行探讨,并结合实例进行分析。

二、强对流天气雷达回波的基本原理雷达回波是指雷达向大气中发射电磁波,当遇上雨滴、冰晶等介质时,会被反射回来并被雷达接收器接收到的信号。

雷达回波信号强度与回波信号的反射系数、降雨量、降雨密度、雷达波长和雨滴粒径等参数有关。

由于强对流天气的特殊性质,其回波信号在雷达接收端的表现较为突出,常常具有以下特征:1.回波强度突然增加。

2.回波垂直延伸范围大。

3.回波内深层反射面清晰。

4.回波内存在尖点或闪电现象。

5.回波呈现出多层回波结构。

三、强对流天气雷达回波分析的技术方法对于雷达回波信号的分析,目的是为了确定天气现象的类型、强度和轨迹,为预测和预警提供数据。

在强对流天气中,雷达回波的分析需要采用一些特殊的技术方法。

例如:1.雷达图像识别技术。

该技术基于雷达回波的分布图像,在灰度共生矩阵、纹理特征、图像熵等基础上,通过模板识别和分类算法来识别飑线、旋转风暴、高尺度回波等强对流天气类型。

2.反射率图解析技术。

该技术是指利用雷达返回强度与事先设定的标准强度比较,将雷达回波划分为几个等级。

通过比较反射率的大小,可以判断强对流天气的类型和强度。

3.体扫雷达技术。

体扫雷达是指利用雷达扫描一定方位角之间的所有角度,获取雷达回波立体数据的技术。

通过对立体数据的分析,可以获取强对流天气的三维体积信息,相对于面扫雷达有更好的预测能力。

四、强对流天气雷达回波分析的应用强对流天气雷达回波分析可以为天气预测、防灾减灾等方面提供有效的数据和技术支持。

例如:1.预警预报。

多普勒天气雷达回波识别和分析之降水回波

多普勒天气雷达回波识别和分析之降水回波

多普勒天气雷达回波识别和分析之降水回波1.层状云降水雷达回波特征——片状回波层状云是水平尺度远远大于垂直尺度云团,由这种云团所产生的降水称之为稳定性层状云降水。

降水区具有水平范围较大、持续时间较长、强度比拟均匀和持续时间较长等特点。

⑴回波强度特征:①在PPI上,层状云降水回波表现出范围比拟大、呈片状、边缘零散不规那么、强度不大但分布均匀、无明显的强中心等特点。

回波强度一般在20-30dBz,最强的为45dBz。

②在RHI上,层状云降水回波顶部比拟平整,没有明显的对流单体突起,底部及地,强度分布比拟均匀,因此色彩差异比拟小。

一个明显的特征是经常可以看到在其内部有一条与地面大致平行的相对强的回波带。

进一步的观测还发现这条亮带位于大气温度层结0度层以下几百米处。

由于使用早起的模拟天气雷达探测时,回波较强那么显示越亮,因此称之为零度层亮带。

回波高度一般在8公里以下,当然会随着纬度,季节的不同有所变化。

⑵回波径向速度特征:由于层状云降水范围较大,强度与气流相比照拟均匀,因此相应其径向速度分布范围也较大,径向速度等值线分布比拟稀疏,切向梯度不大。

在零径向速度型两侧常分布着范围不大的正、负径向速度中心,另外还常存在着流场辐合或辐散区。

⑶零度层亮带:如前所述,在PPI仰角较高或者RHI扫面时,总能在零度层以下几百米处看到一圈亮环或者亮带回波,亮带内的回波比上下两个层面都强。

由于亮带回波总是伴随层状云降水出现,因此是层状云降水的一个重要特征。

〔零度层亮带形成的原因:冰晶、雪花下落的过程中,通过零度层时,说明开始融化,一方面介电常数增大,另一方面出现碰并聚合作用,使粒子尺寸增大,散射能力增强,所以回波强度增大。

当冰晶雪花完全融化后,迅速变成球形雨滴,受雨滴破裂和降落速度的影响,回波强度减小。

这样就存在一个强回波带,说明层状云降水中存在明显的冰水转换区,也说明层状云降水中气流稳定,无明显的对流活动。

〕2.对流云降水雷达回波特征——块状回波对流云往往对应着阵雨、雷雨、冰雹、大风、暴雨等天气。

新一代天气雷达演示

新一代天气雷达演示

雷达平均速度图
中尺度(2-20KM)系统的速度图像特征
不是在整个显示屏范围内识别,而是在其中选择一个小区域(包含了整个中尺度系统),将其放大显示。 首先确定所选择的小区域在雷达有效探测范围内的方位及小区域的方向,并近似的认为该小区域在同一高度层上
纯气旋式流场;纯反气旋式流场;纯辐合流场;纯辐散流场;气旋式辐合流场; 气旋式辐散流场;反气旋式辐合流场;反气旋式辐散流场
雷达的导出产品:有30多种。常用的包括组合反射率因子; 垂直累计液态水含量;回波顶;风暴路径信息;冰雹指数;中 气旋;速度方位显示风廓线;1小时累计雨量;3小时累计雨量; 相对风暴径向速度区。
雷达数据质量控制
雷达数据质量控制主要涉及地物杂波抑制;去距离折叠和退速度模糊。
地物杂波:包括固定地物杂波和超折射地物杂波(AP杂波)。
一般雷暴(单个单体雷暴)
单个单体雷暴—在其生命发展史中自始至终只有一个孤立单体的风暴。 水平尺度:5-10km; 生命史:<1小时;雷达回波特征:回波较垂直,单体对称,少移,冰 雹小,灾害小。回波强度相对较弱,回波面积小,发展高度低、生命史较短,上升与下沉气流 无明显的倾斜性,气流结构易受损坏,不易发展强盛。
雷达基本产品反射率因子,平均径向速度和径向速度谱宽三 种基数据。
SA和SB两种雷达,反射率因子基数据沿雷达径向的分 辨率为1km,沿方位角方向的分辨率为1°,即1km*1°,平均 径向速度和速度谱宽基数据的分辨率为0.25km*1°;扫描仰角 从0.5°到19.5°。
SA和SB两种雷达,反射率因子观测范围为460km,径 向速度和谱宽为230km;大部分算法适用的范围位于230km内。 CC和CD型雷达的观测范围只有150km。
在中等到高的CAPE和弱的深层垂直风切变情况下,可以出现的唯 一强风暴是脉冲风暴,其不是一种独立的对流风暴类型,是以多单体风暴 形态出现,含有一个或多个脉冲单体。

《雷达回波识别分析》课件

《雷达回波识别分析》课件

03
雷达回波分析应用
天气预报
天气预报是雷达回波分析的重要应用领域之一。通过分析雷 达回波数据,气象学家可以监测和预测天气系统的移动、发 展和消亡,从而为公众提供准确的天气预报和预警信息。
雷达回波分析可以帮助气象学家识别降水系统,如暴雨、冰 雹、龙卷风等,并预测其可能的影响范围和强度。这有助于 提前采取措施,减少灾害损失。
,需要深入研究其传播规律和特性。
多模式、多频段雷达数据融合算法
02
多模式、多频段雷达数据的融合需要发展高效、可靠的算法和
技术,以提高数据融合的准确性和实时性。
雷达回波信号处理和目标识别技术
03
雷达回波信号处理和目标识别技术是雷达回波技术的核心,需
要不断研究和改进,以提高其准确性和可靠性。
雷达回波技术未来发展方向
带宽和存储空间。
03
复原处理
对失真或损坏的回波信号进行 复原,提高信号的可识别性。
雷达回波特征提取
03
幅度特征
频率特征
波形特征
提取回波信号的幅度信息,如峰值、平均 值、方差等,用于描述目标的大小和强度 。
分析回波信号的频率成分,提取出与目标 特性相关的频率特征,如多普勒频移。
描述回波信号的波形形状,如周期、相位 、波形变化等,用于区分不同类型目标。
雷达回波模式识别算法
01
02
03
统计模式识别
基于统计学原理,对提取 的特征进行分类和识别, 如支持向量机、朴素贝叶 斯等。
神经网络模式识别
利用神经网络的自学习能 力,对回波信号进行分类 和识别,如卷积神经网络 、循环神经网络等。
模糊模式识别
利用模糊逻辑和模糊集合 理论,对回波信号进行分 类和识别,如模糊K近邻 、模糊聚类等。

雷达回波的判断与分析

雷达回波的判断与分析

雷达回波的判断与分析作者:黄强张金凤张会贞来源:《农业与技术》2019年第11期摘要:本文针对不同回波特征进行分析,探讨不同降水系统下雷达回波特征,区分气象回波和非气象回波的差异,以精确分析判断气象雷达回波,为夏季灾害性天气和短视天气预报提供可靠数据资料。

关键词:雷达回波;降水系统;判断分析中图分类号:S163文献标识码:ADOI:10.19754/j.nyyjs.201906150631不同回波特征分析1.1层状云回波在平显上通常要适当抬高仰角才看得到层状云回波,呈均匀片状,回波暗淡、强度弱、边缘模糊犹如薄纱,探测距离约几十公里。

在高显上看回波呈一水平带,底部较平整、不接地,高度为1.4~8.7km(常反映阴天无降水)。

1.2层(波)状云降水回波在平显上,层(波)状云降水回波呈均匀片状,强度弱到中等,范围大,内部没有明显块体结构,边缘发毛,破碎模糊。

在高显上回波顶部平坦,且较均匀常看到0℃层300~1000m 的亮带,高度为3.6~8km(常反映大范围稳定性持续降水)。

1.3对流云回波在平显上回波呈小块状,有时零散孤立,有时排列成带状和不规则形状。

高显上常呈柱状、针状,底部不接地,强度为中等,高度为2.2~4.9km(为无降水)。

1.4阵雨回波在平显上回波呈孤立分散的小块单体或回波群,结构较松,边缘不清晰,单体水平尺度在10km以下,强度中等。

高显上回波呈针状顶部发毛,结构松散,回波高度在7~8km以下,回波底部接地(常反映短阵雨)。

1.5雷雨回波在平显上回波块体结识、肥大、紧密、轮廓清晰、边缘多折,单体水平尺度在10km以上,强度特强,很明亮。

在高显上呈柱状,低的仅5~6km,高的可达17~18km(常反映短暂雷雨)。

1.6雹云回波在平显上块体较大,结构紧密,发展急剧、多棱角、突起或小切口,移动迅速,强度特强,回波单块体范围小于10km。

在高显上强度最大值常出现在高于0℃等温线2~3km以上,云顶很高常在12~13km以上.通常呈针状接地的是阵雨回波,不接地的是对流云回波,平显上看单块体回波范围>10km、高显呈柱状,此回波可判定为雷雨回波。

航空气象第十章 第二节 雷达回波的识别

航空气象第十章 第二节 雷达回波的识别

(2)对流云的回波
在平显上呈分散孤立的小 块状,尺度很小, 在高显上,呈米粒状或上 大下小的倒梨状。
对流云的回波
方位角332.1度
对流云的回波
方位角329.3度
2.雾的回波
PPI 上 , 雾 的 回 波 呈 均 匀 弥散状,犹如一层薄纱罩 在荧光屏上,
在RHI上,雾的回波高度 很低,顶高只有1km左右
雹云回波平面显示
雹云回波特殊形状
V 型 缺 口 回 波
指 状 回 波 图
钩 状 回 波 图
雹云回波高度显示特征
在高显上,雹云回波柱粗大、高 耸、陡直、顶部呈花椰菜状或砧 状。在雹云内部上升气流的部位, 呈现弱回波穹窿。
雹云回波高度显示
两种图像上的冰雹云
方位角172度
5.其它类型降水回波
3.混合性降水──絮状回波
在平显上,回波范围较大,边缘支离破 碎,没有明显的边界,回波中夹有一个 结实的团块,为黄色和红色。有时呈片 状、有时呈带状或块状。
1996年7月4日北京地区对流云降水回波
混合性降水
混合性降水
混合型降水的两种图像
方位角38.1度
4.雹云回波特征
在平显上表现为强度大 ,边缘 分明的块状回波。有时出现 “ U” 形 的 无 回 波 缺 口 指 状 或 钩状回波
加拿大蒙特利尔附近的垂直剖面图
层(波)状云降水回波高度显示
与上图同时的平面显示
层(波)状云降水回波高度显示
层状云降水的零度层亮带
零度层亮带
零度层亮带形成示意图
2.对流云降水回波特征
平显上,回波呈块状、尺度较小, 内部结构密实,边缘清晰,黄色 和红色的区域呈块状或点状分散 在蓝色和绿色的区域中

基于模糊逻辑的新一代天气雷达径向干扰回波识别算法

基于模糊逻辑的新一代天气雷达径向干扰回波识别算法

基于模糊逻辑的新一代天气雷达径向干扰回波识别算法引言天气雷达是一种重要的气象观测仪器,用于监测大气中的降水状况以及风暴系统的演变等。

然而,在雷达数据中,径向干扰回波的存在对气象数据的解译和分析带来了一定的困难。

因此,设计一种准确识别天气雷达径向干扰回波的算法对于提高气象数据的可靠性和准确性具有重要意义。

本文中,将介绍一种,该算法结合了模糊逻辑理论和雷达反射率因子的统计特征,以提高干扰回波的准确识别率。

一、背景介绍天气雷达作为气象观测仪器,广泛应用于天气预报、雷暴监测、降水监测等领域。

雷达数据中的回波信号被用来分析裁定大气中的降水类型和强度,以及对风暴演变进行追踪猜测等。

然而,雷达信号中屡屡存在着径向干扰回波,这些回波信号可能是由于雷达信号的屡次反射、散射和衍射等导致的,会严峻影响到降水和风暴系统的分析和探究。

目前,识别雷达回波中的径向干扰回波是一个相对复杂的问题。

传统的径向干扰回波识别方法主要基于雷达数据的统计特征和人工设置的阈值等来确定干扰回波的存在。

然而,由于气象现象的复杂性和多变性,单一的阈值设置往往难以满足不同状况下的径向干扰回波的识别需求。

因此,需要一种更为准确和灵活的算法来识别径向干扰回波。

二、基于模糊逻辑的径向干扰回波识别算法设计2.1 模糊逻辑理论介绍模糊逻辑理论是一种基于模糊集合理论和模糊推理的数学方法,用于处理模糊和不确定性的问题。

它可以将模糊的输入和输出映射干系通过一系列的模糊规则进行推理和计算。

在本文的探究中,我们将利用模糊逻辑理论来处理径向干扰回波的识别问题。

2.2 算法流程设计(1)雷达数据预处理:起首对原始的雷达回波数据进行预处理,包括去噪处理、校正处理等,以缩减数据中的干扰信号。

(2)特征提取:依据雷达数据的统计特征,提取反射率因子的均值、方差、偏度、峰度等特征作为输入特征。

(3)模糊化:对提取的特征进行模糊化处理,即将实数特征转化为模糊集合。

(4)模糊规则库的构建:依据专家知识和阅历,构建模糊规则库,其中包括径向干扰回波的模糊规则和非干扰回波的模糊规则。

气象雷达回波

气象雷达回波

雷达所接收到的回波系雷达波所照射的空间有效散射体积中所有散射元(如云和降水粒子)的回波的总和,由 于散射元之间的相对位移,到达雷达天线处的回波具有不同相位,这些波叠加的结果,造成了回波的随机起伏。 分析起伏参数,可以得到关于粒子的运动信息和被测空间的湍流强度。
谢谢观看
通过对雷达回波的分析,可以判断由一般对流云过渡到强雷暴的阶段,但单纯根据回波形态结构,难以可靠 地判断一个强雷暴云是否会产生龙卷或地面降雹。普遍认为,回波顶的高度和强回波核的反射率能较好地用作识 别冰雹云的判据。例如,中国的华北地区,夏季雹云的回波顶常出现在10~12公里的高度,灾害性雹云中强回波核 对3厘米雷达的反射因子(见),常超过10毫米 /米。
在距离高度显示器 (RHI)上的回波图象中,可以看到对应于大气温度为0℃的高度附近的强回波带,称为零度 层亮带(图3[稳定性暖锋降水在距离高度显示器上的典型回波图象])它的形成是由于缓慢降落的冰晶和雪花在零 度层附近发生表面融化而使反射率增大的结果。在亮带下面,粒子融化成雨滴,下落速度较大,使粒子浓度减小, 反射率降低。雷达屏幕上观测到的零度层亮带,可估计0℃层的高度,也可在一定程度上验证大气的稳定性。在不 稳定性暖锋降水的距离高度显示器回波图象中,可以看到水平的零度层亮带和垂直柱状的对流单体回波结构同时 存在。此外,在雷暴减弱之后的残余降水中,也可看到零度层亮带。暖锋系统降水强度的变化较缓慢,雷达回波的 时空变化也较小,这有利于验证降水强度和回波功率之间的定量关系。
回波的分类
0 1
冷锋回波
0 2
暖锋回波
0 4
强雷暴回波
0 6
回波的利用
0 3
低气压系统 回波
0 5
其他回波
通常由紧密排列成带的许多回波单体组成(图1[平面位置显示器上冷锋的云系和降水回波]),当冷锋由远 处移至距雷达站约300公里时,在平面位置显示器 (PPI)上,一般先能看到排成一行的离散回波块。这是由于地 表曲率和大气折射的原因,即使以接近0°的仰角发射的波束,在300公里处,也只能探测到云体的较高部分。当冷 锋移近时,雷达波束能够扫视到云的下部比较宽大的部分,这时,回波带中的单体变大,形成一条比较连贯的回 波带。在冷锋经过雷达站而向远处移去时,回波的变化则与上述过程相反。通常,一个完整的冷锋降水系统的长度, 可以达到600公里以上,因此一个站仅能探测到整个冷锋系统的一部分。有时雷达观测到的冷锋系统不止包含一条 雨带。冷锋的回波带一般自西北向东南方向移动,但锋前或冷锋上空的暖区常吹西南风,因而回波带中的单体常 向东北或偏东方向移动,与回波带的整体移动方向之间有一夹角。

新一代天气雷达非降水回波的识别与应用

新一代天气雷达非降水回波的识别与应用

新一代天气雷达非降水回波的识别与应用吴迎旭,张礼宝,石慕真(黑龙江省人工影响天气中心,黑龙江哈尔滨 150030)摘要:通过对2002-2004年哈尔滨新一代天气雷达资料的整理分析,总结出各种非降水回波的特征,并着重讨论了其识别方法及其在回波分析中的意义,分析说明了非降水回波在实际天气预报中的应用。

关键词:新一代天气雷达;非降水回波1、引言非降水回波是指还没有产生降水的云、雾、晴空大气、地物或是虚假的旁瓣、超折射等雷达回波。

随着新一代天气雷达的广泛应用,回波分析在天气预报、人工影响天气等气象业务上的应用显得越来越重要。

人们在雷达回波分析过程中往往只注重对降水回波的分析,而忽略了对非降水回波分析,这样有时就会混淆降水回波与非降水回波,甚至有时候将非降水回波识别为降水回波,影响对降水回波的判断,从而影响预报的准确性,另外某些非降水回波还对天气具有重要的指导作用,忽略了对它的分析,会使我们失去准确快捷的预报工具。

本文从这个意义出发分析和讨论非降水回波,从而能够对其有个准确的认识。

2、地物回波由地表及其上的各种建筑物等对电磁波的反射产生的回波,统称为地物回波。

这些回波和地形、地物显得比较一致,强度图上(图1a)回波表现为边缘清晰,固定不变,速度图上(图1b)回波表现为白色,即速度为零。

识别地物回波最常用的方法就是抬高仰角,因为地物回波的高度比较低,随着仰角的抬高回波会消失;此外,地物回波在速度场上表现为零速度,观测中容易与其它回波区分开。

(a)(b)图1 地物回波(a)强度图(b)速度图3、晴空回波云体很稀薄或没有云雨的晴空大气里,或在由很小粒子所组成的云区内能探测到的回波,称为晴空回波,由于早期没有寻出其形成原因,也称做“神仙波”[1]。

现在,人们发现产生这种回波的气象条件有二种:一是大气中存在折射指数不均匀的区域,即湍流大气造成了对雷达波的散射;二是分层大气中存在折射指数垂直梯度很大的区域,即大气对雷达波造成了镜式反射[1]。

雷达回波分析规范讲解

雷达回波分析规范讲解
雷达回波分析规范
分析说明
弓状回波:雷达反射率因子图像上,强回波水平分布为 弓形,与冰雹、下击暴流、雷雨大风密切相关。
雷达回波分析规范
雷达回波分析规范
分析说明
钩状回波:强单体右后侧有钩型或强单体呈鸟型等特征, 是判断超级单体风暴的一个重要特征。
雷达回波分析规范
分析说明
飑线回波:由对流回波带、弱层状云降水回波组成。对 流回波带有多个强单体排列、强度强、梯度大的特征, 与冰雹、下击暴流、雷雨大风密切相关。
雷达回波分析规范
分析说明
阵风锋回波:雷暴单体移动的前方或周围,呈弧状分布, 回波强度10~35dBz,远离雷暴移动。与老雷暴的衰亡、 新雷暴的形成有密切关系。
雷达回波分析规范பைடு நூலகம்
分析说明
涡旋回波:混合性降水,多条对流回波带气旋式卷 入到涡旋中心。
2.4 雷达回波分析规范
分析说明
逗点涡旋回波:混合性降水,多条对流回波带气旋式卷入 到涡旋中心,冷锋附近有明显的对流回波带,涡旋中心右 侧有弱回波区。
雷达回波分析规范
分析说明
入流急流:1.5°(或2.4°)速度图产品,最大径向风
速大于20m.s-1。入流急流与弓状回波后部下沉气流强度
有关,间接反映了雷雨大风强度。
雷达回波分析规范
分析说明
低空急流:1.5°(或2.4°)速度图产品,经过雷达站有 牛眼结构,最大径向风速大于12m.s-1。低空急流是暖湿 空气输送带,具有显著热力、动力天气学性质,与暴雨 强对流有密切关
暴雨
冰雹
雷达回波分析规范
分析说明
辐合线:0.5°(或1.5°)速度图产品,有正负速度辐 合、且长度大于50km,有“0”速度带突然转向特征。锋 面由两种性质不同的气团交汇形成,是触发暴雨强对流 天气
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档