初中数学二次函数综合复习基础题

合集下载

《常考题》初中九年级数学上册第二十二章《二次函数》知识点复习(含答案解析)

《常考题》初中九年级数学上册第二十二章《二次函数》知识点复习(含答案解析)

一、选择题1.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .2.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x << D .2.00 2.01x <<3.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 4.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .426.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 7.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)-8.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-11.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353则当1x =时,y 的值为( ) A .5B .3-C .13-D .27-12.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<13.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.14.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个15.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.17.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.18.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.19.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______. 20.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________21.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.22.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)23.如图,在直角坐标系中,点A ,C 在x 轴上,且8AC =,10AB =,90ACB ∠=,抛物线经过坐标原点O 和点A ,若将点B 向右平移5个单位后,恰好与抛物线的顶点D 重合,则抛物线的解析式为_______.24.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-0 3 yn33当0n <时,下列结论中一定正确的是_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.25.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.28.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标29.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.30.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式. (3)根据(2)完成下表(5)用配方法对(2)中的S与x之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A、B、C、D中哪一种方案合理?。

初中数学二次函数综合基础训练题3(附答案详解)

初中数学二次函数综合基础训练题3(附答案详解)

初中数学二次函数综合基础训练题3(附答案详解)1.在同一坐标系中,函数y =ax 2+bx 与y =b x的图象大致为( ) A . B . C . D . 2.已知 23M x x =-, 5N x =-(x 为任意实数),则M 、N 的大小关系为( ) A .M N < B .M N > C .M N D .不能确定 3.课堂上,老师给出一道题:如图,将抛物线C :y =x 2﹣6x +5在x 轴下方的图象沿x 轴翻折,翻折后得到的图象与抛物线C 在x 轴上方的图象记为G ,已知直线l :y =x +m 与图象G 有两个公共点,求m 的取值范围甲同学的结果是﹣5<m <﹣1,乙同学的结果是m >54.下列说法正确的是( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确4.如图,抛物线y=-x 2+2x+m+1交x 轴于点A (a ,0)和B (B ,0),交y 轴于点C ,抛物线的顶点为D .下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1< x 2,且x 1+ x 2>2,则y 1> y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m=2时,四边形EDFG 周长的最小值为,其中正确判断的序号是( )A .①B .②C .③D .④5.如图,抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)M 在抛物线上,线段MA 绕点M 顺时针旋转90°得MD ,当点D 在抛物线的对称轴上时,求点M 的坐标;(3)P 在对称轴上,Q 在抛物线上,以P ,Q ,B ,C 为顶点的四边形为平行四边形,直接写出点P 的坐标.6.如图,抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点D ,抛物线的顶点为C .(1)求A ,B ,C ,D 的坐标;(2)求四边形ABCD 的面积.7.已知抛物线2y ax bx c =++与x 轴交于A ,B ,与y 轴交下点C ,请仅用无刻度直尺按要求作图:(1)在图1中,直线l 为对称轴,请画出点C 关于直线l 的对称点;(2)在图2中,若CD x 轴,请画出抛物线的对称轴.8.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧);(3)求△OBC 的面积.9.抛物线y =﹣x 2+mx +n 与x 轴的一个交点为(﹣1,0),对称轴是直线x =1, (1)抛物线与x 轴的另一个交点坐标为 ;m = ,n = .(2)画出此二次函数的图象;(3)利用图象回答:当x 取何值时,y ≤0?10.二次函数2642y x x =--(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点()3, 4-是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.11.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x 的二次函数y 1=2x 2﹣4mx+2m 2+1,和y 2=x 2+bx+c ,其中y 1的图象经过点A(1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求当0≤x≤3时,y 2的取值范围.12.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.13.已知二次函数y=ax2+bx+3(a≠0)图象的对称轴是直线x=2,且经过点P(3,0).(1)求这个二次函数的解析式;(2)若y≤0,请直接写出x的取值范围;(3)若抛物线y=ax2+bx+3﹣t(a≠0,t为实数)在0<x<3.5的范围内与x轴有公共点,求出t的取值范围.14.如图,抛物线y=﹣12x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.15.一个抛物线形状与二次函数y =x 2的图象形状和顶点相同,但开口方向不同. (1)求抛物线解析式.(2)如果该抛物线与一次函数y =kx ﹣2相交于A 、B 两点,已知A 点的纵坐标为﹣1,求△OAB 的面积.16.如图,已知抛物线2142y x x =--+与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于C .(1)求点A 、B 、C 的坐标;(2)若点E 与点C 关于抛物线的对称轴对称,求梯形AOCE 的面积.17.已知抛物线y =ax 2+bx+3过A(﹣3,0),B(1,0)两点,交y 轴于点C ,(1)求该抛物线的表达式.(2)设P 是该抛物线上的动点,当△PAB 的面积等于△ABC 的面积时,求P 点的坐标. 18.已知函数y 1=-13x 2 和反比例函数y 2的图象有一个交点是 A a 1). (1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么范围内取值时,对于x 的同一个值,都有y 1<y 2? 19.已知:抛物线2y x bx c =-++,经过点A(-1,-2),B(0,1).(1)求抛物线的关系式及顶点P 的坐标.(2)若点B′与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.①求∠P′B B′的大小.②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M 处,设点N 在(1)中的抛物线上,当△MN B′的面积等于63时,求点N 的坐标.20.如图,抛物线223y x mx m =-+与x 轴交于,A B 两点,与y 轴交于点()0,3C -.(1)求该抛物线的解析式;(2)若点E 为线段OC 上一动点,试求22AE EC +的最小值; (3)点D 是y 轴左侧的抛物线上一动点,连接AC ,当DAB ACO =∠∠时,求点D 的坐标.21.如图,在正方形ABCD 中,点E 在对角线BD 上,EF ∥AB 交AD 于点F ,连接BF .(1)如图1,若AB =4,DE 2,求BF 的长;(2)如图2.连接AE ,交BF 于点H ,若DF =HF =2,求线段AB 的长;(3)如图3,连接BF ,AB =2,设EF =x ,△BEF 的面积为S ,请用x 的表达式表示S ,并求出S 的最大值;当S 取得最大值时,连接CE ,线段DB 绕点D 顺时针旋转30°得到线段DJ,DJ与CE交于点K,连接CJ,求证:CJ⊥CE.22.已知抛物线y=kx2-4kx+3k(k>0)与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,顶点为D.(1)如图1,请求出A、B两点的坐标;(2)点E为x轴下方抛物线y=kx2-4kx+3k(k>0)上一动点.①如图2,若k=1时,抛物线的对称轴DH交x轴于点H,直线AE交y轴于点M,直线BE交对称轴DH于点N,求MO+NH的值;②如图3,若k=2时,点F在x轴上方的抛物线上运动,连接EF交x轴于点G,且满足∠FBA=∠EBA,当线段EF运动时,∠FGO的度数大小发生变化吗?若不变,请求出tan∠FGO的值;若变化,请说明理由.23.在Rr△ABC中,∠C=90°,AC=BC=1,点O为AB的中点,点D、E分别为AC、AB边上的动点,且保持DO⊥EO,连接CO、DE交于点P.(1)求证:OD=OE;(2)在运动的过程中,DP•EP是否存在最大值?若存在,请求出DP•EP的最大值;若不存在,请说明理由.(3)若CD=2CE,求DP的长度.24.如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,F 为AB 的中点,连接CF ,CD ,当△CDE 中有一个角与∠CFO 相等时,求点D 的横坐标;若不存在,请说明理由.25.在平面直角坐标系中,抛物线21y x 6x 42=-+的顶点M 在直线L :y kx 2=-上. ()1求直线L 的函数表达式;()2现将抛物线沿该直线L 方向进行平移,平移后的抛物线的顶点为N ,与x 轴的右交点为C ,连接NC ,当tan NCO 2∠=时,求平移后的抛物线的解析式.26.二次函数 223y x x =++ 图像的对称轴是直线____.27.已知抛物线y =x 2﹣4x +h 的顶点A 在直线y =﹣4x ﹣1上,则抛物线的顶点坐标为_____.28.二次函数223y x =的图象如图所示,点A 0位于坐标原点,A 1,A 2,A 3,…,A 2009在y 轴的正半轴上,B 1,B 2,B 3,…,B 2009在二次函数223y x =第一象限的图象上,若△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2008B 2009A 2009都为等边三角形,计算出△A 2008B 2009A 2009的边长为_____.29.(在平面直角坐标系xOy中,抛物线y=ax2+4ax+4a+1(a<0)交x轴于A,B两点,若此抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)有且只有8个整点(横、纵坐标都是整数的点),则a的取值范围是__.30.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3…如此进行下去,则C2019的顶点坐标是_____.参考答案1.D【解析】试题解析:A、根据反比例函数得出b>0,根据二次函数得出a>0,b<0,所以b的范围不同,故本选项错误;B、根据反比例函数得出b>0,根据二次函数得出a<0,b<0,所以b的范围不同,故本选项错误;C、根据反比例函数得出b<0,根据二次函数得出a>0,b>0,所以b的范围不同,故本选项错误;D、根据反比例函数得出b>0,根据二次函数得出a<0,b>0,所以b的范围相同,故本选项正确;故选D.2.B【解析】【分析】首先根据题意分别画出两个函数图像,然后根据图像即可比较大小.【详解】根据题意,分别画出函数图像,如图所示根据图像即可判定M N故答案为B.【点睛】此题主要考查利用函数图像进行比较大小,熟练掌握,即可解题. 3.C【解析】【分析】当直线过抛物线与x轴右侧的交点时,恰有一个交点;直线y=x+m向上移,经过g左侧交点之前均为两个交点;继续向上平移,直到经过G中间的顶点(3,4)之前均为三个交点;最终向上平移,均有两个交点.【详解】解:令y=x2﹣6x+5=0,解得(1,0),(5,0)将点(1,0),(5,0)分别代入直线y=x+m,得m=﹣1,﹣5;∴﹣5<m<﹣1由题可知,图象C关于x轴对称的抛物线的顶点为(3,4),a=-1则解析式为y=-x2+6x-5联立265y x m y x x =+⎧⎨=-+-⎩25(5)0x x m -++=254200m ∆=--≤∴m >54综上所述,m >54或﹣5<m <﹣1 故选C .【点睛】本题主要考查抛物线与直线的交点问题,熟练掌握抛物线的性质是解题的关键.4.C【解析】【分析】【详解】试题解析:①当x >0时,函数图象过一四象限,当0<x <b 时,y >0;当x >b 时,y <0,故本选项错误;②二次函数对称轴为x=-22(1)⨯-=1,当a=-1时有12b -+=1,解得b=3,故本选项错误; ③∵x 1+x 2>2, ∴122x x +>1, 又∵x 1-1<1<x 2-1,∴Q 点距离对称轴较远,∴y 1>y 2,故本选项正确;④如图,作D 关于y 轴的对称点D′,E 关于x 轴的对称点E′,连接D′E′,D′E′与DE 的和即为四边形EDFG 周长的最小值.当m=2时,二次函数为y=-x2+2x+3,顶点纵坐标为y=-1+2+3=4,D为(1,4),则D′为(-1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,-3);则22(21)(34)2-+-=22(12)(34)58--+--=;∴四边形EDFG258故选C.考点:抛物线与x轴的交点.5.(1)y=﹣x2+x+2;(2)点M(1021012-)或(102-,1102--)或(1+102,13310+1﹣10213310-);(3)点P(12,14)或(12,﹣154)或(12,34).【解析】【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣2)=a(x2﹣x﹣2),即可求解;(2)设点M(m,﹣m2+m+2)顺时针旋转90°此时点M即为点D(﹣m2+m+2,﹣m﹣1),即可求解;(3)分BC是平行四边形的边、BC是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:y=a(x+1)(x﹣2)=a(x2﹣x﹣2),﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)设点M(m,﹣m2+m+2),过点M作y轴的平行线HN,交过点A与x轴的平行线于点H,交x轴于点N,∵∠DMH+∠HDM=90°,∠DMH+∠AMN=90°,∴∠DHM=∠AMN,又∵∠MHD=∠ANM=90°,AM=MD,∴△MDH≌△AMN(ASA),∴DH=MN,即:﹣m2+m+2=|12﹣m|,解得:m=10±或110,故点M 10101-)或(10110--)或(1013310+11013310-);(3)设点Q(m,n),n=﹣m2+m+2,点P(12,s),点B、C的坐标分别为:(2,0)、(0,2),①当BC是平行四边形的边时,点C向右平移2个单位向上平移2个单位得到B,同样点Q(P)向右平移2个单位向上平移2个单位得到点P(Q),则m+2=12,n﹣2=s或m﹣2=12,n+2=s,解得:s=14或﹣154,故点P(12,14)或(12,﹣34);②当BC是平行四边形的对角线时,m+12=2,n+s=2,解得:s=34,故点P(12,34),综上,故点P的坐标为:(12,14)或(12,﹣154)或(12,34).【点睛】本题考查了二次函数的综合性问题,能够正确求出函数解析式以及读懂题干意思,画出具体图形,求出点的坐标是解题的关键6.(1)A(﹣1,0),B(3,0),C(1,﹣4),D(0,﹣3);(2)9.【解析】【分析】(1)根据题目中的函数解析式可以求得A,B,C,D的坐标;(2)根据(1)中求得的点A,B,C,D的坐标,可以求得四边形ABCD的面积.【详解】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1)=(x﹣1)2﹣4,∴当y=0时,x1=3,x2=﹣1,当x=0时,y=﹣3,该函数的顶点坐标为(1,﹣4),∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D的坐标为(0,﹣3);(2)连接OC,如图所示,∵点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D的坐标为(0,﹣3),∴四边形ABCD的面积是:S△AOD+S△ODC+S△OCB=313134++=9 222⨯⨯⨯.【点睛】本题考查了二次函数中点的特征以及四边形的面积,掌握二次函数的性质是解题的关键7.(1)见解析;(2)见解析【解析】【分析】(1)运用画对称轴的作图技巧,连接CB交于对称轴一点,再连接A点与此点,与函数图像的交点即对称点,(2)用无刻度直尺连接CB,AD交于一点,连接AC,BD并延长交于一点,再连接这两点,此线即直线m.【详解】解:(1)如图1,点E即为所求(画法不唯一);(2)如图2,直线m即为所求.【点睛】本题考查轴对称图形的画法,抛物线的性质,熟练掌握抛物线的性质以及画对称轴的作图技巧是解题的关键.8.(1)a= -1 b= -1 (2) B(2,-2) 2,-2) (3)面积是2,【解析】试题分析:()1将点A 代入23y x =-求出b ,再把点A 代入抛物线2y ax =求出a 即可. ()2解方程组2{2,y x y =-=-即可求出交点坐标. ()3利用三角形面积公式即可计算.试题解析:()1∵点()1,A b 在直线23y x =-上,1b ∴=-,∴点A 坐标()1,1-,把点()1,1A -代入2y ax =得到1a =-, ()1 1.a b ∴==-()2由2{2,y x y =-=-解得2{2x y ==-2{ 2.x y =-=-∴点C 坐标()2,2,--点B 坐标)2,2.- ()3 12222 2.2BOC S =⨯=9.(1)(3,0),m =2,n =3;(2)图象见解析;(3)当x ≤﹣1或x ≥3时y ≤0.【解析】【分析】(1)根据二次函数的对称性求得另一个交点,然后根据待定系数法即可求得m 、n 的值;(2)求得顶点,画出图象即可;(3)观察图形可直接得出y ≤0时,x 的取值范围;【详解】解:(1)∵抛物线y =﹣x 2+mx +n 与x 轴的一个交点为(﹣1,0),对称轴是直线x =1, ∴抛物线与x 轴另一个交点坐标为(3,0),把(﹣1,0),(3,0)代入y =﹣x 2+mx +n 得-1-0930m n m n +=⎧⎨-++=⎩, 解得23m n =⎧⎨=⎩, 故答案为(3,0),m =2,n =3;(2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点为(1,4);画出此图象如图:(3)由图象可知:当x ≤﹣1或x ≥3时y ≤0.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10.(1)开口向下,对称轴为直线1x =-,顶点为(1,8)-;(2)不在函数图象上,理由详见解析;(3) 12.【解析】【分析】(1)先把抛物线解析式配成顶点式得到22(1)8y x =-++,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将3x =代入函数解析式求出对应的y 即可判断;(3)确定抛物线与y 轴的交点坐标为(0,6),然后根据三角形面积公式求解.【详解】解:(1)解:(1)226422(1)8y x x x =--=-++20a =-<,∴抛物线开口向下;22(1)8y x =+-,∴抛物线对称轴方程为1x =-,顶点坐标(1,8)--;开口向下,对称轴为直线1x =-,顶点为1,8-()(2)不在函数图象上.理由:当3x =时,29436244y =-⨯-⨯+=-≠-所以点4-(3,)不在函数图象上. (3)令0y =,得26420x x --=,解得13x =-,21x =,所以抛物线与x 轴的交点坐标为(3,0)-,(1,0),当x=0时,y=6.抛物线与y 轴交于点0,6A (),()1136122ABC S ∆=⨯+⨯= 【点睛】本题考查了二次函数的性质:二次函数2(0)y ax bx c a =++≠的图象为抛物线;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,)c . 11.(1) y=(x -1)2+3和y=2(x -1)2+3(答案不唯一);(2)y 2 =x 2 -2x+1,02y 4≤≤.【解析】【分析】(1)根据“同簇二次函数”的定义写出两个即可;(2)将A 代入y 1=2x 2−4mx+2m 2+1中,可求出y 1与x 的函数关系式,并求出此抛物线的顶点坐标,从而求出y 1+y 2与x 的函数关系式,再根据“同簇二次函数”的定义即可求出b 、c ,从而求出函数y 2的表达式,最后根据二次函数的性质自变量的取值范围和对称轴的位置关系求最值即可.【详解】(1)根据“同簇二次函数”的定义:两个二次函数图象的顶点,开口方向都相同,故这两个二次函数可以为:y=(x -1)2+3和y=2(x -1)2+3;(2)把A(1,1)代入y 1=2x 2−4mx+2m 2+1得2−4m+2m 2+1=1,解得m=1,则y 1=2x 2−4x+3=2(x -1)2+1,∴y 1=2x 2−4x+3顶点坐标为(1,1),且y 1+y 2=3x 2+(b−4)x+c+3∵y 1+y 2与y 1为“同簇二次函数” ∴()()241234334143b c b -⎧-=⎪⨯⎪⎨⨯+--⎪=⎪⨯⎩解得:b=-2,c=1y 2 =x 2 -2x+1 此抛物线的开口向上,对称轴为:21221b x a -=-=-=⨯ ∴0≤x≤3包含对称轴∴当1x =时,y 2取最小值,此时y 2=0,当x=3时,y 2取最大值,此时y 2=4∴02y 4≤≤【点睛】此题考查的是新定义问题,掌握二次函数的图像及性质和“同簇二次函数”的定义是解决此题的关键.12.(1)如y =x 2,y =x 2﹣x +1,y =x 2+2x +4等(答案不唯一);(2)详见解析;(3)①y =2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【解析】【分析】(1)按照黄金抛物线的定义给a、b、c赋值即可;(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;(3)①根据“上加下减”写出平移后的抛物线解析式即可;②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;【详解】(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;(2)依题意得b2=ac,∴△=b2﹣4ac=b2﹣4b2=﹣3b2,∴当b=0时,△=0,此时抛物线与x轴有一个公共点,当b≠0时,△<0,此时抛物线与x轴没有公共点;(3)①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,②存在.如图:若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,P点的坐标为:(0,﹣1),(1,﹣1),此时,△AOB≌△BQP;若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,令2x2﹣2x﹣1=12,解得:x=﹣12或x=32,∴P点的坐标为:(﹣12,12),(32,12).此时,△AOB≌△PQB;综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【点睛】此题主要考查新定义下抛物线的性质,熟练掌握,即可解题.13.(1)y=x2﹣4x+3;(2)1≤x≤3;(3)﹣1≤t<3.【解析】【分析】(1)利用对称性得到抛物线经过点(1,0).然后利用待定系数法求抛物线解析式;(2)写出抛物线在x轴下方所对应的自变量的范围即可;(3)对于抛物线y=x2﹣4x+3﹣t,当△=(﹣4)2﹣4(3﹣t)=0时,满足条件,此时t=﹣1,当△=(﹣4)2﹣4(3﹣t)>0时,若x=0,y=x2﹣4x+3﹣t>0,满足条件,此时﹣1<t<3,然后综合两种情况即可.【详解】(1)∵对称轴为x=2,点B(3,0),∴抛物线经过点(1,0).将(1,0)、(3,0)代入得:9a+3b+3=0且a+b+3=0解得a=1,b=﹣4,∴抛物线解析式为y=x2﹣4x+3;(2)由(1)得知抛物线过点(1,0)和(3,0),且a=1,可判定开口向上,故当1≤x≤3时,y≤0;(3)由(1)可知y=ax2+bx+3﹣t的解析式为y=x2﹣4x+3﹣t,当△=(﹣4)2﹣4(3﹣t)=0时,解得t=﹣1,抛物线与x轴的交点为(2,0);当△=(﹣4)2﹣4(3﹣t)>0时,解得t>﹣1,若x=0,y=x2﹣4x+3﹣t>0,抛物线y=ax2+bx+3﹣t(a≠0,t为实数)在0<x<3.5的范围内与x轴有公共点,即t<3,∴t的范围为﹣1≤t<3.【点睛】此题主要考查抛物线的对称性、待定系数法求解析式以及根的判别式的运用,熟练掌握,即可解题.14.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404bk b=⎧⎨=-+⎩解得:14 kb=⎧⎨=⎩∴AC解析式为y=x+4.设P(t,﹣12t2﹣t+4)则D(t,t+4)∴PD=(﹣12t2﹣t+4)﹣(t+4)=﹣12t2﹣2t=﹣12(t+2)2+2∴S△ACP=12PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.15.(1)y=﹣x2;(2)3.【解析】【分析】(1)由图象形状和顶点相同,但开口方向不同可知二次项系数a互为相反数即可得出函数解析式.(2)利用抛物线解析式和点A的纵坐标求出A的坐标,把A的坐标代入y=kx-2,根据待定系数法求得解析式,然后解析式联立求得B的坐标,利用S△OAB=S△AOG+S△BOG求解即可.【详解】解:(1)形状与二次函数y=x2的图象形状和顶点相同,但开口方向不同,此抛物线解析式为y=﹣x2.(2)∵A点的纵坐标为﹣1,把y=﹣1代入y=﹣x2,解得x=±1,∴A(1,﹣1)或(﹣1,﹣1)把A(1,﹣1)代入y=kx﹣2得,﹣1=k﹣2,解得k=1,把A(﹣1,﹣1)代入y=kx﹣2得﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=x﹣2或y=-x﹣2,∴令x =0,得y =﹣2,∴G (0,﹣2),I .当一次函数表达式为y =﹣x ﹣2时,由一次函数与二次函数联立可得22y x y x =--⎧⎨=-⎩, 解得11x y =-⎧⎨=-⎩或24x y =⎧⎨=-⎩, ∴B (2,﹣4), ∴S △OAB =S △AOG +S △BOG =()122+12⨯⨯=3, II .同理证得当一次函数表达式为y =x ﹣2时,S △OAB =3,故△OAB 的面积为3.【点睛】本题主要考查了待定系数法求解析式,二次函数图象上点的坐标特征,解题的关键是分两种情况正确的求出点B 的坐标.16.(1)A (-4,0),B (2,0),C,0,4);(2)12【解析】【分析】(1)在抛物线的解析式中,令x=0可以求出点C 的坐标,令y=0可以求出A 、B 点的坐标;(2)先求出E 点坐标,然后求出OA ,OC ,CE 的长计算面积即可.【详解】解:(1)当y=0时,212x --x+4=0,解得x 1=-4,x 2=2, ∴A (-4,0),B (2,0),当x=0时,y=4,∴C (0,4);(2)y=212x -﹣x+4=12-(x+1)2+92,∴抛物线y=212x -﹣x+4的对称轴是直线x=-1, ∴E 的坐标为(-2,4),则OA=4,OC=4,CE=2,S 梯形AOCE =(24)4122+⨯= 【点睛】本题是对二次函数的基础考查,熟练掌握二次函数与x 轴,y 轴交点坐标的求解及梯形面积知识是解决本题的关键.17.(1)y =﹣x 2﹣2x+3;(2)P 点坐标为(﹣,﹣3)或(﹣1,﹣3).【解析】【分析】(1)把A 与B 坐标代入求出a 与b 的值,即可确定出表达式;(2)先求出点C 的坐标,从而确定△ABC 的面积,再根据△PAB 的面积等于△ABC 的面积求出P 的坐标即可.【详解】解:(1)把A 与B 坐标代入得:933030a b a b -+=⎧⎨++=⎩, 解得:12a b =-⎧⎨=-⎩, 则该抛物线的表达式为y =﹣x 2﹣2x+3;(2)由抛物线解析式得:C(0,3),∴△ABC 面积为12×3×4=6, ∴△PAB 面积为6,即12×|y P 纵坐标|×4=6,即y P 纵坐标=3或﹣3, 当y P 纵坐标=3时,可得3=﹣x 2﹣2x+3,解得:x =﹣2或x =0(舍去),此时P 坐标为(﹣2,3);当y P 纵坐标=﹣3时,可得﹣3=﹣x 2﹣2x+3,解得:x =﹣,此时P 坐标为(﹣,﹣3)或(﹣1,﹣3).此题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键. 18.(1)23y x =-;(2)作图见解析;(3)x <0,或x >3. 【解析】分析:(1)利用A 点在二次函数的图象上,进而利用待定系数法求反比例函数解析式即可; (2)根据二次函数的性质以及反比例函数的性质画出草图即可;(3)利用函数图象以及交点坐标即可得出x 的取值范围.详解:(1)把点A (a ,-1)代入y 1=−13x 2, 得-1=−13a , ∴a=3.设y 2=k x,把点A (3,-1)代入, 得 k=−3,∴y 2=−3. (2)画图;(3)由图象知:当x <0,或x 3时,y 1<y 2.点睛:此题主要考查了待定系数法求反比例函数解析式以及二次函数的性质和比较函数的大小关系,利用数形结合得出是解题关键.19.(1)221y x x =-++,顶点坐标()12P ,;(2)①120P BB ''∠=,②当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.【分析】(1)把点A (-1,-2)B (0,1)代入2y x bx c =-++即可求出解析式;(2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)即可求出m ,得出顶点坐标 ()P ',连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得P H '=,P’B=2求出tan P H P BH BH∠='='得60P BH ∠=',故可得P BB ∠''的度数②根据题意作出图形,根据旋转的性质与MNB S '∆=,解得三角形的高6h =;故设()7N a -,或()5N a ,分别代入221y x x =-++即可求出N 的坐标.【详解】(1)把点A (-1,-2)B (0,1)代入2y x bx c =-++得2=11b c c ---+⎧⎨=⎩解得=21b c ⎧⎨=⎩∴抛物线的关系式为:221y x x =-++,得y=-(x-1)2+2; ∴顶点坐标为()12P ,. (2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)得,-1=-(m-1)2+2解得11m =,21m =(舍去);∴(212y x =-++,得顶点()P ' 连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得P H '=,=2∵tan P H P BH BH∠='=' ∴60P BH ∠=',∴18060120P BB ∠=-=''.②∵2BB '=,2P B '=即BB P B '=',∴30BP B P B B ''''∠=∠=;∵线段P B ''以点B '为旋转中心顺时针旋转120,点P '落在点M 处; ∴90OB M ∠=',B M B P '=''∴//MB x '轴,23B M B P ''='=;设MNB ∆'在B M '边上的高为h ,得:632MNB B M h S '∆⋅'==,解得6h =; ∴设()7N a -,或()5N a ,分别代入221y x x =-++得 2721a a -=-++解得:4a =或2a =-∴()47N -,或()27N --,, 2521a a =-++方程无实数根舍去,∴综上所述:当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,并根据题意作出图形进行求解.20.(1)223y x x =+-;(2)22AE EC +=(3)D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)把点()0,3C 代入抛物线表达式即可求出m ,即可得到抛物线的解析式;(2)连接BC ,过点A 作AF BC ⊥于点F ,交y 轴于点E ,当A E F 、、 三点共线时,22AE EC +最小值为AF ,再根据由三角形面积公式得:11•·22BC AF AB OC =,即可求出22AF = ;(3) 过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23m m m +- ,利用tan tan DAB ACO ∠=∠即BH AOAH CO=,代入即可求出m 的值,再求出D 点坐标 【详解】解:(1)把点()0,3C 代入抛物线表达式得:9630m m ++= , 解得:1m =-故该抛物线的解析式为:223y x x =+-(2)连接BC ,过点A 作AF BC ⊥于点F ,交y 轴于点E由223y x x =+-,得:()3,0B - ,()0,3C -OB OC ∴= ,即45ABC ∠=,4,32AB BC ∴==由三角形面积公式得:11•·22BC AF AB OC = 即:11324322AF ⨯=⨯⨯ ,解得:22AF =在Rt CEF ∆中,2EF =,2AE AE EF AF ∴=+=∴当A E F 、、 三点共线时,2AE EC +最小值为22AF =2222AE EC ∴+= (3)过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23m m m +-DAB ACO ∠=∠ tan tan DAB ACO ∴∠=∠,即BH AOAH CO=223113m m m +-∴=-或223113m m m --+=-解得:103m =-或1(舍去1m =),或1m =或83- (舍去1m =) 过点D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭【点睛】此题主要考查二次函数综合,解题的关键是熟知三角函数的定义与性质及最值的求法. 21.(1)5;(2)8;(3)21329S (x 224=--+,92,见解析. 【解析】 【分析】(1)由正方形的性质可得AB =AD =4,∠A =90°,∠BDA =45°=∠DBA ,由平行线性质可得∠DFE =∠A =90°,∠DEF =∠DBA =∠EDF =45°,可得DF =1,AF =3,由勾股定理可求BF 的长;(2)由题意可得DF =EF =FH =2,由平行线的性质和等腰三角形的性质可得∠BAE =∠FHE =∠BHA ,可得AB =BH ,由勾股定理可求AB 的长;(3)由三角形面积公式可求S △BEF =12EF×AF =12x (﹣x )=219224x ⎛⎫--+ ⎪ ⎪⎝⎭由二次函数性质可得x =2时,S 取得最大值,即点E 是BD 中点,由旋转的性质和直角三角形的性质可证四边形JCEN 是矩形,可证CJ ⊥CE . 【详解】解:(1)∵四边形ABCD 是正方形,∴AB =AD =4,∠A =90°,∠BDA =45°=∠DBA , ∵EF ∥AB∴∠DFE =∠A =90°,∠DEF =∠DBA =∠EDF =45° ∴DF =EF∴DE DF ∴DF =1∴AF =AD ﹣DF =3∴BF 5(2)∵DF =EF ,DF =HF =2, ∴EF =2=FH ∴∠FEH =∠FHE ∵EF ∥AB∴∠FEH =∠BAE , ∴∠BAE =∠FHE =∠BHA ∴AB =BH∵在Rt △ABE 中,BF 2=AF 2+AB 2, ∴(AB+2)2=(AB ﹣2)2+AB 2, ∴AB =8,AB =0(不合题意舍去) ∴AB =8(3)如图,过点J 作JN ⊥BD 于,∵S△BEF=12EF×AF=12x(2x)=2132924x⎛-+⎝⎭∴当x=322时,S△BEF最大值为94,∵x=322,∴EF=32 2∵EF∥AB∴12 EF DE DFAB BD AD===∴BD=2DE,AD=2DF∵CB=CD,BD=2DE,∴CE⊥BD,BD=2CE,∵旋转∴JD=BD,∠JDB=30°,又∵JN⊥BD∴JD=2JN,∴BD=2JN,∴JN=CE,∵JN⊥BD,CE⊥BD∴JN∥CE,且CE=JN∴四边形JCEN是平行四边形,∵JN⊥BD∴四边形JCEN是矩形∴CJ⊥CE【点睛】本题是四边形综合题,正方形的性质,勾股定理,矩形的判定和性质,旋转的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键.22.(1)A (1,0)、B (3,0);(2)①2MO NH +=,②不会变化,tan FGO ∠=4. 【解析】 【分析】(1)令y =kx 2-4kx +3k=0,求得x 1=1,x 2=3,故A (1,0)B (3,0)(2)①过点 E 作 EK ⊥ x 轴于点k ,设 E (m , m 2-4m +3),易证∆BKE ∽ ∆BHN , ∆AKE∽ ∆AOM ,则K KB KE KE A HB HN MO AO ,==,故23431m m m HN --+-=,24311m m m MO -+--=,求出NH = m -1, MO = -m + 3得()132MO NH m m +=-+-+=;②过点 E 作 EN ⊥ x 轴于点N ,作FH ⊥ x 轴于点H 过点 E作 EM ⊥ FH , 交 FH 的延长线于点 M ,设 F (n ,2n 2 - 8n + 6), E (a ,2a 2 - 8a + 6)当n > 3 时,不能满足∠FBA = ∠EBA ,当 n < 1,由∆FHB ∽ ∆ENB ,则N FH HBE NB=, 故2228632863n n w n a a a-+-=-+--,得:n + a = 2()22286286tan tan n n a a FM FGO FEM EM a n-+--+∠=∠==- , = 8 - 2(n + a) = 4为定值,即tan ∠FGO 的值不变. 【详解】解:(1)令y =kx 2-4kx +3k=0,求得x 1=1,x 2=3,故A (1,0)B (3,0) (2)① y = x 2-4x +3 ,如图 1 过点 E 作 EK ⊥ x 轴于点k ,∵KE ∥HN ∥x 轴,∴∆BKE ∽ ∆BHN , ∆AKE ∽ ∆AOM ,设 E (m , m 2-4m +3)K KB KE KE A HB HN MO AO ,==,即:23431m m m HN --+-=,24311m m m MO -+--= 得: NH = m -1, MO = -m + 3()132MO NH m m ∴+=-+-+=②不会变化。

最新初中数学二次函数知识点总复习含答案

最新初中数学二次函数知识点总复习含答案

最新初中数学二次函数知识点总复习含答案一、选择题1.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A .向左平移2个单位长度B .向右平移2个单位长度C .向左平移10个单位长度D .向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.故选:D .【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.2.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0.∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.4.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O点为AB的中点,又∵圆心C坐标为(0,4),∴OC=4,∴BC长度=2205OB C+=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<1【答案】D【解析】【分析】根据已知条件求出抛物线与x轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.所以答案为:D.【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.6.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确;C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.7.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0,由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a-=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.9.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:t0 1 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1,∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.12.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a <98或a ≤﹣2 故选:C .【点睛】 本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.16.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为()A+B.1C.1 D.-【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而增大,∴当x=m时,y有最小值,∴m2﹣2m+2=6,解得m=m=1当m+1<1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而减小,∴当x=m+1时,y有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m=5(舍去)或m=﹣5,综上可知m的值为1+5或﹣5.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.17.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A(-5,y1),B(2.5,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.故选:C.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.。

最新初中数学二次函数综合题及答案(经典题型)复习过程

最新初中数学二次函数综合题及答案(经典题型)复习过程

二次函数试题论:①抛物线1212--=x y 是由抛物线221x y -=怎样移动得到的? ②抛物线2)1(21+-=x y 是由抛物线221x y -=怎样移动得到的?③抛物线1)1(212-+-=x y 是由抛物线1212--=x y 怎样移动得到的?④抛物线1)1(212-+-=x y 是由抛物线2)1(21+-=x y 怎样移动得到的?⑤抛物线1)1(212-+-=x y 是由抛物线221x y -=怎样移动得到的?选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( )A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—25、抛物线y= 21x 2-6x+24的顶点坐标是( )A (—6,—6)B (—6,6)C (6,6)6、已知函数y=ax 2+bx+c,①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2A 1 B 2 C 3 D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =ba c+ 的值是( ) A -1 B 1 C 21 D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。

(必考题)初中九年级数学上册第二十二章《二次函数》经典复习题(答案解析)

(必考题)初中九年级数学上册第二十二章《二次函数》经典复习题(答案解析)

一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .B解析:B【分析】先根据二次函数y =ax 2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y =ax 2在第一象限内y 随x 的减小而减小,∴a >0,∴y =ax 2的图象经过原点且开口方向向上,y =ax +a 经过第一三象限,且与y 轴的正半轴相交.A . 二次函数开口向上,一次函数与y 轴的负半轴相交,不符合题意B .二次函数开口向上,一次函数与y 轴的正半轴相交,符合题意C .二次函数开口向下,一次函数与y 轴的负半轴相交,不符合题意D .二次函数开口向下,一次函数与y 轴的正半轴相交,不符合题意故选:B .【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出 a 是正数是解题的关键.2.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .不能确定A解析:A【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系.【详解】解:∵抛物线过A (-3,0)、O (1,0)两点,∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小,即y 1>y 2.故选:A .【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.3.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-A 解析:A【分析】先将二次函数解析式化为顶点式,分别根据自变量x 的取值范围确定y 的范围,再根据任意两边之和是否大于第三边即可判断.【详解】 解:245y x x =--+=()229x -++, ∴抛物线的对称轴为直线2x =-且抛物线开口向下,A 选项,当5122x -<<时,1194y <≤,当12y y ,取3,3y 取9时,123y y y +<,两边之和小于第三边,不能构成三角形,故符合题意;B 选项,当7122x -<<-时,2794y <≤,2727+944>,所以以1y 、2y 、3y 为长的三条线段能围成一个三角形,故不符合题意;C 选项,当30x -<<时,59y <≤,同理三条线段能围成一个三角形,故不符合题意;D 选项,当41x -<<-时,59y <≤,同理三条线段能围成一个三角形,故不符合题意.故选:A .【点睛】本题主要考查二次函数的取值范围问题,涉及三角形成立的条件,解题的关键是确定y 的取值范围,再根据任意两边之和是否大于第三边判断.4.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++A解析:A【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式.【详解】221y x x =+-=22111x x ++--=2(1)2y x =+-,故选:A .【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.5.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.6.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .12C解析:C【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可.【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +, ∴抛物线对称轴为直线332m m x m -++==, ∵抛物线与x 轴只有一个交点,故顶点为(,0)m , 2()y x m ∴=-.当3x m =+时,239y ==.故答案为C .【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.7.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是( )A .3B .2C .1D .0A 解析:A【分析】根据函数解析式画出函数图象,结合函数图象进行判断.【详解】解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意.②如图所示,函数没有最大值,有最小值,故②不符合题意.③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个.故选:A .【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.8.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令CO AO=m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1B 解析:B【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可.【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+,根据CO m AO =,可得c OA m =,即A 的横坐标为c m-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=, 将1c b =+代入可得;2110b b m m +--+=,即2210m b bm m ---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦,解得:1m b =+,或1m =-(舍去),故选:B .【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.9.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤C解析:C【分析】 根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确.【详解】解:由抛物线对称轴为直线x =2b a-,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确.故选C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.10.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答. 二、填空题11.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.12.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.13.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可.【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0),由图象可知:函数值大于0的x 的取值范围为:13x, 所以,220x x m -++>的解集为13x. 故答案为:13x. 【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标.14.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为解析:y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式.【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故答案为y =(x ﹣2)2+2.【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.15.写出一个开口向下的二次函数的表达式______.(答案不唯一)【分析】根据二次函数开口向下二次项系数为负可据此写出满足条件的函数解析式【详解】解:二次函数的图象开口向下则二次项系数为负即a <0满足条件的二次函数的表达式为y=-x2故答案为:y=-解析:2y x =-(答案不唯一)【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式.【详解】解:二次函数的图象开口向下,则二次项系数为负,即a <0,满足条件的二次函数的表达式为y=-x 2.故答案为:y=-x 2(答案不唯一).【点睛】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单.16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时 解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.18.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.19.2251=-+-y x x 的图象不经过__________象限;第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1, ∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax2+bx+c,由题意得:2=c2=42142a b ca b c ⎧⎪++⎨⎪-=-+⎩解得3=-83 =42 abc⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a<0,则该函数图像开口向下.故答案为:下.【点睛】本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.已知二次函数y=ax2与y=﹣2x2+c.(1)随着系数a和c的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a=;若抛物线y=ax2沿y轴向下平移2个单位就能与y=﹣2x2+c的图象完全重合,则c=;(3)二次函数y=﹣2x2+c中x、y的几组对应值如表:的大小关系为(用“<”连接).解析:(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p<m<n【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数 y =ax2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)∵函数y=ax2与函数y=﹣2x2+c的形状相同,∴a=±2,∵抛物线y=ax2沿y轴向下平移2个单位得到y=ax2﹣2,与y=﹣2x2+c的图象完全重合,∴c=﹣2,故答案为:±2,﹣2.(3)由函数y=﹣2x2+c可知,抛物线开口向下,对称轴为y轴,∵1﹣0<0﹣(﹣2)<5﹣0,∴p<m<n,故答案为:p<m<n.【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.22.已知二次函数y=(x﹣1)(x﹣m)(m为常数)(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m的值变化时,该函数图象的顶点在下列哪个函数的图象上?.A.y=x﹣1 B.y=﹣x﹣1 C.y=﹣(x+1)2 D.y=﹣(x﹣1)2解析:(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x轴的两点交点横坐标:x1=1,x2=m,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m,m),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y=0时,(x﹣1)(x﹣m)=0.解得x1=1,x2=m.当m=1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m为何值,该函数的图象与x轴总有公共点.(2)由二次函数y=(x﹣1)(x﹣m)=(x﹣12m+)2+m﹣2(1)4m+得到该抛物线的顶点坐标是(12m +,m ﹣2(1)4m +), 而点(12m +,m ﹣2(1)4m +)满足y =﹣(x ﹣1)2,不满足y =x ﹣1,y =﹣x ﹣1,y =﹣(x+1)2,∴点(12m +,m ﹣2(1)4m +)在函数y =﹣(x ﹣1)2上. 故答案是:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.23.已知二次函数2y ax =与22y x c =-+.(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a =______;若抛物线2y ax =沿y 轴向下平移2个单位就能与22y x c =-+的图象完全重合,则c =______. (3)二次函数22y x c =-+中x 、y 的几组对应值如下表:解析:(1)见解析;(2)2±,2-;(3)p m n <<【分析】(1)二次函数的二次项系数、一次项系数和常数项的变化会影响开口大小,开口方向,对称轴和顶点坐标,根据二次函数的性质即可得出图像的具体影响.(2)由于函数图像形状相同,可以得到2a =±;根据二次函数平移规律上加下减可求得函数22y ax =-,再由题意就可得到c =-2. (3)将表中数值代入二次函数即可分别得到m 、n 、p 含未知数c 的代数式,比较大小即可.【详解】(1)二次函数2y ax =的图像随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数22y x c =-+的图像随着c 的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变.(只要学生答对变与不变各一个点就给满分).(2)由于函数2y ax =与函数22y x c =-+的形状相同,所以2a =-,即2a =±.抛物线2y ax =沿y 轴向下平移两个单位,即得到抛物线22y ax =-.因为该抛物线与22y x c =-+的图像完全重合所以2c =-故答案为2±;2-(3)表中数值代入二次函数22y x c =-+可得; 8m c =-+,2n c =-+,50p c =-+因为50c -+<8c -+<2c -+所以p m n <<.故答案为p m n <<【点睛】本题考查二次函数的性质,二次函数图像与几何变换,二次函数上点的坐标特征.特别注意(2)2a =时两个函数图像形状相同.24.已知二次函数2(2)1y x =--,(1)确定抛物线开口方向、对称轴、顶点坐标;(2)如图,观察图象确定,x 取什么值时,①y >0,②y <0,③y =0.解析:(1)开口方向:向上,对称轴:直线x=2,顶点坐标:(2,-1);(2)①1x <或3x >时y>0,②13x <<时,y<0;③x=1或x=3时,y=0.【分析】(1)根据顶点式可直接推出抛物线开口方向、对称轴、顶点坐标;(2)令y=0,求出关于x 的方程的解,结合图象即可解答.【详解】解:(1)由于二次项系数为正数,则抛物线开口向上;根据顶点式可知,对称轴为x=2,顶点坐标为(2,-1).(2)令y=0,则原式可化为(x-2)2-1=0,移项得,(x-2)2=1,开方得,x-2=±1,解得x 1=1,x 2=3.则与x 轴的交点坐标为(1,0),(3,0).如图:①当x <1或x >3时,y >0;②当x=1或x=3时,y=0;③当1<x <3时,y <0.【点睛】本题考查了二次函数的性质,熟悉顶点式及正确画出图象,利用数形结合是解题的关键. 25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式. (3)根据(2)完成下表 地基的宽()m x 50 60 70 75 78 79 80 81 82 地基的面积(2m )(5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确. (6)你认为A 、B 、C 、D 中哪一种方案合理?解析:(1)方案A 的面积为27200m ,方案B 的面积为26600m ;(2)2170S x x =-+;(3)S 的值从左到右依次为6000,6600,7000,7125,7176,7189,7200,7209,7216;(4)当80x ≤时,S 随x 的增大而增大;(5)当80x =时,S 最大值为27200m ,见解析;(6)选A 种方案【分析】(1)根据矩形的面积公式求解即可;(2)选方案C ,由等腰直角三角形的性质可得DF=MF=80﹣x ,可用x 表示出长BN=170﹣x ,根据矩形的面积公式表示出S 与x 的关系式;(3)根据(2)中关系式,分别代入x 值,求出对应的S 值,即可完成填表; (4)通过配方,分析S 随x 的变化情况即可得出结论;(5)结合(4)中分析即可做出判断.【详解】(1)根据题意,方案A 的面积为280907200m ⨯=,方案B :如图B ,DF ⊥EG ,∵∠EDC=135°,∴△EFD 是等腰直角三角形,又AB=110,CD=90,∴EF=FD=110﹣90=20,∴方案B 的面积为()211080206600m ⨯-=; ;(2)如图,∵MN=x ,80MF x =-,135EDC ∠=︒,∴△MFD 是等腰直角三角形,∴80DF x =-,()9080170NB CD DF x x =+=+-=-,∴()170S x x =-,即2170S x x =-+;(3)S 的值从左到右依次为6000,6600,7000,7125,7176,7189,7200,7209,7216;(4)猜想:当80x ≤时,S 随x 的增大而增大;(5)配方,得:()2221708585S x x x =-+=--+,∵﹣1<0,∴当85x ≤时,S 随x 的增大而增大,∵80x ≤,∴当80x =时,S 最大值为27200m .(6)根据当x=80时,S 取得最大值,故选A 种方案合理.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、二次函数的性质,解答的关键是掌握等腰直角三角形的性质,会借助二次函数求最值的方法求最大面积,注意x 的取值范围.27.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?。

最新初中数学二次函数知识点总复习附解析

最新初中数学二次函数知识点总复习附解析

最新初中数学二次函数知识点总复习附解析一、选择题1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201bb c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.2.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.3.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( ) A .4 B .3 C .2D .1【答案】B 【解析】 【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④. 【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确; ∵抛物线的对称轴为直线x=1,且抛物线开口向上, ∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半, ∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c , ∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c ∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+=解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③, 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.4.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C 【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2ba<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2ba位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选C .考点:二次函数的图象;一次函数的图象.5.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D 【解析】 【分析】先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4. 【详解】∵抛物线的对称轴为x =2, ∴22m-=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3, 当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4, ∴﹣5<t≤4. 故选:D . 【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.6.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A 【解析】 【分析】①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误; ③对称轴:直线12bx a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确. 【详解】解:①∵抛物线与x 轴由两个交点, ∴240b ac ->, 即24b ac >, 所以①正确;②由二次函数图象可知, 0a <,0b <,0c >,∴0abc >, 故②错误;③∵对称轴:直线12bx a=-=-, ∴2b a =,∴24a b c a c +-=-, ∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-, ∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<, 故④正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.7.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A .a ≤﹣2B .a <98C .1≤a <98或a ≤﹣2 D .﹣2≤a <98【答案】C 【解析】 【分析】分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围. 【详解】∵抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,∴令1122x +=ax 2﹣x +1,则2ax 2﹣3x +1=0 ∴△=9﹣8a >0∴a <98①当a <0时,110111a a ++≤⎧⎨-+≤⎩解得:a ≤﹣2 ∴a ≤﹣2②当a >0时,110111a a ++≥⎧⎨-+≥⎩解得:a ≥1∴1≤a <98综上所述:1≤a <98或a ≤﹣2 故选:C . 【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.8.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.9.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3-B .3C .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cmS ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论. 【详解】解:由题意得2228AB BC +=,2AB BC =+, 可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确; ②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确; 故选:A . 【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC--运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=;当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】 此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.12.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2. ∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.13.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A 5,5,15,12+B .5,51C .1D .5,15-【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值.【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1,∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大,∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小,∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5,综上可知m 的值为1+5或﹣5.故选B .【点睛】本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.14.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=12.此时抛物线解析式为y=12x2﹣2x.当x=1时,得13121122y=⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x=3时,得13923122y=⨯-⨯=-<-.∴点(3,﹣1)符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴m>12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.15.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】C【解析】【分析】首先求出抛物线y=x 2+2x 的对称轴,对称轴为直线x=-1;然后根据A 、B 、C 的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B 离对称轴最近,A 次之,C 最远,则对应y 的值大小可确定.【详解】∵抛物线y=x 2+2x ,∴x=-1,而A (-5,y 1),B (2.5,y 2),C (12,y 3),∴B 离对称轴最近,A 次之,C 最远,∴y 2<y 1<y 3.故选:C .【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.16.在函数2y x=,3y x =+,2y x =的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】 y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x=符合条件. 故选:B .【点睛】 本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.17.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( )A .B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.18.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )A .向右平移1个单位,再向下平移2个单位B .向左平移1个单位,再向下平移2个单位C .向左平移32个单位,再向下平移92个单位 D .向左平移3个单位,再向下平移9个单位【答案】D【解析】【分析】通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.【详解】解:由A 选项可得L '为:2(1)2y x =--,则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;由B 选项可得L '为:2(1)2y x =+-,则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;由C 选项可得L '为:239()22y x =+-, 则顶点为(-32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;故选:D .【点睛】本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .20.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是( )A .B .C .D .【答案】C【解析】【分析】 根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a 、b 、c 的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a >0,c <0,b >0, ∴, 故③错误;∵.∴B(-c,0)∴抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点,∴, ac2-bc+c=0∴,ac-b+1=0,∴,故②正确;∴,b=ac+1∴,∴2b-c=2,故①正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.。

初中数学第二十二章二次函数总复习练习题(单元测试卷)附带答案及详细解析

初中数学第二十二章二次函数总复习练习题(单元测试卷)附带答案及详细解析

初中数学第二十二章二次函数数学考试姓名:__________ 班级:__________考号:__________一、单选题(共18题;共36分)1.(2020九上·杭州月考)若点A(3,y1),B(0,y2),C(−2,y3)在抛物线y=x2−4x+k 上,则y1,y2,y3的大小关系是()A. y2>y3>y1B. y2>y1>y3C. y3>y2D. y1>y2>y32.(2020九上·达拉特旗月考)抛物线y=5(x-2)2-3的顶点坐标是()A. (2,-3)B. (2,3)C. (-2,3)D. (-2,-3)3.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+ 4a2−b2化简结果为()4aA. aB. 1C. ﹣aD. 04.若二次函数y=ax2的图象经过点P(2,8),则该图象必经过点A. (2,-8)B. (-2,8)C. (8,-2)D. (-8,2)5.(2017九上·云梦期中)若方程ax2+bx+c=0的两个根是﹣4和2,那么二次函数y=ax2+bx+c 的图象的对称轴是直线()A. x=﹣2B. x=﹣1C. x=0D. x=16.抛物线y=x2-2x+1的顶点坐标是( )A. (1,0)B. (-1,0)C. (-2,1)D. (2,-1)7.(2020九上·商丘月考)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A. 图象的开口向上B. 当x>1时,y随x的增大而减小C. 图象的顶点坐标是(﹣1,2)D. 图象与y轴的交点坐标为(0,2)8.(2019九下·武冈期中)在下列函数中,其图象与x轴没有交点的是()A. y=2xB. y=﹣3x+1C. y=x2D. y= 1x9.(2018九上·金山期末)将抛物线y=−(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.10.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A. y=(x+1)2+4B. y=(x-1)2+4C. y=(x+1)2+2D. y=(x-1)2+211.将抛物线y=3x2先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为()A. y=3(x+2)2+3B. y=3(x−2)2+3C. y=3(x+2)2−3D. y=3(x−2)2−312.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A. 3B. 4C. 5D. 613.(2017九上·仲恺期中)关于二次函数y=3(x﹣2)2+6,下列说法正确的是()A. 开口方向向下B. 顶点坐标为(﹣2,6)C. 对称轴为y轴D. 图象是一条抛物线(a≠0,c>0)的图象是14.(2019九上·萧山月考)下列各图中有可能是函数y=ax2+c, y=ax()A. B. C. D.15.(2019九上·遵义月考)如图,二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc >0;②b2-4ac<0 ;③2a+b>0 ;④a+b+c>0,其中正确的个数()A. 1B. 2C. 3D. 416.抛物线y=(x+3)2−2可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移3个单位,再向上平移2个单位B. 先向右平移3个单位,再向下平移2个单位C. 先向左平移3个单位,再向下平移2个单位D. 先向右平移3个单位,再向上平移2个单位17.(2017九上·常山月考)已知二次函数y=2(x−3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=3;③其图象顶点坐标为(3,1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A. 1个B. 2个C. 3个D. 4个18.(2018·吉林模拟)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A. ac+1=bB. ab+1=cC. bc+1=aD. 以上都不是二、填空题(共18题;共20分)19.(2018·长宁模拟)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n 的大小关系是m________n.(填“>”、“<”或“=”)20.(2020九上·吴兴月考)当x=0时,函数y=2x2+1的值为________.21.(2020九上·亳州月考)关于x的函数y=(m−2)x|m|−4是二次函数,则m=________.22.(2020·淮安模拟)把抛物线y=x2向下平移4个单位,所得的抛物线的函数关系式为________.23.(2019九上·闵行期末)抛物线y=x2+3x+2与y轴的公共点的坐标是________.24.(2017九上·孝南期中)抛物线y=x2-3x-4与y轴的交点坐标为________.25.(2018九上·江海期末)把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________26.(2019九上·万州期末)抛物线y=﹣x2+2x﹣3顶点坐标是________;对称轴是________.27.(2019九上·河西期中)请写出一个对称轴为x=1的抛物线的解析式________.28.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交y=12x2的图象于点A i,交直线y=12x于点B i.则1A1B1+1A2B2+⋯+1A nB n=________.29.(2020九上·德清期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是________.30.(2019九上·衢州期中)如图,在平面直角坐标系xOy中,已知抛物线y=-x(x-3)(0≤x≤3) 在x轴上方部分记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A 2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为________;C n的顶点坐标为________(n为正整数,用含n的代数式表示) .31.(2020·上城模拟)当-1≤a≤ 14时,则抛物线y=-x²+2ax+2-a的顶点到x轴距离的最小值________。

初中数学二次函数知识点总复习附答案解析

初中数学二次函数知识点总复习附答案解析

初中数学二次函数知识点总复习附答案解析一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C 【解析】 【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =−2, ∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.5.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )A .3122m -+B .0C .1D .2【答案】D 【解析】 【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C 【解析】 【分析】 【详解】解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2ba=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初中数学二次函数综合题及答案

初中数学二次函数综合题及答案

初中数学二次函数综合题及答案1.若二次函数y=2x^2+3x+6的顶点为(-1,1),求其对称轴方程。

解:由题意,可知顶点坐标为(-1,1),由二次函数的对称性可知对称轴方程为x=-12. 已知二次函数y=ax^2+bx+c的图象经过点(1,4),(2,9),(3,16),求该二次函数的表达式。

解:代入已知点(1,4),(2,9),(3,16)得到以下方程组:a+b+c=4(1)4a+2b+c=9(2)9a+3b+c=16(3)解以上方程组得到a=1,b=1,c=2,所以该二次函数的表达式为y=x^2+x+23. 已知二次函数y=ax^2+bx+c的图象与x轴交于点(-1,0)和(2,0),且过点(1,6),求该二次函数的表达式。

解:由题意,可知x轴交点为x=-1和x=2,且过点(1,6),代入得到以下方程组:a-b+c=0(1)4a+2b+c=0(2)a+b+c=6(3)解以上方程组得到a=2,b=4,c=0,所以该二次函数的表达式为y=2x^2+4x。

4. 二次函数y=ax^2+bx+c通过点(1,5),并且关于直线x=3对称,求该二次函数的表达式。

解:由题意可知,该二次函数关于直线x=3对称,所以对称轴方程为x=3,代入点(1,5)得到以下方程组:a+b+c=5(1)9a+3b+c=5(2)解以上方程组得到a=-1,b=6,c=0,所以该二次函数的表达式为y=-x^2+6x。

5.已知二次函数的图象经过点(1,3),且顶点坐标为(2,1),求该二次函数的表达式。

解:由题意可知,该二次函数的顶点坐标为(2,1),代入点(1,3)得到以下方程组:4a+2b+c=1(1)a+b+c=3(2)解以上方程组得到a=-1,b=4,c=0,所以该二次函数的表达式为y=-x^2+4x。

6.已知二次函数的图象经过点(1,-3),且焦点在直线y=4上,求该二次函数的表达式。

解:由题意可知,该二次函数的焦点在直线y=4上,设焦点坐标为(x1,y1)。

初中数学二次函数综合复习基础题(含答案)

初中数学二次函数综合复习基础题(含答案)

初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。

(完整版)初中数学二次函数专题经典练习题(附答案)

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。

初中数学二次函数综合题及答案(经典题型)印.pdf

初中数学二次函数综合题及答案(经典题型)印.pdf
二次函数试题
选择题: 1、y=(m-2)xm2- m 是关于 x 的二次函数,则 m=( )
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数 y=ax2+bx+c(a≠0)模型的是( )
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
a
b
=
b+c a+c
A -1 B 1
ቤተ መጻሕፍቲ ባይዱ
c
=
a+b 1
C
2
的值是( )
1
D-
2
-1 0
x
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的(
x )
y
y
y
y
x
A
B
x
x
x
C
D
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x2+2mx+m 上的点的坐标是————————————。 16、若抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=2,最小值为-2,则关于方程 ax2+bx+c=-2的根为—
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y
l:x=n
M
A
A
O
B
D
C x
O
B
C
N
x
D
6、如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相交于点 M,且 M 是 BC

初中数学二次函数综合题及问题详解(经典题型)

初中数学二次函数综合题及问题详解(经典题型)

二次函数试题 选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—25、抛物线y=21 x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =b a c + 的值是( )A -1 B 1 C 218、已知一次函数y= ax+c与二次函数y=ax 2+bx+c (a≠0),它们在同一坐标系的大致图象是图中的()B二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。

16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。

17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形)1、已知:二次函数y=错误!未找到引用源。

初中数学二次函数综合题及答案(经典题型)

初中数学二次函数综合题及答案(经典题型)

二次函数试题论:①抛物线y = -丄/ 一 1是由抛物线),=一丄/怎样移动得到的?2 2② 抛物线y = --(x + 1尸是由抛物线y = -^x 2怎样移动得到的?2 2③ 抛物线y = -丄(x + 1)2 — 1是由抛物线y = -丄,—1怎样移动得到的?2 2 ④ 抛物线y = -l(x + l)2-l 是由抛物线y = --(x+ 1尸怎样移动得到的?2 2 ⑤ 抛物线y = -丄(x + 1尸一 1是由抛物线y = --x 2怎样移动得到的? 2 2 选择题, K y=(rn-2)x m2 m 是关于x 的二次函数,则m=()A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a^O)模型的是( )A 在一世距离,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、 将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是()A y=— ( x-2) 2+2By=— ( x+2 ) 2+2 C y=— ( x+2) 2+2D y=— ( x-2 ) 2—25、 抛物线y= 1 X 2-6X +24的顶点坐标是()A (—6, —6)B (—6, 6)C (6, 6)D (6, —6) 6、 已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有()个 ”,/①abc 〈 0 ②a+c <bA 1B 2 C7、 函数 y=ax 2-bx+c (aHO)a b cb +c a + ca + A -1 B 1C2 28、 已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (aHO),它们在同一坐标系的大致图象是图中的()17.抛物线戸(k+1) x 2+k 2-9 口向下,且经过原点,贝ijk =解答题:(二次函数与三角形)③ a+b+c 〉 0 ④3 D 4的图象过点(-1, 0),则13、无论m 为任何实数,总在抛物线y=x 2+2mx+m 上的点的坐标是16.若抛物线y=ax 2+bx+c (a^O)的对称轴为直线x= 2 ,最小值为一 2,则关于方程ax 2+bx+c=- 2的根为3 91、已知:二次函数尸幺沁計c.其图彖对称轴为直线W 且经过点(2,・4)・(1)求此二次函数的解析式.(2)设该图象与$轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图彖上确定一点E•使的面枳最大, 并求出最大面积.2、如图.在平面直角坐标系中•拋物线与A轴交于A. 〃两点(A在B的左侧).与y 轴交于点C(0, 4),顶点为(I,爲.(1)求抛物线的函数表达式:(2)设抛物线的对称轴与轴交于点D.试在对称轴上找出点P,使MDP为等腰三角形.请直接写出满足条件的所有点P的坐标.(3)若点E是线段上的一个动点(与A、B不重合),分别连接AC、BC.过点E 作EF//AC交线段BC于点氏连接CE.记ACEF的而枳为S. S是否存在最大值?若存在,求出S的最大值及此时E点的坐标:若不存在.请说明理由.43、如图,一次函数〉=一必一4的图彖与JV轴、y轴分别交于爪C两点,抛物线〉=討+加+ q的图毀经过A、C两点,且与.Y轴交于点乩(1)求抛物线的函数表达式:(2)设抛物线的顶点为D,求四边形ABDC的面积:(3)作直线MN平行于x轴,分别交线段AC、BC于点皿N.问在x轴上是否存在点P.使得是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标:如果不存在, 请说明理由.1 7(二次函数与四边形)4、已知抛物线『=一疋_〃以+2加一一・2 2(1)试说明:无论加为何实数•该抛物线与卞轴总有两个不同的交点:(第2题图)(第3题图)(2)如图.、”I该抛物线的对称轴为直线.*3时,抛物线的顶点为点C.直线y=x-l与拋物线交于A. B两点•并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在.求出点P的坐标:若不存在,说明理由:②平移直线CZZ交直线于点交抛物线于点N.通过怎样的平移能使得C. D. M. N为顶点的四边形是平行四边形.5、如图,拋物线)=〃用一11叫+24川(川<0)与x轴交于〃、C两点(点B在点C的左侧),抛物线另有一点4在第一彖限,且ZBAC=90°・(1)填空:0B=_连接04,将△0AC沿x轴翻折后得△ODC, X四边形0ACD是菱形时, 求此时抛物线的解析式:(3)如图2,设垂直于x轴的直线人日与(2)中所求的抛物线交于点与CD交于点M若直线/沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时.试探尤:半料为何值时, 四边形AMCN的面枳取得最大值.并求出这个最大值.线段DM沿DA方向平移到ON・的坐标分别是A (-1 , 0),B (6、如图所示.在平面直角坐标系中.ZBAD=90n , BC与y轴相交于点AN・(1)求抛物线的解析式.(2〉拋物线上是否存在点P,使得PA=PC・若存在,求出点P的坐标:若不存在,请说明理由.(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点.十点Q在什么位逬时有IQE-QCI展大?并求出最大值.7、已知抛物线y = ax2 -2ax-3a (a <0)与x轴交于A、B两点(点A在点B的左侧人与y轴交于点C.点D为抛物线的顶点.(1)求A. B的坐标:(2)过点D作DH丄y轴于点H,若DH=HC.求a的值和直线CD的解析式:(3)在第(2)小题的条件下.直线CD与x轴交于点E.过线段OB的中点N作NF丄x轴.并交直线CD干点F.则直线NF 上是否存在点使得点M到直线CD的距离等于点M到原点O的距离?若存在.求出点1V1的坐标:若不存在,请说明理由.(二次函数与圆)8、如图,在平面直角坐标系中.拋物线y=aV+bx+c (a^O)的图象经过M (L 0)和N (3, 0)两点,且与y轴交于D (0, 3), 直线1是抛物线的对称轴・1)求该抛物线的解析式.2)若过点A ( - 1. 0)的直线AB与拋物线的对称轴和x轴用成的三角形面积为6■求此直线的解析式.3)点P在拋物线的对称轴上,OP与直线AB和x轴都相切,求点P的坐标.9、如图,y关于x的二次函数y=-3m(x+m)(x-3m)图象的顶点为M, 图象交x轴于A、B两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(-3, 0),连接ED. (m>0)(1)写岀A、B、D三点的坐标:(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系:(3)当m变化时,用m表示AAED的面积S,并在给出的直角坐标系中画岀S关于m的函数图象的示意图。

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案二次函数题选择题:1、若y=(m-2)x^2-m是关于x的二次函数,则m=()A。

-1.B。

2.C。

-1或2.D。

m不存在2、下列函数关系中,可以看作二次函数y=ax^2+bx+c(a≠0)模型的是()A。

在一定距离内,汽车行驶的速度与行驶的时间的关系B。

我国人口自然增长率为1%,这样我国总人口数随年份变化的关系C。

矩形周长一定时,矩形面积和矩形边长之间的关系D。

圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x^2,则抛物线的解析式是()A。

y=-(x-2)^2+2.B。

y=-(x+2)^2+2C。

y=-(x+2)^2+2.D。

y=-(x-2)^2-25、抛物线y=1/2x^2-6x+24的顶点坐标是()A。

(-6,-6)。

B。

(-6,6)。

C。

(6,6)。

D。

(6,-6)6、已知函数y=ax^2+bx+c,图象如图所示,则下列结论中正确的有()个①abc0.④2c<3bA。

1.B。

2.C。

3.D。

47、函数y=ax^2-bx+c(a≠0)的图象过点(-1,1),则b+c/a的值是()A。

-1.B。

1.C。

-2.D。

2二填空题:8、已知一次函数y=ax+c与二次函数y=ax^2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的()A。

A。

B。

B。

C。

C。

D。

D13、无论m为任何实数,总在抛物线y=x^2+2mx+m上的点的坐标是()m,m)16、若抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=2,最小值为-2,则关于方程ax^2+bx+c=-2的根为()1±√317、抛物线y=(k+1)x^2+k^2-9开口向下,且经过原点,则k=()2或-2解答题:(二次函数与三角形)1、已知:二次函数y=x^2+bx+c,其图象对称轴为直线x=1,且经过点(2,-2).1)求此二次函数的解析式.解:因为对称轴为x=1,所以顶点坐标为(1,k),其中k为最小值.又因为经过点(2,-2),所以方程组4+2b+c=k1+b+c=k解得b=-3,c=2,k=0,所以二次函数的解析式为y=x^2-3x+2.2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△XXX的面积最大,并求出最大面积.解:易得B、C两点坐标分别为(0,2)和(3,0).设点E的横坐标为x,则其纵坐标为y=x^2-3x+2.则△XXX的面积为S(x)=1/2(3-x)(x^2-3x+2-2),化简得S(x)=-1/2x^3+9/2x^2-8x+3.对S(x)求导得S'(x)=-3/2x^2+9x-8,令其等于0得x=2或4/3,代入S(x)得S(2)=4和S(4/3)=16/27,故△XXX的最大面积为4,当且仅当E的坐标为(2,-2)时取得.2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,2).1)求抛物线的函数表达式;2)在抛物线上取一点P,作△ABC的高PH,交AB于点H,求证:PH=2BP.解:(1)因为抛物线与x轴交于A、B两点,所以其解析式为y=a(x-a)(x-b),其中a<1<b.因为顶点为(1,2),所以方程组a(1-a)(1-b)=2a(b-a)(b-1)=4解得a=1/2,b=3/2,所以抛物线的函数表达式为y=1/2(x-1)^2+2.2)设点P的坐标为(x,y),则PH的长度为y-4,BP的长度为x-1.根据△ABC的面积公式得4=1/2y(x-1),即y=8/(x-1).又因为P在抛物线上,所以y=1/2(x-1)^2+2.将y代入上式得x^3-3x^2+2x-8=0,解得x=2或-1±√3.当x=2时,PH=2BP成立,当x=-1±√3时,PH≠2BP不成立.故结论成立.2、设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形。

初中数学二次函数基础测试题附答案解析

初中数学二次函数基础测试题附答案解析

初中数学二次函数基础测试题附答案解析一、选择题1.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系2.方程2x 3x 10+-=的根可视为函数3y x 的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C【解析】 【分析】 首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围.【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x ==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C .【点睛】 此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.3.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.7.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.8.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.9.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A 5B 453C .3D .4【答案】A【解析】【分析】【详解】 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:DE=5.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE .∴BF OF CM AM DE OE DE AE ==,,即BF x CM 2x 2255-==,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5.故选A .10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==, 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=, 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( )A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.AB=,AC、BD交于点O,点P、Q分别是AB、BD 12.如图,四边形ABCD是正方形,8→,点Q的运动路径是BD,两点的运动速度相同并上的动点,点P的运动路径是AB BC△的面积为y,则y关于x的函数图象大致为()且同时结束.若点P的行程为x,PBQA.B.C.D.【答案】A【解析】【分析】分点P在AB边和BC边上两种情况画出图形,分别求出y关于x的函数关系式,再结合其取值范围和图象的性质判断即可.解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A.【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.13.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③13<a <23;④b >c .其中含所有正确结论的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】B【分析】根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误.【详解】①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.14.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.15.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ 底边AP 上的高保持不变1422APQ St t =⋅⋅=,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.16.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.17.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.18.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得01442b c b c=-+⎧⎨=++⎩ 解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.19.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.20.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.。

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题

二次函数与三角函数的综合题目练习初二数学下册综合算式专项练习题在数学学习中,二次函数和三角函数是重要的概念。

它们在综合算式中也经常出现,因此熟练掌握二次函数和三角函数的综合题目练习对于初中数学的学习非常重要。

接下来,我们将通过一些例题,来练习和巩固这些知识点。

1. 题目一:已知函数f(x) = 2x^2 - 3x + 5,求f(-1)的值。

解析:将x = -1代入函数f(x)中,得到f(-1) = 2(-1)^2 - 3(-1) + 5= 2(1) + 3 + 5= 2 + 3 + 5= 10故f(-1)的值为10。

2. 题目二:已知函数g(x) = sin(x),求g(π/2)的值。

解析:将x = π/2代入函数g(x)中,得到g(π/2) = sin(π/2)= 1故g(π/2)的值为1。

3. 题目三:已知函数h(x) = 3x^2 - 4sin(x),求h(π)的值。

解析:将x = π代入函数h(x)中,得到h(π) = 3(π)^2 - 4sin(π)= 3π^2 - 4(0)= 3π^2故h(π)的值为3π^2。

通过以上例题,我们可以看到如何运用二次函数和三角函数来求特定点的函数值。

对于二次函数的计算,只需将给定值代入函数表达式中;对于三角函数的计算,只需将给定值代入三角函数表达式中。

掌握了这些计算方法后,我们就能够解决更复杂的综合题目。

接下来,我们来解决一些综合的二次函数和三角函数题目。

4. 题目四:已知函数y = ax^2 + bx + c,其中a ≠ 0。

若函数图像过点(1, 5),且在x = 2处的切线斜率为4,则求函数的解析式。

解析:由已知条件可得:①将x = 1代入函数y中,得到a(1)^2 + b(1) + c = 5得到a + b + c = 5②函数在x = 2处的切线斜率为4,即导数为4。

求导得到y' = 2ax + b,将x = 2代入导数中,得到4 = 2a(2) + b化简得到4 = 4a + b通过以上两个方程,我们可以得到关于a、b、c的方程组:a +b +c = 54 = 4a + b解这个二元一次方程组,可以得到a = 1,b = 0,c = 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学二次函数综合复习基础题
单选题(本大题共13小题,共100分)
1.(本小题8分)若二次函数的图象经过原点,则a的值必
为()
• A. 1或2
• B. 0
• C. 1
• D. 2
核心考点: 二次函数表达式
2.(本小题8分)在同一坐标系中,作,,的图象,它们的共同
特点是()
• A. 抛物线的开口方向向上
• B. 都是关于x轴对称的抛物线,且y随x的增大而增大
• C. 都是关于y轴对称的抛物线,且y随x的增大而减小
• D. 都是关于y轴对称的抛物线,有公共的顶点
核心考点: 二次函数图象特征
3.(本小题8分)对于反比例函数,当x>0时,y随x的增大而增大,则二次函数
的大致图象是()
• A.
• B.
• C.
• D.
核心考点: 二次函数图象初步判定
4.(本小题8分)抛物线可以由抛物线平移得到,则下列平移过程正
确的是()
• A. 先向左平移2个单位,再向上平移3个单位
• B. 先向左平移2个单位,再向下平移3个单位
• C. 先向右平移2个单位,再向下平移3个单位
• D. 先向右平移2个单位,再向上平移3个单位
核心考点: 二次函数图像平移
5.(本小题8分)已知二次函数,当x=-1时有最大值,把x=-5,-2,1时
对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()
• A. y1<y2<y3
• B. y1>y2>y3
• C. y2>y1>y3
• D. y2>y3>y1
核心考点: 二次函数图像增减性、对称轴固定
6.(本小题7分)若二次函数,当时,y随x的增大而减小,则m的取
值范围是()
• A.
• B.
• C.
• D.
核心考点: 二次函数图像增减性、对称轴固定
7.(本小题7分)(2011四川雅安)已知二次函数的图象如图,其对称轴为
直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.
则正确的结论是()
• A. ①②③④
• B. ②④⑤
• C. ②③④
• D. ①④⑤
核心考点: 二次函数数形结合
8.(本小题7分)二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次
函数的表达式为()
• A.
• B.
• C.
• D.
核心考点: 二次函数一般式
9.(本小题7分)有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线
x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()
• A.
• B.
• C.
• D.
核心考点: 二次函数顶点式
10.(本小题7分)二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为
(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()
• A.
• B.
• C.
• D.
核心考点: 二次函数交点式
11.(本小题8分)若直线与二次函数的图象交于A、B两点,求
以A、B及原点O为顶点的三角形的面积().
• A.
• B.
• C.
• D. 无法计算
核心考点: 二次函数初步综合
12.(本小题8分)设一元二次方程的两根分别为,,且
,则,满足()
• A.
• B.
• C.
• D. 且
核心考点: 二次函数图象与方程、不等式
13.(本小题9分)设一元二次方程的两根分别为,,且
,则二次函数的函数值y>m时自变量x的取值范围是()
• A.
• B.
• C.
• D.
核心考点: 二次函数图象与方程、不等式
本试卷为二次函数综合复习的课后测试题上一讲:二次函数中的数形结合思想下一讲:二次函数应用——实际生活问题。

相关文档
最新文档