五年级奥数题:约数与倍数(A)+答案

合集下载

五年级奥数倍数问题讲座及练习答案

五年级奥数倍数问题讲座及练习答案

五年级奥数倍数问题讲座及练习答案五年级奥数集训专题讲座(三)——倍数问题倍数问题在整个小学阶段中非常重要。

我们主要从“和倍、差倍、和差”这三个方面来研究倍数问题。

为了解决倍数问题,我们需要理解以下数量关系式:①和÷(倍数+1)=小数,小数×倍数=大数(和—小数=大数)②差÷(倍数—1)=小数,小数×倍数=大数(小数+差=大数)③(和-差)÷2=小数,小数+差=大数(和—小数=大数)④(和+差)÷2=大数,大数-差=小数(和—大数=小数)例1:三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米,三个队各筑多少米?分析:我们将乙队的米数看作“1”份,甲队筑的米数是2份。

假设丙队多筑240米,三个队共筑了1360+240=1600(米),正好是乙队的4倍。

因此,我们可以使用和倍问题来解答这个问题。

乙队:(1360+240)÷(2+1+1)=400(米),甲队:400×2=800(米),丙队:400-160=240(米)。

答案:甲队筑了800米,乙队筑了400米,丙队筑了240米。

巩固练】:三个植树队植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵,三个队各植了多少棵?解析:因为甲队植树的棵数是乙队的2倍,我们可以将乙队植树的棵数看作“1”份。

乙队比___少植300棵,即丙队植树的棵数=乙队植树棵数+300棵。

因此,三个队植树的总棵数是乙队的4倍多300棵。

如果我们从植树总数里减去300,则正好是乙队的4倍。

因此,乙队植树棵数=(1900-300)÷(1+1+2)=400(棵),甲队植树棵数=400×2=800(棵),丙队植树棵数=400+300=700(棵)。

答案:甲队植了800棵,乙队植了400棵,丙队植了700棵。

例2:师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个。

奥数专题数论-约数倍数附答案

奥数专题数论-约数倍数附答案

(数论问题约数倍数)1、 五年级数论问题:约数倍数难度:中难度答:2、五年级数论问题:约数倍数难度:中难度答3、 五年级数论问题:约数倍数难度:中难度答:一个数乘2是4的倍数,乘3是9的倍数,乘4是16的倍数,乘5是25的倍数,乘6是36的倍数,乘7是49的倍数,乘8是64的倍数,乘9是81的倍数.这个数最小是?甲、乙两个自然数的最大公约数是7,并且甲数除以乙数所得的商是l 81.乙数是_____. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友,结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有几个人?4、五年级数论问题:约数倍数难度:中难度爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?答:5、五年级数论问题:约数倍数难度:中难度/高难度两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.答:(数论问题)1、五年级数的约数倍数答案:解答:依题意,这个数同时是2、3、4、5、6、7、8、9的倍数.因此,这个数最小是2,3,4,5,6,7,8,9的最小公倍数,即[2,3,4,5,6,7,8,9]=5×7×8×9=2520.2、五年级数的约数倍数答案:解答:由(甲,乙)=7,且甲:乙=89,得乙数=7×8=56..3、五年级数的约数倍数答案:解答:根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.4、五年级数的约数倍数答案:解答:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。

爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。

由此推知,他们的年龄差是6,5,4,3,2的公倍数。

五年级奥数题:约数与倍数(A)

五年级奥数题:约数与倍数(A)

四约数与倍数(A)_____ 年级______ 班姓名___________ 得分______一、填空题1 . 28的所有约数之和是 ______ .2. 用105个大小相同的正方形拼成一个长方形,有________ 中不同的拼法•3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是______ .4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____ 人.5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是________ .6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给 _____ 小朋友,每个小朋友得梨_______ 个,桔 _____ 个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____ 块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)__ 块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____ 个.10. 含有6个约数的两位数有______ 个.11. 写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?12. 和为1111的四个自然数,它们的最大公约数最大能够是多少?13. 狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4丄米,黄鼠狼每次跳2-米,2 4它们每秒钟都只跳一次.比赛途中,从起点开始每隔12-米设有一个陷井,当它们8之中有一个掉进陷井时,另一个跳了多少米?14. 已知a与b的最大公约数是12, a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a, b, c共有多少组?(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)--------------------------- 答案 -------------------------------------------- 答案:1. 5628的约数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105 的约数有1,3,5,7,15,21,35,105 能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2 2 7,所以28的约数有6个:1,2,4,7,14,28. 在数字0,1,2,…,9 中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23 29, 所以这班师生每人种的棵数只能是667 的约数:1,23,29,667. 显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种 1 棵树时, 全班人数应是667-1=666, 但666 不能被 4 整除, 不可能. 所以, 一班共有28 名学生.5. 40 或20两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15 和35,它们的差分别为(45-5=)40,(35-15=)20, 所以应填40或20.[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108 的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36 和108的最大公约数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36 36=1( 只)每个小朋友可分得桔子: 108 36=3( 只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48 与42的公约数,题目又要求剪出的正方形最大, 故正方形的边长是48与42 的最大公约数.因为48=2 2 2 2 3,42=2 3 7,所以48与42的最大公约数是 6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7 块,共可剪(48 6) (42 6)=8 7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除, 即正方体的棱长是1 80,45和1 8的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45 和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180 9) (45 9) (18 9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是 1 5,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M表示含有6个约数的数,用a和b表示M的质因数,那么M a5或M a2 b因为M是两位数,所以M= a5只有一种可能M=25,而M= a2 b就有以下15种情况:M223,M225,M227,M2211,M2213,M2217,M2219, M2223, M322,M325,M327,M3211,M522,M523,M722.所以,含有6个约数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得1111=11 101最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101 2,101 3,101 5,它们的和恰好是101 (1+2+3+5)=101 11=1111,它们的最大公约数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是2-与123的“最小公倍数” 99,4 8 4qq 11 1 3即跳了99 ^=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是41和123的4 4 2 8“最小公倍数” 99,即跳了99 -=11次掉进陷井.2 2 2经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是14- 9=40.5(米).14. 先将12、300分别进行质因数分解:12=2 2 3300=2 2 3 52(1)确定a的值.依题意a只能取12或12 5(=60)或12 25(=300). ⑵确定b的值.当a=12时,b可取12,或12 5,或12 25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:ra=12 r a=12 r a=12 r a=60 j a=300[b=12, I b=60, I b=300, 1 b=12, t b=12.(3)确定a, b, c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:2 2 2 2 2 2 2 25,5 2, 5 2,5 3, 5 2 3, 5 2 3, 即卩25, 50, 100, 75, 150, 300.所以满足条件的自然数a、b、c共有5 6=30 (组)。

小学奥数 约数倍数、质数合数、分解质因数 附答案

小学奥数 约数倍数、质数合数、分解质因数 附答案

小学奥数数论专题:约数倍数、质数合数、分解质因数【常见例题】【例1】(☆☆)把26、33、34、35、63、85、91、143分成若干组,要求每组中任意两个数的最大公约数是1,那么至少要分几组?(1992年小学数学奥林匹克竞赛试题)【例2】(☆☆☆)已知自然数A、B满足以下两个性质:⑴A、B不互素;⑵A、B的最大公约数与最小公倍数之和为35。

那么A+B的最小值是多少?【例3】(☆☆☆☆)三个连续正整数,中间一个是完全平方数,将这样的连续三个正整数的乘积称为“美妙数”,问所有的“美妙数”的最大公约数是多少?(第九届华杯赛)【例4】(☆☆☆)在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成10等份,第二种刻度线把木棍分成12等份,第三种刻度线把木棍分成15等份,如果沿每条刻度线把木棍锯断,木棍总共被锯成多少段?(第二届“华罗庚金杯”赛决赛试题)【例5】(☆☆☆)从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。

按照上述过程不断重复,最后剪得的正方形的边长是毫米。

(1991年小学数学奥林匹克决赛试题)【例6】(☆☆☆)已知一个苹果重415千克,一个梨重245千克,且苹果和梨的总重量相同,求最少有几个苹果和几个梨?【例7】(☆☆☆)一个数的20倍减1能被153整除,这样的自然数中最小的是多少?。

(祖冲之杯小学数学邀请赛)【例8】(☆☆☆)一个数加上10,减去10都是一个平方数,求这个数。

【例9】(☆☆☆☆☆)3个质数的平方和是39630,那它们的和是多少?【拓展训练】⨯⨯⨯(),要使这个乘积的最后四位数字都是0,括号里最小应填什么数?1、9759359322、4200有多少个约数?这些约数的和是多少?3、23个不同的整数的和是4845,问:这23个数的最大公约数可能值达到的最大的值是多少?4、10个非零自然数的和是1001,则它们的最大公约数的最大值是多少?(2002我爱数学少年夏令营)5、有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米。

小学五年级奥数题大全及答案

小学五年级奥数题大全及答案


姓名
得分
二、解答题
11、计算 172.4 6.2+2724 0.38
12、计算
0.00…0181 0.00…011 963 个 0 1028 个 0
13、计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23
14、下面有两个小数: a=0.00…0105 1994 个 0 求 a+b,a-b,a b,a b. b=0.00…019 1996 个 0
13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成 3 张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将 100 张黄油 票换成 100 张香肠票,并且在整个交换过程中刚好出手了 1991 张票券?
14、试找出这样的最小自然数,它可被 11 整除,它的各位数字之和等于 13.

姓名
得分
二、解答题
1、173□是个四位数字.数学老师说:“我在这个□中先后填入 3 个数字, 所得到的 3 个四位数,依次可被 9、11、6 整除.”问:数学老师先后填入的 3 个数字的和是多少?
12、在 1992 后面补上三个数字,组成一个七位数,使它们分别能被 2、3、5、11 整除,这个七位数最小值是多少?

姓名
得分
二、解答题
11、计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.758 64.28 0.125 0.5378
12、计算 0.888 125 73+999 3
13、计算 1998+199.8+19.98+1.998

五年级奥数专题 约数、倍数、完全平方数(学生版)

五年级奥数专题 约数、倍数、完全平方数(学生版)

学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。

即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。

(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。

三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

●在两个连续正整数的平方数之间不存在完全平方数。

●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

●若质数p整除完全平方数2a,则p能被a整除。

2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

【思维拓展】数学五年级思维拓展之最大公约数(附答案)

【思维拓展】数学五年级思维拓展之最大公约数(附答案)

五年级奥数精讲:最大公约数与最小公倍数一、知识总结:1.如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

2.如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

4.常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

如求18与12的最大公约数与最小公倍数时,由短除法可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。

如果把18与12的最大公约数与最小公倍数相乘,那么(18,12)×[18,12]=(2×3)×(2×3×3×2)=(2×3×3)×(2×3×2)=18×12。

也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。

当把18,12换成其它自然数时,依然有类似的结论。

从而得出一个重要结论:两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。

即,(a,b)×[a,b]=a×b。

二、练习题例1、用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?例2、用自然数a去除498,450,414,得到相同的余数,a最大是多少?例3、现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?例4、在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?例5、甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

五年级奥数.数论.约数与倍数(B级).学生版

五年级奥数.数论.约数与倍数(B级).学生版

因数与倍数一天,因数和倍数走到了一起。

倍数傲慢地对因数说:“哎,哥们,见了我怎么也不下拜呀?” “我为什么要拜你,你算老几呀?”因数气愤地回答。

“我是老大呀。

”“你是老大?为什么”“你说,一个数的个数有多少个呀?”“这我知道,一个数的因数有无数个。

”只见倍数慢条斯理地说:“这就对嘛,一个数的因数的个数就那么可怜的几个。

而一个数的倍数有无数个.你的家庭成员这么少,而我的家庭是这样的庞大。

你说,你不应该拜我吗?”“是的,你的家庭是庞大的,可是,你知道吗?因为你的家庭的庞大,你知道你是老几吗?我们的家庭成员是有限的,可是,我们都知道我们自己的位置。

再说,离开我们这些因数,你们这些倍数还成立吗?”因数理直气壮地回答。

只见倍数挠着耳朵,想了想,说:“对,其实我们是密不可分的好伙伴,我们谁都离不开谁。

刚才是我不对,我向你道歉了。

”“没有关系,没有关系,你知道自己错了就好。

在自然数中,我们谁离开了谁都是不存在的。

没有倍数,我是谁的因数呢?同样,没有因数,你们又是谁的倍数呢?让我们共同携手,紧密团结在一起,永远做好兄弟!”因数诚恳地说。

因数和倍数两位好伙伴的手紧紧地握在了一起。

知识框架课前预习约数与倍数一、 约数的概念与最大公约数0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 二、倍数的概念与最小公倍数1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=;②短除法求最小公倍数; 例如:2181239632,所以[]18,12233236=⨯⨯⨯=; ③[,](,)a b a b a b ⨯=. 2. 最小公倍数的性质②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;b a 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 三、最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。

高斯小学奥数五年级上册含答案_第10讲_约数与倍数

高斯小学奥数五年级上册含答案_第10讲_约数与倍数

第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.今天,我们来学习数论中有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a和b,如果|a b,我们就称a是b的约数(因数),b是a的倍数.=⨯=⨯=⨯,根据定义,我们很容易找到一个数的所有约数,例如对12:因为121122634可知12可以被1、2、3、4、6、12整除,那么它的约数有1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“成对出现....”的特征,也就是:最大约数对应最小约数、第二大约数对应第二小约数等.所以在写一个数的所有约数时,可以逐对写出.另外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1.12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,再根据它计算第三大的约数.12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数,从而可就算出它的约数个数.但是对很大的数,例如20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知72共12个约数,分别为1、72;2、36;3、24;4、18;6、12;8、9.因为72的约数能整除72,而72的所有质因数也都能整除72,所以对72进行质因数分解,有:32=⨯,那么72的所有约数应当由若干个2与若干个3构成.显7223然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共⨯=个,见下表(注意0214312=、031=):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:约数个数等于指数加1再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3.3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600,那说明约数一定包含在3600的因数中.我们知道4223600235=⨯⨯,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数..............,有偶数个约数的数一定不是平方数................ 72 20 21 22 23 30 00231⨯= 10232⨯= 20234⨯= 30238⨯= 31 01233⨯= 11236⨯=212312⨯=312324⨯= 3202239⨯=122318⨯= 222336⨯=322372⨯=例题4.在小于1000的正整数中,有多少个数有奇数个约数?「分析」有奇数个约数的数一定是平方数,所以只要找出有多少个平方数小于1000即可.在2000到3000中,有多少个数有奇数个约数?把一个数分解质因数后,可以知道它的约数个数,反过来,如果知道一个数的约数个数,虽然并不能知道这个数是多少(例如6和10都有4个约数),但可以知道这个数的质因数分解式的形式,例如有2个约数的数一定是质数,有4个约数的数是3a 或b c ⨯(a 、b 、c 都是质数).下面以16个约数为例,来看一下如何反求质因数分解式:先对16进行分解:1628442242222=⨯=⨯=⨯⨯=⨯⨯⨯. 所以质因数分解式为:15、7⨯、33⨯、3⨯⨯、⨯⨯⨯.例题5.有12个约数的数最小是多少?有多少个两位数的约数个数是12个?「分析」有12个约数的数有什么样的特点呢?2310823=⨯,根据约数个数的计算方法可知108有12个约数.除此之外,3223⨯,3225⨯,甚至形如32a b ⨯(a 、b 为不同的质数)均有12个约数.想一想还有没有其他的可能?关于约数的另一类问题是计算约数和,下以72为例,先利用上面的表格列出72的所有约数,并计算出行和:现在把3个行和相加,得到72的约数和是()()012301222223331513195+++⨯++=⨯=.72 20 21 22 23 行和30 0023⨯ 1023⨯ 2023⨯ 3023⨯ 01230(2222)3+++⨯ 31 0123⨯1123⨯2123⨯3123⨯01231(2222)3+++⨯ 320223⨯ 1223⨯ 2223⨯ 3223⨯01232(2222)3+++⨯根据这个例子,我们可以总结出计算约数和的一般方法:32a b c ⨯⨯的约数和为()()()232111a a a b b c +++⨯++⨯+.例题6.计算下列数的约数和:108、144. 「分析」熟练掌握约数和的计算公式即可.完全数(perfect number)如果一个自然数的真因子(除了自己以外的约数)之和恰好等于这个数本身,这个数就被叫做完全数.完全数又称完美数或完备数,是一类特殊的自然数.利用本讲学过的知识不难知道6和28是最小的两个完全数.公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数.毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身.”不过,或许印度人和希伯来人早就知道它们的存在了.有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数.圣·奥古斯丁说:“6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完数,所以上帝在六天之内把一切事物都造好了.”完全数诞生后,吸引着众多数学家与业余爱好者像淘金一样去寻找.它很久以来就一直对数学家和业余爱好者有着一种特别的吸引力,他们没完没了地找寻这一类数字.接下去的两个完全数是公元1世纪,毕达哥拉斯学派成员尼克马修斯发现的,他在其《数论》一书中有一段话如下:“也许是这样:正如美的、卓绝的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;是以盈数(真因子之和大于自身的数)和亏数(真因子之和小于自身的数)非常之多,杂乱无章,它们的发现也毫无系统.但是完全数则易于计数,而且又顺理成章:因为在个位数里只有一个6;十位数里也只有一个28;第三个在百位数的深处,是496;第四个却在千位数的尾巴上,接近一万,是8128.它们具有一致的特性:尾数都是6或8,而且永远是偶数.”第五个完全数要大得多,是33550336,它的寻求之路也艰难得多,直到十五世纪才由一位无名氏给出.这一寻找完全数的努力从来没有停止.电子计算机问世后,人们借助这一有力的工具继续探索.笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完美人亦非易事.”时至今日,人们一直没有发现有奇完全数的存在.于是是否存在奇完全数成为数论中的一大难题.目前,只知道即便有,这个数也是非常之大,并且需要满足一系列苛刻的条件.作业1.111111111的第二大的约数是多少?作业2.79、128、180分别有多少个约数?作业3.在小于200的正整数中,有多少个数有偶数个约数?作业4.36的所有约数的和是多少?90的所有约数的和是多少?作业5.240有多少个约数?其中有多少个奇约数?有多少个约数是3的倍数?第十讲 约数与倍数例题1. 答案:1763664903详解:12345654321最小的约数是1,第二小的约数是3,第三小的约数是7,那么第三大的约数是1234565432171763664903÷=.例题2. 答案:2;7;6;9;30详解:23为质数,质数有2个约数.6642=,有617+=个约数.27535=⨯,有11216+⨯+=()()个约数.2222535=⨯,有21219+⨯+=()()个约数.42720235=⨯⨯,有41211130+⨯+⨯+=()()()个约数.例题3. 答案:45;30;27;21 详解:4223600235=⨯⨯,有41212145+⨯+⨯+=()()()个约数.41112130+⨯+⨯+=()()(),有41112130+⨯+⨯+=()()()个约数是3的倍数.42222236002354235=⨯⨯=⨯⨯⨯(),有21212127+⨯+⨯+=()()()个约数是4的倍数.4223236002356235=⨯⨯=⨯⨯⨯(),有31112124+⨯+⨯+=()()()个约数是6的倍数,不是6的倍数的约数有21个.例题4. 答案:31详解:平方数有奇数个约数.1000以内的平方数有22221,2,331,因此有31个数有奇数个约数.例题5. 答案:60,5详解:有12个约数的数分解质因数后,可能是11、5⨯、23⨯、2⨯⨯;对应的最小数分别是2048、96、72、60,那么最小的就是60.其中的两位数除了60、72、96之外还有84和90,共5个.例题6. 答案:(1)280;(2)403 详解:(1)2310823=⨯,它的所有约数之和是()()12413927280++⨯+++=.(2)4214423=⨯,它的所有约数之和是()()124816139403++++⨯++=.练习1. 答案:4115226329218107简答:约数是成对出现的,最大的约数对应最小的约数,第二大的约数对应第二小的约数,12345678987654321的第二小的约数是3,对应的第二大的约数是1234567898765432134115226329218107÷=.练习2. 答案:6,2,6,9,18简答:分解质因数后,指数加1连乘即可.练习3. 答案:32;24;24;11简答:73345623=⨯,约数有8432⨯=个.其中3的倍数有8324⨯=个,4的倍数有6424⨯=个,6的倍数有7321⨯=个,那么有322111-=个不是6的倍数.练习4. 答案:10简答:2000~3000之间的平方数有245、246、…、254,共10个,只有这10个数有奇数个约数.作业1. 答案:37037037简答:111111111第二小的约数为3,因此第二大的约数为.作业2. 答案:2个;8个;18个简答:提示,牢记计算约数个数的方法,并能准确分解质因数.作业3. 答案:185个简答:平方数有奇数个约数,小于200的平方数有,共14个,因此有偶数个约数的数有185个.作业4. 答案:91;234简答:提示,牢记求约数和的公式,并能准确分解质因数. 作业5.答案:20个;4个;10个简答:4240235=⨯⨯,有41111120+⨯+⨯+=()()()个约数.奇约数即不含有因子2,有11114+⨯+=()()个奇约数,有10个约数是3的倍数.22221,2,314111111111337037037÷=。

高斯小学奥数五年级上册含答案_公约数与公倍数初步

高斯小学奥数五年级上册含答案_公约数与公倍数初步

第十四讲公约数与公倍数初步蜥蜴是蝉的天敌之一,它的生命周期是5年』也就是说*毎五年,蜥蜴就会大量出现一次.因为15和5的.最小公倍数”是15*所以,要是蝉的生命周期是心年’在某一次大甩钻岀土壤时,被蜥蜴大量猎杀,那下一次蝉钻岀土壤时,也必然会有同样的遭遇.如果卿的生命周期是】7年,那么每过85年才会出现一次与大呈蜥埸碰面的情况一除了蜥蜴,蝉的其他天敌也有牛同的生命周期.科学家调查发现,在北部,蝉的生命周期为1 了年,在南部,蝉的生命周期为13年.为什么没有以】4、15. 16年为生命周期的蝉呢?旨 费 蔚 旨 蔚防■ ■ -------- -----------当蝉的生命周期是质数时.它与天敌生命周期的最小公倍数都比较大.这样一来,蝉 遇见大量天敌的机会大大减少,蝉的存活率大幅提升,它们就能一代代地在自然界存活下 来了.的约数.其他公倍数都是36的倍数.通常,我们把两个数a , b 的最大公约数记为 a, b ; a, b 的最小公倍数记为 a ,b •三 个数a , b , c 的最大公约数记为a ,b ,c ; a , b , c 的最小公倍数记为 a , b , c .如:14 和21的最大公约数是 7,记作:14,21 7 ; 14和21的最小公倍数是 42,记作:14,21 42 . 15、10、21 的最大公约数是 1,记作:15,10,21 1 ; 15、10、21 的最小 公倍数是210,记作:15,10,21210 .公约数就是几个数公共的约数, 其中最大的一个称为 最大公约数;公倍数就是几个数公1为所有数的公约数. 24 : 1234630: 12 35 61215 24301、2、3和6都是1、2、 3 和 6 都是 6121812 24 36 4860 72 8496 108 183654729010812和18的公倍数有 36、72、108、72、 108 及810 共的倍数,其中最小的一个称为 最小公倍数•特别的,24和30的公约数,6是最大公约数•可以发现 36、,36是最小公倍数.可以发现在现实生活中我们常常关心几个数的最大公约数和最小公倍数, 那么我们怎样来求几个数的最大公约数和最小公倍数呢?除了直接枚举之外, 还有以下几种:短除法、分解质因数法、辗转相除法.计算两个数的最大公约数及最小公倍数,最常用的方法是短除法.例题 1.用短除法计算:(1) (54 , 90), [54 , 90]; ( 2) (45, 75, 90). 「分析」熟练掌握短除法即可.用短除法计算:(1) ( 36, 48), [36, 48]; (2) (28 , 42 , 70).分解质因数法比较实用,也利于我们分析数的构成.(12, [12,18)= 18]= 23x32 3xx 2x3 233例题2•利用分解质因数法找出下列各组数的最大公约数和最小公倍数. (1) 144 和 250(2) 240、80 和 96「分析」熟练掌握分解质因数法即可.利用分解质因数法找出下列各组数的最大公约数和最小公倍数.如果两个数都比较大,不容易看出来它们的质因数.那我们还有第三种方法:辗转相除 法.厂二3: _4 :取相同质因数中指] 1 L 3 I 1 1 1 1 1 1 5 ;1 < ----------1 I ) 1 1 1 1 1 1 1 3弓1 1 1F 1 1 1 1 1 1 1 15竹1 1 i ■ 1 | 3 311 1 1 1 I 5L一jL取相同质因数中指325 < ----------最小公倍数最大公约数(1) 1024 和 72(2) 60、84、90 和 700例3•利用辗转相除法求下列各组数的最大公约数.(1)377 和221 (2)511 和1314「分析」熟练掌握辗转相除法即可.利用辗转相除法求出3009和2537的最大公约数.例题4•老师在墨莫的班上发水果,一共有59个苹果,97个梨,平均分给班上的学生,最后剩下5个苹果,7个梨•请问班里一共有多少名学生?「分析」因为每个学生分到的苹果和梨都是一样多的,可知学生数是分到的苹果数和梨数的公约数.小高把62个奶糖和75个水果糖平均分给他的朋友们,最后剩下2个奶糖,3个水果糖•请问小高把糖分给了多少个朋友?在计算三个数的最大公约数时, 还可以先求出两个数的最大公约数, 然后再求出这个最大公约数与第三个数的最大公约数. 最后求出的就是三个数的最大公约数.求三个数的最小公倍数也可以使用这个方法.计算多个数的最大公约数和最小公倍数的方法依次递推即可.例题5.计算( 1573, 1547, 1859).「分析」这些数看上去都不好分解质因数, 那我们不妨利用辗转相除法来求最大公约数. 求三个数的最大公约数, 可以先求其中两个的最大公约数, 再求这个公约数与第三个数的最大公约数.例题6.有些自然数既能够表示成连续9个整数之和,又能够表示成连续11 个整数之和, 还能够表示成连续12个整数之和,则所有这样的数中最小的一个是多少?「分析」能表示乘9个连续整数的和, 说明这个自然数是中间数的9倍, 是9的倍数. 根据后面两个条件,我们还能知道这个自然数是多少的倍数呢?画蛇添足战国时代, 楚王派大将昭阳率军攻打魏国, 得胜后又转而攻打齐国。

五年级奥数教师解析版含答案 14.约数与倍数

五年级奥数教师解析版含答案  14.约数与倍数

一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及若干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用.1.数360的约数有多少个?这些约数的和是多少?【分析与解】 360分解质因数:360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a,b,c均是整数,且a为0~3,6为0~2,c为0~1).因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【分析与解】设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A的约数,而96=25×3为A的约数,所以96为其最大的两位数约数.3.写出从360到630的自然数中有奇数个约数的数.【分析与解】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?【分析与解】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【分析与解】为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?【分析与解】设在x分钟后3人再次相聚,甲走了120x米,乙走了lOOx米,丙走了70x米,他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,lOOx-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x):300,而(20x,50x,30x)=x(20,50,30)=lOx,所以x=30.即在30分钟后,3人又可以相聚.7.3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、内3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长15千米,中圈跑道长14千米,外圈跑道长38千米.甲每小时跑312千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?【分析与解】甲跑完一圈需11235235÷=小时,乙跑一圈需114416÷=小时,丙跑一圈需335840÷=则他们同时回到出发点时都跑了整数圈,所以经历的时间为235,116,340的倍数,即它们的公倍数.而213,,351640⎡⎤⎢⎥⎣⎦[]()2,1,335,16,4=661==.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.8.甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,那么乙数是多少?【分析与解】有两个数的最大公约数与最小公倍数的乘积等于这两数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.9.A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B 两数的和等于多少?【分析与解】方法一:由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以21,01x xy y==⎧⎧⎨⎨==⎩⎩4xy=⎧⎨=⎩或.对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以2mn=⎧⎨=⎩.对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=2550.方法二:由题中条件知A、B中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N次3,则约数有:(2+1)×(N+1):3×(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A,即A=33×52=675.那么B的质数中出现了一次3,多于两次5,则出现了M次5,则有:(1+1)×(M+1)=2(M+1)=10,M=4.B=3×54=1875.那么A,B两数的和为675+1875=2550.10.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2. 它们的和为:a+b=(a,b)ql+(a,b)q2=(a,b)(q1+q2)=297………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)qlq2+(a,b)=(a,b)(qlq2+1)=693,且(q1,q2)=1.………………………………………………………………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,1l,9,3,1.第一种情况:(a,b)=99,则(q1+q2)=3,(qlq2+1)=7,即qlq2=6=2×3,无满足条件的ql,q2; 第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则ql=5,q2=4时满足,a=(a,b)q1=33×5=165,b=(a,b)q 2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的q1q2. 所以,这个两个自然数的差为33.11.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组? 【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2=(a,b)(ql+q 2)=60…………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1…………………………………………………………………②联立①、②有(ql+q2)=(q1q2+1),即ql+q2-qlq2=1,(ql-1)(1-q2)=0,所以ql=1或q2=1. 即说明一个数是另一个数的倍数,不妨记a=kb(k 为非零整数),有()[]60,60a b kb b a b b a b kb +=+=⎧⎪⎨+=+=+=⎪⎩a,b ,即()160k b +=确定,则k 确定,则kb 即a 确定60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b 可以等于2,3,4,5,6,10.12,15,20,30这10个数,除了60,因为如果6=60,则(k+1)=1,而k 为非零整数. 对应的a 、b 有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20), (30,30).评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.12.3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?【分析与解】 若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半; 若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积. 则当a,a+1,a+2中有2个偶数时,a(a+1)(a +2)=9828×2, 当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[0,b]=a×b.记这3个连续的自然数为a,a+1,a+2.有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a×(a+1),(a+1)×(a+2)]=(a+1)×[a,a+2].因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为()22a a⨯+;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a×(a+2).所以(a+1)×[a,a+2]=()()()()21212a aa aa a a a⨯+⎧+⨯⎪⎨⎪+⨯⨯+⎩为偶数为奇数.即[a,a+1,a+2]为a(a+1)(a+2)或()()122a a a++若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.13.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【分析与解】对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5.因为2105,所以2乙,即乙中不含因数2,于是甲必含2×2.因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18;第一种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18,综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A、B的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a、b中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.14.a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?【分析与解】 由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a ﹥b 所以45075a b =⎧⎨=⎩或225150a b =⎧⎨=⎩[b,c]=1050=2×3×52×7. 当 45075a b =⎧⎨=⎩ 时有 ()()[][]450,75,75,15,75,1050c c b c c ⎧==⎪⎨==⎪⎩,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当225150a b =⎧⎨=⎩时有()()[][]225150,75,15,150,1050c c b c c ⎧==⎪⎨==⎪⎩,,则c=105,c ﹤b,满足,即225150105a b c =⎧⎪=⎨⎪=⎩为满足条件的为一解. 那么c 是105.15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少? 【分析与解】 设这4个不同的自然数为A 、B 、C 、D ,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A 、B 、C 、D 的最大公约数最大可能为101,记此时A=101a ,B=101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101. 综上所述,这4个不同的自然数,它们的最大公约数最大能是101. 评注:我们把此题稍做改动:“有5个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?”,大家不妨自己试试.。

【精品奥数】五年级下册数学奥数讲义—第十六讲 约数与倍数 通用版(含答案)

【精品奥数】五年级下册数学奥数讲义—第十六讲  约数与倍数  通用版(含答案)

约数与倍数一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=; ②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=L ;6003151285÷=L ;315285130÷=L ;28530915÷=L ;301520÷=L ;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求.4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

五年级高斯奥数之约数和倍数含答案

五年级高斯奥数之约数和倍数含答案

第7讲约数与倍数内容概述掌握约数与倍数酌概念.学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题.典型问题兴趣篇1.(1)请写出105的所有约数;(2)请写出72的所有约数.2.(1) 20000的约数有多少个?(2) 720的约数有多少个?3.计算:(1) (28,72), [28,72]; (2) (28,44,260), [28, 44, 260].4.两个数的差是6,它们的最大公约数可能是多少?5.(1)求1085和1178的最大公约数和最小公倍数;(2)求3553,3910和1411的最大公约数.6.教师节到了,校工会买了320个苹果、240个桔子、200个香蕉来慰问退休老职工.请问:用这些水果最多可以分成多少份同样的礼物?在每份礼物中,苹果、桔子、香蕉各有多少个?7.一块长方形草地,长120米,宽90米,现在在它的四周种树,要求四个角和各边中点都要求种树,且相邻两棵树之间的距离都相等,请问:最少要种多少棵树?8.甲数和乙数的最大公约数是6,最小公倍数是90.如果甲数是18,那么乙数是多少?9.有甲、乙两个数,它们的最小公倍数是甲数的27倍.已知甲数是2、4、6、8、10、12、14、16的倍数,但不是18的倍数;乙数是两位数.乙数是多少?10.小悦、冬冬、阿奇在黑板上各写了一个自然数,这三个自然数的最大公约数是35,最小公倍数是70.这三个数的和可能是多少?拓展篇1.72共有多少个约数?其中有多少个约数是3的倍数?2.5400共有多少个约数?并求出所有约数乘积的质因数分解形式.3.两数乘积为2800,已知其中一个数的约数个数比另一个数的约数个数多1.这两个数分别是多少?4.计算:(1) (391, 357), [391, 357]; (2) (18, 24, 36), [18, 24, 36].5.1547、1573、1859这三个数的最大公约数是多少?最小公倍数是多少?6.张阿姨把225个苹果、350个梨和150个桔子平均分给小朋友们,最后剩下9个苹果、26个梨和6个桔子没分出去,请问:每个小朋友分了多少个苹果?7.一个数和16的最大公约数是8,最小公倍数是80.这个数是多少?8.两个自然数不成倍数关系,它们的最大公约数是18,最小公倍数是216.这两个数分别是多少?9.两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?10.有4个不同的正整数,它们的和是1111.请问:它们的最大公约数最大能是多少?11.甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126.请问:甲数是多少?12.甲、乙是两个不同的自然数,它们都只含有质因数2和3,并且都有12个约数,它们的最大公约数是12.请问:甲、乙两数之和是多少?超越篇1.360共有多少个奇约数?所有这些奇约数的和是多少?2.求出所有恰好含有10个约数的两位数,并求出每个数的所有约数之和.3.已知口与易的最大公约数是4,以与c 、易与c 的最小公倍数都是100,而且a ≤ b .满足条件的自然数a 、b 、c 共有多少组?4.所有70的倍数中,共有多少个数恰有70个约数?5.自然数n 是1,2,3,…,10的公倍数,而且它恰有72个约数,n 的最小值是多少?6.三条圆形跑道,圆心都在操场中的旗杆处.里圈跑道长51千米,中圈跑道长41千米,外圈跑道长83千米.甲、乙、丙三人分别在里圈、中圈、外圈沿同样的方向跑步,开始时,三人都在旗杆的正东方向,甲每小时跑321千米,乙每小时跑4千米,丙每小时跑5千米.他们同时出发.请问:几小时后,三人第一次同时回到出发点?7.如图11-1,在一个600×600的方格表ABCD 中,将AB 与线段CD 上除端点外的所有格点N 1,N 2,N 3,…,N 599分别相连,得到599条线段.请问,在这些线段中:(1)不会与其他格点相交的线段共有多少条?(2)经过格点最多的线段共经过多少个格点(不包括它的端点)?(3)除去端点,还恰好经过29个格点的直线有多少条?8.有些自然数等于自身约数个数的平方,例如l 和9都具有此性质,请问:是否还有其他自然数具有此性质?如果有,请举例;如果没有,请说明理由.第11讲 约数与倍数内容概述掌握约数与倍数酌概念.学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题.典型问题兴趣篇1.(1)请写出105的所有约数;(2)请写出72的所有约数.答案:(1) 1、3、5、7、15、21、35、105(2)1、2、3、4、6、8、9、12、18、24、36、72分析:1051105335521715=⨯=⨯=⨯=⨯7217223632441861289=⨯=⨯=⨯=⨯=⨯=⨯2.(1) 20000的约数有多少个? (2) 720的约数有多少个?答案:(1)30个 (2) 30个分析:(1) 542000025=⨯, 约数的个数=(51)(41)30+⨯+=个(2) 42720235=⨯⨯,约数的个数=(41)(21)(11)+⨯+⨯+=30个3.计算:(1) (28,72), [28,72]; (2) (28,44,260), [28, 44, 260].答案:(1) 4,504 (2) 4,20020分析:(1) 22827=⨯,327223=⨯,所以()228,7224==;[]3228,72237504=⨯⨯= (2) 22827=⨯,244211=⨯,22602513=⨯⨯,所以()228,44,26024==, []228,44,260257111320020=⨯⨯⨯⨯=4.两个数的差是6,它们的最大公约数可能是多少?答案:1,2,3,6.分析:两个数的最大公因数一定是它们差的因数。

(完整版)小学奥数倍数与约数

(完整版)小学奥数倍数与约数

倍数与约数我们知道6是2的3倍,即6=2×3 一般地,如果a=b×c,那么我们就说a是b (c)的倍数,而b(c)称为a的约数。

6=2×3,也就是6÷2=3,a=b×c,也就是a÷b=c,所以a是b的倍数(b是a的约数),那么a÷b余数为0,这时称a被b整除或b整除a。

如6被2整除(2整除6).例1:求出12的全部约数。

分析:看看1,2,3.。

12这些数中,哪些能整除1212=1×12=2×6=3×4 所以12有6个约数。

如果一个大于1的整数a,只有2个约数(即1与a),那么a就称为质数。

如2、3、5、7。

例2:从7、1、4、6、0,的卡片中抽取4张,组成若干个四位数,如是2的倍数有几个?如是5的倍数有几个?如是3的倍数有几个?例3:7824是不是9的倍数?练习:1、求15的全部约数2、101是不是质数?3、写出196的全部约数4、有0、1、4、7、9五张卡片去四张组成能被3整除的四位数,有几个?这些数从小到大排列第3个是多少?5、一个数有8个约数,这数最小是多少?6、首位为4,并能被3整除的三位数有多少个?提升题7、下面这个四十一位数55.。

599.。

9(5和9各有20个)能被7整除,那么中间方框内的数字是几?8、判断下列各数,哪些有因数3,哪些有因数9,说明理由7212 62007 180018 450927 25489、四位数7a2b被2、3、5整除,求a、b10、四位数198x被2、3整除,求x11、被2、3、5整除的三位数中最大的是多少?最小的是多少?12、什么样的数,约数的个数是奇数思考题13、用1962a8表示六位数,如果能被99整除,求 a14、已知整数1x2x3x4x5能被11整除,求所有满足条件的整数15、某小学学生张明做数学题时发现任意一个三位数,连着写2次得到一个六位数,这六位数一定能被1、11、13整除,试说明理由。

五年级奥数题:约数与倍数(A)+答案

五年级奥数题:约数与倍数(A)+答案

四 约数与倍数(A)年级 班 姓名 得分一、填空题1.28的所有约数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个约数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?12.和为1111的四个自然数,它们的最大公约数最大能够是多少?13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?14. 已知a 与b 的最大公约数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)———————————————答 案——————————————————————答 案:1. 5628的约数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的约数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的约数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的约数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36和108的最大公约数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公约数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公约数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公约数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个约数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个约数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得1111=11⨯101最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公约数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a 的值.依题意a 只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b 的值.当a =12时,b 可取12,或12⨯5,或12⨯25;当a =60,300时,b 都只能取12.所以,满足条件的a 、b 共有5组: a =12 a =12 a =12 a =60 a =300 b =12, b =60, b =300, b =12, b =12.(3)确定a ,b ,c 的组数.对于上面a 、b 的每种取值,依题意,c 均有6个不同的值: 52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a 、b 、c 共有5⨯6=30(组)。

五年级奥数题约数与倍数A

五年级奥数题约数与倍数A

五年级奥数题约数与倍数APleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】四 约数与倍数(A)年级 班 姓名 得分一、填空题1.28的所有约数之和是_____.2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____.4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.10. 含有6个约数的两位数有_____个.11.写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解12.和为1111的四个自然数,它们的最大公约数最大能够是多少13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米14. 已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a,b,c共有多少组(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组) ———————————————答案——————————————————————答案:1. 5628的约数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的约数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2⨯2⨯7,所以28的约数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23⨯29,所以这班师生每人种的棵数只能是667的约数:1,23,29,667.显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.所以,一班共有28名学生.5. 40或20两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36和108的最大公约数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36÷36=1(只)每个小朋友可分得桔子: 108÷36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公约数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公约数.因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公约数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个约数的数,用a 和b 表示M 的质因数,那么5a M =或b a M ⨯=2因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:72,52,32222⨯=⨯=⨯=M M M ,172,132,112222⨯=⨯=⨯=M M M ,23,232,192222⨯=⨯=⨯=M M M ,113,73,53222⨯=⨯=⨯=M M M ,27,35,25222⨯=⨯=⨯=M M M .所以,含有6个约数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得1111=11⨯101最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101⨯2,101⨯3,101⨯5,它们的和恰好是101⨯(1+2+3+5)=101⨯11=1111,它们的最大公约数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”499,即跳了499411÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了299÷29=11次掉进陷井.经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是214⨯9=(米). 14. 先将12、300分别进行质因数分解:12=22⨯3300=22⨯3⨯52(1)确定a 的值.依题意a 只能取12或12⨯5(=60)或12⨯25(=300).(2)确定b 的值.当a =12时,b 可取12,或12⨯5,或12⨯25;当a =60,300时,b 都只能取12.所以,满足条件的a 、b 共有5组: a =12 a =12 a =12 a =60 a =300b =12, b =60, b =300, b =12, b =12.(3)确定a ,b ,c 的组数.对于上面a 、b 的每种取值,依题意,c 均有6个不同的值:52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a 、b 、c 共有5⨯6=30(组)。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案46约数和倍数(二)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案46约数和倍数(二)

年 级五年级 学 科 奥数 版 本 通用版 课程标题 约数和倍数(二)在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。

这类题目中往往不直接指出是求最大公约数还是最小公倍数,学生最容易混淆,只有对这类题目的条件和问题作出全面的分析后,才能发现题中数量之间关系的实质,才能正确找到解决问题的途径。

一、判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。

求最小公倍数和最大公约数的应用题,解题方法比较独特。

当某些题中所求的数并非正好是已知数的最小公倍数或最大公约数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数或最大公约数,从而求出结果。

二、在上节课中我们通过例题简单介绍了求约数个数的方法,本节课来解释这种方法:一般地,对自然数n 进行分解质因数,设n 可以分解为 n =k 32k x x x x αααα⨯⨯⨯⨯ 3211,其中k x x x 、、、 21是不同的质数,k ααα、、、 21是正整数,则形如m =k 32k x x x x ββββ⨯⨯⨯⨯ 3211的数都是n 的约数,其中1β可取11+α个值:0、1、2、…、1α;2β可取12+α个值:0、1、2、…、2α;…;k β可取1+k α个值:0、1、2、…、k α。

根据乘法原理,n 的约数的个数共有(11+α)×(12+α)×…×(1+k α)。

例1 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(无余料)_________块。

分析与解:根据“无余料”这一条件,可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180、45和18的公约数。

为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四 约数与倍数(A)
年级 班 姓名 得分
一、填空题
1.28的所有约数之和是_____.
2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.
3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是2
4.这个两位数是_____.
4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.
5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.
6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.
7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.
8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块.
9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.
10. 含有6个约数的两位数有_____个.
11.写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?
12.和为1111的四个自然数,它们的最大公约数最大能够是多少?
13.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳4
32米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8
312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?
14. 已知a 与b 的最大公约数是12,a 与c 的最小公倍数是300,b 与c 的最小公倍数也是300,那么满足上述条件的自然数a ,b ,c 共有多少组?
(例如:a =12、b =300、c =300,与a =300、b =12、c =300是不同的两个自然数组)
———————————————答 案——————————————————————
答 案:
1. 56
28的约数有1,2,4,7,14,28,它们的和为
1+2+4+7+14+28=56.
2. 4
因为105的约数有1,3,5,7,15,21,35,105能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.
3. 64
因为28=2⨯2⨯7,所以28的约数有6个:1,2,4,7,14,28.在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.
故符合题目要求的两位数仅有64.
4. 28
因为667=23⨯29,所以这班师生每人种的棵数只能是667的约数:1,23,29,667.显然,每人种667棵是不可能的.
当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.
当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.
当每人种1棵树时,全班人数应是667-1=666,但666不能被4整除,不可能.
所以,一班共有28名学生.
5. 40或20
两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15和35,它们的差分别为(45-5=)40,(35-15=)20,所以应填40或20.
[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.
6. 36,1,3.
要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36和108的最大公约数是36,也就是可分给36个小朋友.
每个小朋友可分得梨: 36÷36=1(只)
每个小朋友可分得桔子: 108÷36=3(只)
所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.
7. 56
剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48与42的公约数,题目又要求剪出的正方形最大,故正方形的边长是48与42的最大公约数.
因为48=2⨯2⨯2⨯2⨯3,42=2⨯3⨯7,所以48与42的最大公约数是6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7块,共可剪(48÷6)⨯(42÷6)=8⨯7=56(块)正方形布片.
8. 200
根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180,45和18的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180÷9)⨯(45÷9)⨯(18÷9)=200块棱长是9厘米的正方体.
9. 150
根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元
钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.
10. 16
含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有6个约数的数,用a 和b 表示M 的质因数,那么
5a M =或b a M ⨯=2
因为M 是两位数,所以M = a 5只有一种可能M =25,而M = a 2⨯b 就有以下15种情况:
72,52,32222⨯=⨯=⨯=M M M ,
172,132,112222⨯=⨯=⨯=M M M ,
23,232,192222⨯=⨯=⨯=M M M ,
113,73,53222⨯=⨯=⨯=M M M ,
27,35,25222⨯=⨯=⨯=M M M .
所以,含有6个约数的两位数共有
15+1=16(个)
11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.
12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得
1111=11⨯101
最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有
1+2+3+5=11,
即存在着下面四个数
101,101⨯2,101⨯3,101⨯5,
它们的和恰好是
101⨯(1+2+3+5)=101⨯11=1111,
它们的最大公约数为101.
所以101为所求.
13. 黄鼠狼掉进陷井时已跳的行程应该是432与8312的“最小公倍数”4
99,即跳了4994
11÷=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是214和8312的“最小公倍数”299,即跳了2
99÷29=11次掉进陷井. 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是
2
14⨯9=40.5(米). 14. 先将12、300分别进行质因数分解:
12=22⨯3
300=22⨯3⨯52
(1)确定a 的值.依题意a 只能取12或12⨯5(=60)或12⨯25(=300).
(2)确定b 的值.
当a =12时,b 可取12,或12⨯5,或12⨯25;
当a =60,300时,b 都只能取12.
所以,满足条件的a 、b 共有5组: a =12 a =12 a =12 a =60 a =300 b =12, b =60, b =300, b =12, b =12.
(3)确定a ,b ,c 的组数.
对于上面a 、b 的每种取值,依题意,c 均有6个不同的值: 52,52⨯2,52⨯22,52⨯3,52⨯2⨯3,52⨯22⨯3,即25,50,100,75,150,300. 所以满足条件的自然数a 、b 、c 共有5⨯6=30(组)。

相关文档
最新文档