线性代数必须熟记的结论总结

合集下载

线代常用的一些结论

线代常用的一些结论

A1 2 设 A
A2
o
, 则有 A A A A . 1 2 s As
o
若 Ai 0i 1,2,, s , 则 A 0, 并有
A11 1 A
A2
1
o

o
. 1 As
(1) | AT | | A | ;
( 2) | A | | A | ;
n
( 3) | AB || A | | B | ;
注意 1) | A B || A | | B |
2) AB BA , 但有 | AB || BA | .
伴随矩阵
AA A A A E .

A1 0 0 0 A2 0 (3) 0 0 A s
0 A1 B1 0 A2 B2 0 0
B1 0 0 B2 0 0
0 0 . As Bs
T
1 1
T 1
A .
1 T
*
A 5 若A可逆 ,则有 A A .(注:
A
n-1
) .
六、解矩阵方程
矩阵方程
AX B XA B
AXB C

X A1 B X BA1 X A1 C B1
七、方阵多项式
设 记
( x ) a0 a1 x am x m ,
a11 kai 1 a n1 a12 a1n a11 a12 a1n a i 2 a in a n 2 a nn
an 2 ann
a n1
kai 2 kain k a i 1

线性代数公式及主要结论

线性代数公式及主要结论

1、行列式1. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 2. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-逆序数计算3. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =只有零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换(无行字)化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,所有1n +阶(或以上阶)子式全部为0;(两句话)②、()r A n <,A 中所有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;7. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 4. 线性相关与无关的两套定理: 若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;5. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ == 6. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 7. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 8. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;9. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 10. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;。

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的)

线性代数超强总结⎧A 不可逆⎧A 可逆⎪⎪r (A )<n r (A )=n⎪⎪⎪⎪Ax =0只有零解A =ο⇔⎨Ax =ο有非零解⎪⎪0是A 的特征值⎪A 的特征值全不为零⎪⎪⎪⎩A 的列(行)向量线性相关A ≠ο⇔⎨A 的列(行)向量线性无关⎪A T A 是正定矩阵⎪⎪A 与同阶单位阵等价⎪⎪A =p 1p 2⋅⋅⋅p s ,p i 是初等阵n ⎪⎩∀β∈,Ax =β总有唯一解向量组等价⎫⎪具有相似矩阵⎬−−−→反身性、对称性、传递性矩阵合同⎪⎭√关于e 1,e 2,⋅⋅⋅,e n:①称为n的标准基,n中的自然基,单位坐标向量;②e 1,e 2,⋅⋅⋅,e n线性无关;③e 1,e 2,⋅⋅⋅,e n=1;④tr(E )=n ;⑤任意一个n 维向量都可以用e 1,e 2,⋅⋅⋅,e n线性表示.1√行列式的计算:A *=A ο=A ο=A B①若A 与B 都是方阵(不必同阶),则οB*BοB*AB ο=(-1)mn A B ②上三角、下三角行列式等于主对角线上元素的乘积.*a 1nοa1n③关于副对角线:a2n -1=a2n -1=(-1)n (n -1)2a 1n a2nan 1an 1οan 1ο√逆矩阵的求法:①A -1=A *A②(A E )−−−−初等行变换→(E A -1)⎡a b ⎤-11⎡d -⎡A B ⎤T ③⎢⎡A T C T ⎤⎣c d ⎥⎦=b ⎤ad -bc ⎢⎣-c a ⎥⎦⎢⎣C D ⎥⎦=⎢⎣BT D T ⎥⎦⎡⎤-1⎡1⎤⎢a 1⎥⎢a 1a -11⎤⎡1⎥⎡⎥⎢④⎢a2a 2⎥⎢⎢⎥⎥⎢a2⎥=⎢⎢⎥=⎢⎢⎥⎢⎣a ⎥⎢⎥⎢n⎦⎢⎣1⎥⎢a n ⎥⎢⎦⎣a n⎦⎢⎣1a 121a n⎤⎥⎥1a ⎥2⎥⎥⎦-1⎢1-1⎥1-11-1n⑤⎢A2A-1⎥A⎥⎥2⎢⎥⎢⎥⎢2⎥⎢⎢⎥=⎢⎢⎥⎢⎥=⎢-1⎥⎣A ⎥⎢⎥⎢A2⎥n ⎦⎢⎣A-1⎥⎢⎢n⎦⎥⎣A⎥n⎦⎢⎢⎣A-11⎥⎦√方阵的幂的性质:A m A n=A m+n(A m)n=(A)mn√设f(x)=am x m+am-1x m-1++a1x+a,对n阶矩阵A规定:f(A)=a m m-1mA+am-1A++a1A+aE为A的一个多项式.√设Am⨯n ,Bn⨯s,A的列向量为α1,α2,⋅⋅⋅,αn,B的列向量为β1,β2,⋅⋅⋅,βs,AB则:ri =Aβi,i=1,2,,s,即A(β1,β2,⋅⋅⋅,βs)=(Aβ1,Aβ2,,Aβs)⎫用A,B中简r,r 若β=(b Tα⎪1,b2,,bn),则Aβ=b1α1+b22+bnαn⎪单的一个提1,r2,s,即:AB的第i个列向量r⎬i是A的列向量的线性组合,组合系数就是βi的各分量;高运算速度⎪AB的第i个行向量ri是B的行向量的线性组合,组合系数就是αi的各分量.⎪⎭√用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量.√两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⎡⎢A11ο⎤ο⎤与分块对角阵相乘类似,即:A=⎢A⎥⎡B1122B⎥22⎢⎥⎢⎥,B=⎢⎥⎢⎥⎣οA ⎥⎢⎢kk ⎦⎣οB⎥kk⎦3列量为的向1111⎢AB =⎢⎢⎢⎣οA 22B22⎥⎥⎥⎥A kk B kk⎦√矩阵方程的解法:设法化成(I)AX =B或 (II)XA =B当A ≠0时,(当B 为一列时,初等行变换(I)的解法:构造(A B )−−−−→(E X )即为克莱姆法则)(II)的解法:将等式两边转置化为A T X T =B T ,T 用(I)的方法求出X ,再转置得X√Ax =ο和Bx =ο同解(A ,B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√判断η1,η2,,ηs是Ax =0的基础解系的条件:,ηs线性无关;,ηs是Ax =0的解;①η1,η2,②η1,η2,③s =n -r (A )=每个解向量中自由变量的个数.4①零向量是任何向量的线性组合,零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关.④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关.⑥向量组α1,α2,⋅⋅⋅,αn中任一向量αi(1≤i≤n)都是此向量组的线性组合.⑦向量组α1,α2,⋅⋅⋅,αn线性相关⇔向量组中至少有一个向量可由其余n-1个向量线性表示.向量组α1,α2,⋅⋅⋅,αn线性无关⇔向量组中每一个向量αi都不能由其余n-1个向量线性表示.⑧m维列向量组α1,α2,⋅⋅⋅,αn线性相关⇔r(A)<n;m维列向量组α1,α2,⋅⋅⋅,αn线性无关⇔r(A)=n.⑨r(A)=0⇔A=ο.⑩若α1,α2,⋅⋅⋅,αn线性无关,而α1,α2,⋅⋅⋅,αn,β线性相关,则β可由α1,α2,⋅⋅⋅,αn线性表示,且表示法惟一.⑪矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑫矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.5向量组等价α1,α2,⋅⋅⋅,αn和β1,β2,⋅⋅⋅,βn可以相互线性表示.记作:1,α2,⋅⋅⋅,αn=1,β2,⋅⋅⋅,βn矩阵等价A经过有限次初等变换化为B.记作:A=B⑬矩阵A与B等价⇔r(A)=r(B)≠>A,B作为向量组等价,即:秩相等的向量组不一定等价.矩阵A与B作为向量组等价⇔r(α1,α2,⋅⋅⋅,αn)=r(β1,β2,⋅⋅⋅,βn)=r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βn)⇒矩阵A与B等价.⑭向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示⇔r(α1,α2,⋅⋅⋅αn,β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn)⇒r(β1,β2,⋅⋅⋅,βs)≤r(α1,α2,⋅⋅⋅,αn).⑮向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且s>n,则β1,β2,⋅⋅⋅,βs线性相关.向量组β1,β2,⋅⋅⋅,βs线性无关,且可由α1,α2,⋅⋅⋅,αn线性表示,则s≤n.⑯向量组β1,β2,⋅⋅⋅,βs可由向量组α1,α2,⋅⋅⋅,αn线性表示,且r(β1,β2,⋅⋅⋅,βs)=r(α1,α2,⋅⋅⋅,αn),则两向量组等价;⑰任一向量组和它的极大无关组等价.⑱向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.⑲若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳若A是m⨯n矩阵,则r(A)≤min{m,n},若r(A)=m,A的行向量线性无关;若r(A)=n,A的列向量线性无关,即:α1,α2,⋅⋅⋅,αn线性无关.6线性方程组的矩阵式Ax =β向量式x 1α1+x 2α2++x nαn=β⎡a11a 12⎢a a 22A =⎢21⎢⎢⎣a m 1a m 2a 1n ⎤⎡α1j ⎤⎡x 1⎤⎡b 1⎤⎢α⎥⎢x ⎥⎢b ⎥a 2n ⎥⎥,x =⎢2⎥,β=⎢2⎥α=⎢2j ⎥,j =1,2,j ⎢⎥⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥a mn ⎦x b ⎢⎣n ⎦⎣m⎦⎣αmj ⎥⎦,n7⎧⇒当A为方阵时⇔Ax=β有无穷多解Ax=ο有非零解−−−−−→A=0⎪<≠⎪<n⎪⇒α1,α2,,αn线性相关⎪⎪⇒当A为方阵时⎪⇔Ax=β有唯一组解Ax=ο只有零解−−−−−→A≠0⎪β可由α1,α2,,αn线性表示⇔Ax=β有解⇔r(A)=r(Aβ)⎨<≠⎪⎪=n⎪⇒α1,α2,,αn线性无关⎪⎪当A为方阵时⎪−−−−−→克莱姆法则⎪⎩⎧⇔r(A)≠r(Aβ)⎪β不可由α1,α2,,αn线性表示⇔Ax=β无解⎨⇔r(A)<r(Aβ)⎪⇔r(A)+1=r(Aβ)⎩矩阵转置的性质:(A T)T=A矩阵可逆的性质:(A-1)-1=A伴随矩阵的性质:(A*)*=A⎧n若r(A)=n⎪r(A*)=⎨1若r(A)=n-1⎪0若r(A)<n-1⎩n-2(AB)T=B T A T(kA)T=kA T A T=AA-1=AA*=A n-1-1(A+B)T=A T+B T(A-1)T=(A T)-1(A-1)k=(A k)-1=A-kAA(AB)-1=B-1A-1(kA)-1=k-1A-1A(AB)*=B*A*(kA)*=k n-1A*(A-1)*=(A*)-1=(A T)*=(A*)T(A*)k=(A k)*AA*=A*A=A EAB=A B kA=k n A A k=A k8⎧(1)η1,η2是Ax =0的解,η1+η2也是它的解⎫⎪⎪(2)η是Ax =0的解,对任意k ,k η也是它的解⎪⎪齐次方程组⎪(3)η,η,,η是Ax =0的解,对任意k 个常数⎬12k⎪⎪⎪⎪λ1,λ2,,λk,λη11+λ2η2+λk ηk也是它的解⎭⎪⎪⎪线性方程组解的性质:⎨(4)γ是Ax =β的解,η是其导出组Ax =0的解,γ+η是Ax =β的解⎪(5)η,η是Ax =β的两个解,η-η是其导出组Ax =0的解1212⎪⎪(6)η2是Ax =β的解,则η1也是它的解⇔η1-η2是其导出组Ax =0的解⎪⎪(7)η1,η2,,ηk是Ax =β的解,则⎪λη+λη+λη也是Ax =β的解⇔λ+λ+λ=11122k k 12k ⎪⎪11+λ2η2+λk ηk是Ax =0的解⇔λ1+λ2+λk=0⎩λη√设A 为m ⨯n 矩阵,若r (A )=m ,则r (A )=r (A β),从而Ax =β一定有解.当m <n 时,一定不是唯一解.⇒m 是r (A )和r (A β)的上限.√矩阵的秩的性质:①r (A )=r (A T )=r (A T A )②r (A ±B )≤r (A )+r (B )③r (AB )≤min {r (A ),r (B )}方程个数未知数的个数<,则该向量组线性相关.向量维数向量个数⎧r (A )若k ≠0④r (kA )=⎨⎩0若k =0⎡A ο⎤标准正交基n个n维线性无关的向量,两两正交,每个向量长度为1.AB=0⇒B=οAB=AC⇒B=C α与β正交(α,β)=0.α是单位向量α=(α,α)=1.√内积的性质:① 正定性:(α,α)≥0,且(α,α)=0⇔α=ο② 对称性:(α,β)=(β,α)③ 双线性:(α,β1+β2)=(α,β1)+(α,β2)(α1+α2,β)=(α1,β)+(α2,β)(cα,β)=(cα,β)=(α,cβ)施密特α1,α2,α3线性无关,⎧β1=α1⎪⎪⎪(α,β)正交化⎨β2=α2-21β1(ββ)11⎪⎪(α3,β1)(α3,β2)β=α-β-β2⎪331(β1β1)(β2β2)⎩单位化:η1=正交矩阵AA T=E.ββ1βη2=2η3=3β1β2β3A 的特征多项式λE -A =f (λ).A 的特征方程λE -A =0.Ax =λx →Ax 与x 线性相关√上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√若A =0,则λ=0为A 的特征值,且Ax =0的基础解系即为属于λ=0的线性无关的特征向量.√A =λ1λ2λn ∑λi=tr A1n ⎡a 1⎤⎢a ⎥√若r (A )=1,则A 一定可分解为A =⎢2⎥[b 1,b 2,⎢⎥⎢⎥⎣a n ⎦的特征值为:λ1=tr A =a 1b 1+a 2b 2+√若A 的全部特征值λ1,λ2,,b n ]、A 2=(a 1b 1+a 2b 2++a n b n )A ,从而A +a n b n ,λ2=λ3==λn=0.,λn,f (x )是多项式,则:,f (λn);①f (A )的全部特征值为f (λ1),f (λ2),11②当A 可逆时,A -1的全部特征值为λ,λ2,1,λ1n ,,λn.A A *的全部特征值为λ1,λ2,k λ⎧kA ⎪a λ+b ⎪aA +bE 1-1⎪λ⎪A 分别有特征值.√λ是A 的特征值,则:⎨22λ⎪A ⎪A m λm ⎪*A A ⎪⎩AA的矩阵,P -1AP 为对角阵,主对角线上的元素为A 的特征值.√A 可对角化的充要条件:n -r (λi E -A )=k i k i 为λi的重数.√若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.A 与B 正交相似B =P -1AP (P 为正交矩阵)√相似矩阵的性质:①A -1②A T③A k B -1若A ,B 均可逆B T B k (k 为整数)④λE -A =λE -B ,从而A ,B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于λ0的特征向量,P -1x 是B 关于λ0的特征向量.⑤A =B从而A ,B 同时可逆或不可逆⑥r (A )=r (B )⑦tr (A )=tr (B )√数量矩阵只与自己相似.√对称矩阵的性质:①特征值全是实数,特征向量是实向量;②与对角矩阵合同;③不同特征值的特征向量必定正交;A (α1,α2,,αn )=(A α1,A α2,,A αn )=(λ1α1,λ2α2,,λn αn )=[α1,α2,P ⎡λ1⎢λ2⎢,αn ]⎢⎢⎣Λ⎤⎥⎥.⎥⎥λn⎦√若AB ,C ⎡A ο⎤D ,则:⎢⎥⎣οC ⎦⎡B ο⎤⎢οD ⎥.⎣⎦√若AB ,则f (A )二次型f (x 1,x 2,f (B ),f (A )=f (B ).,x n )T ,x n )=X T AX A 为对称矩阵X =(x 1,x 2,A 与B 合同B =C T AC .记作:A B (A ,B 为对称阵,C 为可逆阵)√两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√两个矩阵合同的充分条件是:A B√两个矩阵合同的必要条件是:r (A )=r (B )正交变换n √f (x 1,x 2,,x n )=X AX 经过合同变换T X =CY 化为f (x 1,x 2,,x n )=∑d i y i2标准型.1可逆线性变换√二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由惟一确定的.√当标准型中的系数d i 为1,-1或0时,则为规范形 .r (A )正惯性指数+负惯性指数√用正交变换法化二次型为标准形:①求出A的特征值、特征向量;②对n个特征向量单位化、正交化;③构造C(正交矩阵),C-1AC=Λ;④作变换X=CY,新的二次型为f(x1,x2,,xn)=∑diyi2,Λ的主对角上的元素di即为A的n1特征值.正定二次型x1,x2,,xn不全为零,f(x1,x2,,xn)>0.正定矩阵正定二次型对应的矩阵.√合同变换不改变二次型的正定性.√成为正定矩阵的充要条件(之一成立):①正惯性指数为n;②A的特征值全大于0;③A的所有顺序主子式全大于0;④A合同于E,即存在可逆矩阵Q使Q T AQ=E;⑤存在可逆矩阵P,使A=P T P(从而A>0);⎡⎢λ1⎤⎥λ。

线性代数总结

线性代数总结

线性代数总结 行列式:定理一:一个排列中的任意两个元素对换,排列改变奇偶性。

推论:奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。

定理二:n 阶行列式也可以定义为(), (12)121n p p p tn a a aD ∑-=其中t 为行标排列n p p p ...21的逆序数行列式性质:性质1:行列式与它的转置行列式相等 行列式的行与列具有同等重要的性质。

性质2:互换行列式的两行(列),行列式变号推论:如果行列式有两行(列)完全相同,则此行列式等于零性质3:行列式的某一行(列)中所有的元素乘以同一数k ,等于用数k 乘此行列式 推论:行列式中某一行(列)所有元素的公因子可以提到行列式记号的外面 性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零性质5:若行列式的某一列(行)的元素都是两数之和,例如第i 列的元素都是两数之和:nnnini n n ni i n i i a b a a a a b a a a a b a a a D ..............................2122222211111211+++=则D 等于下列两个行列式之和:nnni n n ni n i nn ni n n n i n i a b a a a b a a a b a a a a a a a a a a a a a a D ................................................ (21222221)11121121222221111211+= 性质6:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变若n 阶行列式每个元素都表示成两个数之和,则它可分解成n2个行列式。

注意j i r r +与i j r r +的区别 余子式:在n 阶行列式中,把()j i ,元ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做()j i ,元ij a 的余子式,记为ij M ;记()ij ji ij M A +-=1叫作()j i ,元ij a 的代数余子式引理:一个n 阶行列式,如果其中第i 行所有元素除()j i ,元ij a 外都为零,那么这行列式等于ij a 与它的代数余子式的乘积,即ij ij A a D =定理三:行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即),...,2,1(...2211n i A a A a A a D in in i i i i =+++=或),...,2,1(...2211n j A a A a A a D nj nj j j j j =+++=推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

线性代数性质定理公式全总结

线性代数性质定理公式全总结

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确A可逆r(A) nA的列(行)向量线性无关的特征值全不为0AA 0 A x x Ax只有零解,nR, Ax总有唯一解TA A是正定矩阵A EA p p p p 是初等阵1 2 s i存在n阶矩阵B,使得AB E 或AB E○注:全体n维实向量构成的集合nR叫做n维向量空间.A不可逆r(A) n0 的列(行)向量线性相关AA0是的特征值A有非零解, 其基础解系即为关于0的特征向量AxAr (aE bA) n○注aE bA (aE bA) x 有非零解=- ab1向量组等价矩阵等价( )矩阵相似( )具有反身性、对称性、传递性矩阵合同( )√关于e e e :1, 2, , n①称为n 的标准基,n 中的自然基,单位坐标向量p教材87 ;②e1,e2, ,e n 线性无关;③e1,e2, ,e n 1;④tr E=n ;⑤任意一个n维向量都可以用e1,e2 , ,e n 线性表示.a a a11 12 1n行列式的定义a a a21 22 2n ( j j j )1D ( ) a a an 1j 2 j nj1 2 n1 2 nj j j1 2 na a an1 n2 nn√行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.2②若A与B 都是方阵(不必同阶), 则A O A A O=O B O B BO A A= ( 1)B O B OmnABA B(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.a O a1n1n④关于副对角线:a a2n 1 2n 1n(n1)( 1) 2 (即:所有取自不同行不同列的n个元素的乘积的代数和)a a a1n 2n n1a O a On1 n11 1 1x x x1 2 n⑤范德蒙德行列式: 2 2 2x x x1 2 nx xi j1 j i nn 1 n 1 n 1x x x1 2 na a a11 12 1n矩阵的定义由m n个数排成的m 行n列的表 A a a a21 22 2n 称为m n矩阵. 记作:A a 或A m nij m na a am1 m2 mnA A A11 21 n1伴随矩阵*A AijA A AT n12 22 2,A为 A 中各个元素的代数余子式.ijA A A1n 2n nn√逆矩阵的求法:3① A 1AA○注:1a b 1 d b 主换位c d ad bc c a 副变号②初等行变换1( A E) (E A )a11 1a1a11 1a3③ a21a2a21a2 a31a3a31a1√方阵的幂的性质:m n m n m n mnA A A (A ) (A)√设A m n ,B n s, A 的列向量为1, 2, , n , B 的列向量为1, 2 , , s ,b b b11 12 1s则AB C m sb b b21 22 2 s, , , c ,c , ,c1 2 n 1 2 sA c ,(i 1,2 , ,s)i ii 为Ax c i 的解b b bn1 n2nsA 1, 2 , s , A 1 A, 2 s , A , c1 s cc1,2,c2, ,, c c s 可由, 1, 2 , , n 线性表示. 即:C 的列向量能由A的列向量线性表示,B 为系数矩阵.同理:C 的行向量能由 B 的行向量线性表示,TA 为系数矩阵.a a a c11 12 1n 1 1 a a a c11 1 12 2 1n 2 1即:a a a c21 22 2n 2 2a a a c21 1 22 2 2n 2 2a a a cn1 n2 mn n ma a a cm1 1 m 2 2 mn 2 m√用对角矩阵○左乘一个矩阵, 相当于用的对角线上的各元素依次乘此矩阵的○行向量;4用对角矩阵○右乘一个矩阵, 相当于用的对角线上的各元素依次乘此矩阵的○列向量. √两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√分块矩阵的转置矩阵:T T T A B A CT T C D B D分块矩阵的逆矩阵:1 1A AB B 11 1A B1B A1 1 1 1A C A A CB1 1A O A OO B O B 1 1C B B CA B分块对角阵相乘:A B11 11A ,BA B22 22ABA B11 11A B22 22, nAnA11nA22分块对角阵的伴随矩阵:* *A BA*B AB*mnA ( 1) A BmnB ( 1) B A√矩阵方程的解法( A 0) :设法化成(I) AX B 或(II) XA B初等行变换(I) 的解法:构造( A B) ( E X )T T T (II) 的解法:将等式两边转置化为 AX B ,T用(I) 的方法求出X ,再转置得X①零向量是任何向量的线性组合, 零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.5③部分相关, 整体必相关;整体无关, 部分必无关. (向量个数变动)④原向量组无关, 接长向量组无关;接长向量组相关, 原向量组相关. (向量维数变动)⑤两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关教材.p114⑥向量组1, 2, , n 中任一向量i (1≤i ≤n) 都是此向量组的线性组合.⑦向量组1, 2, , n 线性相关向量组中至少有一个向量可由其余n 1个向量线性表示.向量组1, 2 , , n 线性无关向量组中每一个向量i 都不能由其余n 1个向量线性表示.⑧m维列向量组1, 2 , , n 线性相关r(A) n;m 维列向量组1, 2 , , n 线性无关r (A) n .⑨若1, 2 , , n 线性无关,而1, 2, , n , 线性相关,则可由1, 2, , n 线性表示, 且表示法唯一.⑩矩阵的行向量组的秩列向量组的秩矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零. 当非零行的第一个非零元为行阶梯形矩阵可画出一条阶梯线,线的下1,且这些非零元所在列的其他元素都是0时,称为行最简形矩阵? 矩阵的行初等变换不改变矩阵的秩, 且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩, 且不改变行向量间的线性关系.即:矩阵的初等变换不改变矩阵的秩.6√矩阵的初等变换和初等矩阵的关系:对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .矩阵的秩如果矩阵 A 存在不为零的r 阶子式,且任意r 1阶子式均为零,则称矩阵A的秩为r . 记作r ( A) r向量组的秩向量组1, 2 , , n的极大无关组所含向量的个数,称为这个向量组的秩. 记作r( 1 , 2 , , n)矩阵等价A经过有限次初等变换化为 B . 记作: A B向量组等价1, 2, , n 和1, 2 , , n 可以相互线性表示.记作:1, 2, , n 1, 2, , n? 矩阵A与B 等价PAQ B ,P,Q 可逆r (A) r (B), A, B为同型矩阵A, B作为向量组等价, 即:秩相等的向量组不一定等价.矩阵A与B 作为向量组等价r( , , , n) r( , , , n) r ( 1, 2, n, 1 , 2 , , n )1 2 1 2矩阵A与B 等价.? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示A X B 有解r ( 1, 2, , n )= r ( 1, 2, n, 1, 2 , , s ) r( 1, 2 , , s ) ≤r( 1, 2 , , n) . ? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示,且s n,则1, 2 , , s 线性相关.向量组1, 2, , s 线性无关, 且可由1, 2, , n 线性表示,则s≤n .? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示,且r ( 1 , 2, , s ) r( 1, 2 , , n ) , 则两向量组等价;p教材94,例10? 任一向量组和它的极大无关组等价. 向量组的任意两个极大无关组等价.7? 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定.? 若两个线性无关的向量组等价, 则它们包含的向量个数相等.?设A是m n矩阵, 若r ( A) m,A的行向量线性无关;若r ( A) n ,A的列向量线性无关, 即:1, 2 , , n 线性无关. √矩阵的秩的性质:r A r A r A A p教材101,T T①若A O r (A) ≥ 1 若A O r( A) 0 0≤r( A) ≤min( m, n) ②( ) ( ) ( )m n 例15③r (kA) r (A) 若k 0④若A , B ,若r( A B) 0m n n s r( A) r (B) nB的列向量全部是Ax 的解⑤r ( AB) ≤min r ( A), r (B)⑥若A可逆r ( AB) r (B)若B可逆r AB r A( ) ( )即:可逆矩阵不影响矩阵的秩.Ax只有零解⑦若r (A m n) nr ( AB) r (B)A在矩阵乘法中有左消去律AB O B O AB AC B C;若r (B ) nn s r ( AB) r (B)B在矩阵乘法中有右消去律.8E O E Or r⑧( )若r A r A与唯一的等价,称为矩阵A的等价标准型.O O O O⑨r (A B) ≤r (A) r (B) max r ( A), r (B) ≤r(A,B) ≤r (A) r (B) p教材70A O O A⑩r r (A) r(B) O B B OA Cr r (A) r(B)O B当为方阵时AAx 有无穷多解 A 0n表示法不唯一, , , 线性相关0有非零解Ax 1 2 n可由, , , 线性表示Ax 有解r (A) r (A )1 2 n A当为方阵时Ax 有唯一组解 A 0 克莱姆法则n表示法唯一, , , 1 2线n性无关只有零解Axr (A) r (A )不可由, , , 线性表示Ax 无解r (A) r( A)1 2 n教材72r (A) 1 r ( A )讲义87Ax有无穷多解其导出组有非零解○注:Ax有唯一解其导出组只有零解式Ax 向量式x x x阵线性方程组的矩1 12 2 n n9a a a x b11 12 1n 1 11 ja a a x b21 22 2n 2 2A , x , j2 j, ,2, ,j 1 na a a x bm1 m 2 mn n mmjx1( , , , n)1 2 x 2 x nT T T T T T T 矩阵转置的性质:( A ) A ( AB) B A ( k A) kATT T TA A (A B) A B1 T T 1 T T(A ) (A ) ( A ) ( A )矩阵可逆的性质: 1 1( A ) A1 1 1( AB) B A1 1 1( k A) k A1A A1 1 1 1(A B) A B1 k k 1 k(A ) (A ) A伴随矩阵的性质:n 2( A ) A A ( AB) B A n 1( k A) k A A An 1 * * *(A B) A B1 1( ) ( ) AA A ( ) ( )k kA AAn r(A) n若r(A ) 1 r(A) n 1若AB A B nkA k AkkA A AB A B AA A A A E (无条件恒成立)0 r(A) n 1若10(1) , 是Ax 的解, 也是它的解1 2 1 2(2) 是Ax 的解,对任意k, k 也是它的解齐次方程组(3) , , , 是Ax 的解, 对任意k个常数1 2 k, , , , 也是它的解1 2 k 1 1 2 2 k k线性方程组解的性质:(4) , ,是Ax 的解是其导出组Ax 的解是Ax 的解(5) , Ax , Ax是的两个解是其导出组的解 12 1 2(6 ) Ax , Ax是的解则也是它的解是其导出组的解2 1 1 2(7) , , , Ax ,是的解则 1 2k也是的解Ax1 12 2 k k 1 2 k1是的解Ax 0 0 1 1 2 2 k k1 2 k√设A为m n矩阵, 若r (A) m r (A) r ( A ) Ax 一定有解,当m n 时, 一定不是唯一解方程个数未知数的个数向量维数向量个数, 则该向量组线性相关.m 是r ( A)和r (A ) 的上限.√判断1, 2, , s 是Ax 的基础解系的条件:①1, 2, , s 线性无关;②1, 2, , s 都是Ax 的解;③s n r (A) 每个解向量中自由未知量的个数.√一个齐次线性方程组的基础解系不唯一.√若是Ax 的一个解,1, , , s 是Ax 的一个解1, , , s , 线性无关√Ax 与Bx 同解(A,B 列向量个数相同), 则:①它们的极大无关组相对应, 从而秩相等;②它们对应的部分组有一样的线性相关性;③它们有相同的内在线性关系.A.√两个齐次线性线性方程组Ax 与Bx 同解r r ( A) r (B)BA. √两个非齐次线性方程组Ax 与Bx 都有解,并且同解r r (A) r(B)B11√矩阵A与B l n 的行向量组等价齐次方程组Ax 与Bx 同解PA B (左乘可逆矩阵P );m n p教材101矩阵A m n 与B l n 的列向量组等价AQ B (右乘可逆矩阵Q ) .√关于公共解的三中处理办法:①把(I) 与(II) 联立起来求解;②通过(I) 与(II) 各自的通解,找出公共解;当(I) 与(II) 都是齐次线性方程组时,设1 , 2, 3 是(I) 的基础解系, 4, 5 是(II) 的基础解系,则(I) 与(II) 有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:r ( , , ) r( , , c c )1 2 3 1 2 3 1 4 2 5当(I) 与(II) 都是非齐次线性方程组时,设1c1 1 c2 2 是(I) 的通解, 2 c3 3 是(II) 的通解,两方程组有公共解2c3 3 1 可由 1 , 2线性表示. 即:r( 1, 2) r ( 1, 2 2 c3 3 1)③设(I) 的通解已知,把该通解代入(II) 中,找出(I) 的通解中的任意常数所应满足(II) 的关系式而求出公共解。

(完整)线性代数知识点总结汇总,推荐文档

(完整)线性代数知识点总结汇总,推荐文档

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

线性代数定理总结

线性代数定理总结

线性代数定理总结
线性代数是一种数学分支,它利用向量空间的思想和矩阵来解决特定的
方面的问题,主要应用于分析和模拟工程中的运筹学和控制系统类的计算机
模型和设计,因此它可以被用来解决计算机科学类的实际问题。

线性代数定
理是一个强大的数学理论,它提供了许多有用和关键的算法。

以下是线性代
数定理总结:
一、矩阵乘法定理。

矩阵乘法定理是一个关于矩阵之间的相乘的重要定理,它允许矩阵之间进行组合以形成新矩阵,也被称为矩阵的乘法上的定理。

二、线性方程组的解定理。

这个定理指明将一系列的线性方程组合成一
个可用的形式,并且可以使用矩阵乘法来解决,求出线性方程组的解。

三、特征值和特征向量定理。

它可以提供矩阵的特征向量和特征值,这
些向量和值可以用来分析数据和表示矩阵之间的关系。

四、正交投影定理。

这一定理可以用来把一个向量投射到另一个向量上,形成两个向量之间的正交投影。

五、二次型定理。

它用来研究二次函数的特征,其中斜率、交点和表示
函数的最高或最低值都是二次型定理提供的重要内容。

六、变换和表达定理。

它用来研究复合变换,其中形如平移、旋转和缩
放的变换都可以用可以利用表达和变换的定理来描述和还原图形的表示。

以上是线性代数定理总结,很多重要的算法可以从这些定理中得出,它
们在计算机科学、数据分析、科学发现等方面都有着广泛的应用。

综上所述,线性代数定理无疑是一个强大的工具,它将为计算机科学带来更多的发现。

线性代数主要结论

线性代数主要结论

《线性代数》主要结论1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:①、若12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;⑥、()()()r A B r A r B +≤+; ⑦、()min((),())r AB r A r B ≤;⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则: Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;1111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑; 注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;4. ()()T r A A r A =;5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 6. 线性相关与无关的两套定理: 若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;。

线性代数必须熟记的结论

线性代数必须熟记的结论

1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式; n 2n !n 2n2. 代数余子式的性质:①、ij A 和的大小无关;ij a ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A ++=−=−M4. 设行列式n D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D −=−; 将D 顺时针或逆时针旋转90,所得行列式为o2D ,则(1)22(1)n n D D −=−;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n −× −;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n −× −;⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m n CA OA AB B OB C==−⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk k k E A S λλλn k −=−=+−∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =−; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是阶可逆矩阵:n ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组有非零解; 0Ax =⇔n b R ∀∈,总有唯一解; Ax b =⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;线性代数必须熟记的结论⇔A 的行(列)向量组是的一组基; n R ⇔A 是中某两组基的过渡矩阵;n R 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3.1**111**()()()()()()T T T T A A A A A A −−−−===1***11()()()T T TAB B A AB B A AB B A −−−===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠O,则: Ⅰ、12s A A A A =L ;Ⅱ、; 111121s A A A A −−−−⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠O②、111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟;(主对角分块) ③、111O A O B B O A O −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟1⎟;(副对角分块) ④、;(拉普拉斯) 1111A C A A CB O B OB −−−−−⎛⎞−⎛⎞=⎜⎜⎟⎝⎠⎝⎠⑤、11111A O A O C B B CAB −−−−−⎛⎞⎛⎞=⎜⎜⎟−⎝⎠⎝⎠⎟;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m 矩阵n ×A ,总可经过初等变换化为标准形,其标准形是唯一确定的:;r m nE OF O O ×⎛⎞=⎜⎟⎝⎠等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则(,)(,)rA E E X A 可逆,且1X A −=;②、对矩阵做初等行变化,当(,)A B A 变为E 时,B 就变成1A B −,即:;1(,)(,)cA B E A B − ∼ ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且; 1x A b −=4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j −=,例如:;1111111−⎛⎞⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠④、倍乘某行或某列,符号(())E i k ,且11(())((E i k E i k −=,例如:1111(011k k k −⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠); ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k −=−,如:;11111(11k k k −−⎛⎞⎛⎞⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0))5. 矩阵秩的基本性质:①、0(;)min(,m n r A m n ×≤≤②、;()()T r A r A =③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则;(可逆矩阵不影响矩阵的秩) ()()()()r A r PA r AQ r PAQ ===⑤、max ;(※) ((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※) ()()()r A B r A r B +≤+⑦、;(※)()min((),()r AB r A r B ≤)⑧、如果A 是矩阵,m n ×B 是矩阵,且n s ×0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为阶方阵,则;n ()()()r AB r A r B n ≥+−6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎞⎜⎜⎜⎟⎝⎠⎟⎟m 二项展开式:01111110()nnnn m n mmn n n nm m n nnnnnnm a b C a C a b C a b Ca b C b Ca b −−−−=+=++++++=∑L L −;注:Ⅰ、(展开后有项;)n a b +1n +Ⅱ、0(1)(1)!1123!()!−−+==−LL L m n n n n n n m n C C m m n m ==n C −=1Ⅲ、组合的性质:;111102−−+−===+=∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()nr A n r A r A n r A n = ⎧⎪==⎨⎪−<−⎩;②、伴随矩阵的特征值:*1*(,AAAX X A A A A X X λλλ− == ⇒ =);③、*1A A A −=、1*n A A−=8. 关于A 矩阵秩的描述:①、,()r A n =A 中有阶子式不为0,n 1n +阶子式全部为0;(两句话)②、,()r A n <A 中有阶子式全部为0; n ③、,()r A n ≥A 中有阶子式不为0;n 9. 线性方程组:,其中Ax b =A 为矩阵,则:m n ×①、m 与方程的个数相同,即方程组Ax b =有个方程;m ②、n 与方程组得未知数个数相同,方程组Ax b =为元方程; n 10. 线性方程组的求解:Ax b =①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成n 元线性方程:n m ①、;11112211211222221122n n n n m m nm n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L LLLLLLLLLLL L n②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⇔=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L M M O M M M L (向量方程,A 为m n ×矩阵,个方程,个未知数)m n ③、()1212n n x x a a a x β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M (全部按列分块,其中);12n b b b β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠M ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(为未知数的个数或维数)n 4、向量组的线性相关性1.个维列向量所组成的向量组m n A :12,,,m αααL 构成n m ×矩阵12(,,,)m A =L ααα;m 个维行向量所组成的向量组n B :12,,,T T TmβββL 构成m n ×矩阵12T T T m B βββ⎛⎞⎜⎟⎜=⎜⎟⎜⎟⎜⎟⎝⎠M ⎟; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)0Ax ⇔=②、向量的线性表出是否有解;(线性方程组) Ax b ⇔=③、向量组的相互线性表示 是否有解;(矩阵方程)AX B ⇔=3. 矩阵与m n A ×l n B ×行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ;(()(T r A A r A =)101P 例15) 5.维向量线性相关的几何意义:n ①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααL α线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s ααL α线性无关,则121,,,s ααα−L 必线性无关;(向量的个数加加减减,二者为对偶) 若维向量组r A 的每个向量上添上个分量,构成n 维向量组n r −B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为)能由向量组r B (个数为)线性表示,且s A 线性无关,则r (二版s ≤74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; (()(,)r A r A B ⇔=85P 定理2)向量组A 能由向量组B 等价(()()(,)r A r B r A B ⇔ ==85P 定理2推论) 8. 方阵A 可逆存在有限个初等矩阵,使⇔12,,,l P P P L 12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵与m n A ×l n B ×:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则与0Ax =0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若,则:m s s n m n A B C ×××=①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是的解,考试中可以直接作为定理使用,而无需证明; 0ABx =①、 只有零解0ABx =0Bx ⇒ =只有零解;②、0Bx = 有非零解一定存在非零解;0ABx ⇒ =12. 设向量组12:,,,n r r B b b b ×L 可由向量组线性表示为:(12:,,,n s s A a a a ×L 110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中为,且K s r ×A 线性无关,则B 组线性无关()r K r ⇔=;(B 与的列向量组具有相同线性相关性) K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q 注:当时,为方阵,可当作定理使用;r s =K 13. ①、对矩阵,存在, m n A ×n m Q ×m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵,存在, m n A ×n m P ×n PA E =()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααL α线性相关⇔存在一组不全为0的数,使得12,,,s k k k L 11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设的矩阵m n ×A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:;()r S n r =−16. 若*η为的一个解,Ax b =12,,,n r ξξξ−L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ−L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵或T A A E ⇔=1T A A −=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即;1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ②、若A 为正交矩阵,则也为正交阵,且1T A A −=1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L 1b a =1;122211[,][,]b a b a b b b =−1LLL12112112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b −1−−−=−−−− L ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、可逆; Q ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ,其中可逆;⇔=T C AC B⇔与有相同的正、负惯性指数; T x Ax T x Bx ③、A 与B 相似 1−⇔=P AP B ; 5. 相似一定合同、合同未必相似;若为正交矩阵,则C T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. 元二次型为正定:n T x Ax A ⇔的正惯性指数为;n A ⇔与E 合同,即存在可逆矩阵,使C T C AC E =; A ⇔的所有特征值均为正数;的各阶顺序主子式均大于0; A ⇔0,0ii a A ⇒>>;(必要条件)。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结1线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的20__年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。

下面,就将线代中重点内容和典型题型做了总结,希望对20__考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20__年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。

考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

线性代数公式定理总结

线性代数公式定理总结

线性代数公式定理总结线性代数是一门研究向量空间及其变换的数学学科。

它在各个领域,尤其是科学、工程和计算机科学中具有广泛的应用。

线性代数的重要基础是一系列公式和定理,它们构成了这门学科的核心。

一. 向量运算向量是线性代数中的基本概念之一。

在计算和研究中,经常需要对向量进行运算。

常见的向量运算有加法、减法、乘法和除法。

1. 向量加法:向量加法是将两个向量的对应分量相加得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的和为c=[a1+b1, a2+b2, a3+b3]。

2. 向量减法:向量减法是将两个向量的对应分量相减得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的差为c=[a1-b1, a2-b2, a3-b3]。

3. 向量乘法:向量乘法有两种形式,内积和外积。

- 内积:内积也称为点积,是两个向量的对应分量相乘后再相加。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的内积为a·b=a1*b1+a2*b2+a3*b3。

内积有许多重要的性质,例如满足交换律和分配律。

- 外积:外积也称为叉积,是两个向量通过向量运算得到一个新的向量。

外积的结果是垂直于原来两个向量的向量。

外积在计算机图形学和物理学等领域中被广泛应用。

4. 向量除法:向量除法是将一个向量的对应分量除以另一个向量的对应分量得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的商为c=[a1/b1, a2/b2, a3/b3]。

注意,这里的除法是按元素进行的。

二. 矩阵运算矩阵是线性代数中另一个重要的概念。

矩阵是一个由元素组成的矩形阵列。

与向量类似,矩阵可以进行加法、减法、乘法和除法运算。

1. 矩阵加法:矩阵加法是将两个矩阵的对应元素相加得到一个新的矩阵。

考研线代必须熟结论

考研线代必须熟结论

考研线代必须熟结论————————————————————————————————作者:————————————————————————————————日期:2考研线代必须熟记结论1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数总结-笔记

线性代数总结-笔记

线性代数总结-笔记●注●结合两位李老师线代辅导讲义整理而成●●一、行列式●1、概念及性质●行列式●定义:不同行不同列元素乘积的代数和(完全展开式)(共n!项)●逆序数:一个排列中逆序的总数●性质●行列式性质:●①提公因式;●②两行互换,行列式变号(两行相等、两行成比例,丨A丨=0);●③拆分;●④倍加●方阵行列式性质(运算公式):●※注意:①行列式性质≠矩阵初等变换;②行列式性质≠矩阵运算●余子式●定义:Mij●代数余子式●定义:●展开公式●丨A丨=按第i行展开=按第j列展开●某行(列)元素×其他行(列)元素的代数余子式=0●Aij的值与aij的取值无关●2、主要公式●上(下)三角行列式●关于副对角线的行列式●拉普拉斯展开式●范德蒙行列式●△特征多项式→求特征值●克拉默法则计算方程组的解●系数行列式D≠0(即丨A丨≠0)●推论1:齐次线性方程组D≠0,则方程组只有零解●推论2:齐次线性方程组有非零解,则丨A丨=0●3、题型总结●行列式的计算●数字型行列式●步骤:①观察行列式特征;②利用展开公式或行列式性质●方法:行(列)加法、加边法、分块法、拆项法、递推法●特殊行列式归纳●爪形行列式:●一般思路:利用对角线元素把行或者列消去,变为上/下三角形;●考题中一般不会给明显爪形,需要先进行恒等变换●三对角线行列式●一般思路:把对角线两边的某一对角线化为0●低阶:①每一行加到第一行;②逐行相加●高阶:数学归纳法递推——①把A展开,看A与几个低阶有关②与一个低阶有关,选择第一数学归纳法;与两个或两个以上低阶有关,选择第二数学归纳法●抽象性行列式●丨A+B丨型的计算●给出A=α,β,γ;B=δ,ε,η→把A+B表示出来,用行列式性质●完全抽象:利用E把A+B恒等变形,根据矩阵行列式性质化为已知条件●丨A丨型计算●遇到A的伴随、转置或逆矩阵等,先利用矩阵性质化为A后,再计算●遇到α1,α2,α3是线性无关向量且给有Aα1,Aα2,Aα3:①行列式性质②利用相似“A~B,则丨A丨=丨B丨”●利用特征值●例题●三对角线行列式 @例题●@●加边法求行列式 @例题●@●抽象行列式 @例题●@ 行列式性质拆分、加加减减;相似;由已知条件观察A的伴随、A的转置、A的逆、A之间的关系。

考研数学须熟记的结论2(线性代数)

考研数学须熟记的结论2(线性代数)

4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 6. 线性相关与无关的两套定理: 若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示 AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型; ②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

*注2:交换i,j两列,记为ri↔ri(ci↔cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

#注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。

线性代数重要公式、定理大全

线性代数重要公式、定理大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【海文考研数学】:线性代数必须熟记的结论总结1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性 1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论) 5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档