九年级数学竞赛讲座常量数学到变量数学附答案

合集下载

最新北师大版初中数学常量与变量(含答案)

最新北师大版初中数学常量与变量(含答案)

7.1 常量与变量知识要点了解常量与变量的概念.在一个过程中,固定不变的量叫做常量,可取不同数值的量叫做变量.常量和变量不是绝对的,而是相对的.常量与变量的相对性,就是说在一过程中的常量在另一过程中可能是变量;同样,在一过程中的变量在另一过程中也可能是常量.在判断常量和变量时,切不可忽视在何变化过程中.基础能力平台1.在圆的周长公式C=2πR中,变量是_______,常量是________,若用C来表示R,•则表达式是_______.2.对于圆的面积公式S=πR2,下列说法中,正确的是()A.π是变量 B.R2是常量C.S、π、R都是变量 D.S与R是变量3.写出下列各问题中的关系式,并指出其中的常量与变量:(1)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)•的关系式;(2)n边形的内角和S与边数n的关系式;(3)梯形上、下底边的长分别是4cm和10cm,梯形的面积为y(cm2)与高x(cm)•的关系式;(4)n位同学购买单价为9元/本的教科书,每人一本,总金额为y(元)与n的关系式;(5)设地面的气温是21℃,每升高1km,气温就下降6℃.高度hkm处的气温为t℃与h 的关系式;(6)一个宽3cm、长4cm的长方形,如果它的长增加xcm,宽度不变,•那么面积增加ycm2与x的关系式.4.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,变量和常量分别是什么?(2)分别计算当x为1km,5km,10km,20km时地壳的温度.(地表温度为2℃)拓展延伸训练一辆汽车以45km/h的速度行驶,设行驶的路程为S(km),行驶的时间为t(h).(1)S与t之间的关系式是什么?(2)在汽车行驶的路程、行驶的时间、行驶的速度这些量中,哪些是常量?•哪些是变量?(3)用表格表示当t从2时变到10时(每次增加1)时,S相应的值;(4)t逐渐增加时,S怎样变化?说说你的理由;(5)当t=0时,S=?,这说明什么?自主探究提高1.科学家认为二氧化碳(CO )的释放量越来越多是地球变暖的原因之一,•下表是1960~2000(1 (2)这些量之间有什么关系?2.某银行用下图描绘了一周内每天的储蓄额的变化情况:(1)图中表示的量,哪些是变量?(2)这一周内,哪天的储蓄额最多,哪天的储蓄额最少?(3)哪些天的储蓄额大约是相同的?(4)这一周的平均日储蓄额是多少?答案:【基础能力平台】1.R ,C 2π R=2C π2.D 3.(1)s=60t ,常量是60千米/时,变量是s (千米)和t (时)(2)s=180(n-2),常量是180,2,变量是S ,n ;(3)y=7x ,常量是7,变量是x 、y ;(4)y=9n ,常量是9,变量是n 、y ;(5)t=21-6t ,常量是21,6,变量是h ,t ;(6)•y=3x ,常量是3,变量是x ,y .4.(1)变量是x ,y ,常量是3.5和t(2)•当x•为1km ,•5km ,10km ,20km 时,地壳的温度分别为5.5℃,19.5℃,37℃,72℃【拓展延伸训练】(1)s=45t(2(4(5)当t=0时,s=0,这说明汽车原地不动.(静止状态)【自主探究提高】1.(1)变量是全世界释放的二氧化碳量和年代;(2)每隔10年,二氧化碳的释放量都在增加2.(1)变量是日期和储蓄额;(2)14日的储蓄额最高,11日的储蓄额最低(3)13日和15日的储蓄额相同,16日和17日的储蓄额相同(4)•日平均储蓄额为38万元.。

初中数学竞赛奥数基础讲座反比例函数(含解答)

初中数学竞赛奥数基础讲座反比例函数(含解答)

反比例函数内容讲解1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=kx(k•为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质①当k>0时,函数的图象在第一、三象限,•在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加是减小;②当k<0时,•函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.3.反比例函数的确定方法:由于在反比例函数关系式y=kx中,•只有一个待定系数k ,确定了k 的值,也就确定了反比例函数.因此,只需给出一组x 、y 的对应值或图象上点的坐标,代入y=kx中即可求出k 的值,从而确定反比例函数的关系式. 4.用待定系数法求与反比例函数关系式的一般步骤是:①设所求的反比例函数为:y=kx(k ≠0);•②根据已知条件(自变量与函数的对应值)列出含k 的方程;③由代入法解待定系数k 的值;④把k 值代入函数关系式y=kx中.例题剖析例1 如果函数y=k 222k k x +-的图象是双曲线,且在第二、四象限,•那么k 的值是多少?分析:若函数的图象是双曲线,则此函数为反比例函数y=kx,且k ≠0,若图象在第二、四象限,则k<0,故可求出k 的值.解:由反比例函数定义,得211221,200k k k k k k ⎧⎧=-=+-=-⎪⎨⎨<⎩⎪<⎩或所以k=-1,这时函数为y=-1x. 评注:函数y=k x m 反比例函数,则m=-1,k ≠0;若y=mkx 是反比例函数,则m=1,k ≠0.例2 函数y=kx 和y=kx(k<0)•在同一坐标系中的图象是( )分析:对于y=kx 来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选(C ). 解:(C ).评注:由于两个函数中的k 是相同的,所以可以把k 分为两类进行讨论,当k>•0时的图象是什么?当k<0时的图象是什么?例3 如图,正比例函数y=3x 的图象与反比例函数y=kx(k>0)的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.分析:因为过正比例函数与反比例函数的交点作x 轴的垂线,x 轴,•正比例函数与垂线所围成的Rt △AOB 的面积是k 的一半. 解:105.评注:若k 取大于0的自然数1,2,3,……n ,则对应的Rt △AOB 的面积分别为S 1,S 2,S 3……S n ,则S 1+S 2+S 3+……+S n =(1)4n n . 例4 正比例函数y=-x 与反比例函数y=-1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D (如图)•,•则四边形ABCD•的面积为________.分析:易知四边形ABCD 是一平行四边形,故可知其面积为S 的4倍,为一常数. 解:函数y=x 与y=1x的图象交点A 、C 的坐标分别为(1,1),(-1,-1),所以△AOB•的面积等于12,根据反比例函数的图象是中心对称图形,得平行四边形ABCD 的面积为2.评注:理解反比例函数中的不变量k 的几何意义是解题的关键. 例5 两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2005在反比例函数y=6x图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2005,纵坐标分别是1,3,•5,•…,•共2005个连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线,与y=3x的图象交点依次是Q 1(•x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.分析:解题关键是抓住点P 1,P 2,P 3,…,P 2005与点P 1,P 2,P 3,…,P 2005的横坐标相同.解:当点P 1,P 2,P 3,…,P 2005在函数y=6x的图象上,它们的纵坐标分别取1,3,5,...,4009•时相应的横坐标分别为666,,135, (6)4009.Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005)在函数y=3x的图象上,•且这些点的横坐标分别与点P 1,P 2,P 3,…,P 2005的横坐标相同,点Q 2005横坐标是64009.所以点Q 2005的纵坐标是y 2005=k x =34009624009. 评注:本题以能力立意,一方面通过“数”与“形”的转换考查了学生的数学表达能力,另一方面也考查了学生自主探索与合情推理等能力.此类题背景较新颖,有时规律较隐蔽,而成为填空题中的“把关题”.例6 设函数f (x )对所有非零实数x ,有f (x )+2f (1x)=3x ,求方程f (x )=f (-x )的解.分析:通过观察,发现x 与1x 互为倒数,把1x 换成x 后可得到关于f (x )和f (1x)的两个方程,可以求解.解:由f (x )+2f (1x )=3x 得f (1x )+2f (x )=3x , 联立两式,消去f (1x ),得3f (x )=6x -3x ,所以f (x )=2x-x .从而方程f (x )=f (-x ),可化为2x -x=-2x+x ,解得:x=经检验是方程的解.评注:本题由于方程比较特殊,抓住x 与1x互为倒数的特点是解题的关键.例7 反比例函数y=kx(k>0)在第一象限内的图像如图所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q .设△POQ 的面积为S ,•那么S 的值与k 的值是否存在关系?若有关系,请写出S 与k 之间的关系式;若没有关系,请说明理由.分析:因为S △POQ =12·OQ ·PQ ,若设P 点坐标为P (x ,y ),则OQ=│x │,PQ=│y │,又因为P•点在第一象限,所以x>0,y>0,因此可以得到S △POQ =12xy ,而由y=kx可以得到xy=k ,•于是可以确定S 与k 的关系式. 解:S 与k 之间的关系式为S=12k , 设P 点的坐标为P (x ,y ),则OQ=│x │,PQ=│y │. ∵点P 在第一象限内,∴x>0,y>0, ∴OQ=x ,PQ=y .∴S△POQ=12·OQ·PQ=12xy.又∵xy=k,∴S△POQ =12k.评注:反比例函数的系数k与过双曲线上的点作x轴、y轴的垂线所围成的矩形的面积之间的关系在解题中作用很大,要熟练掌握.例8如图所示,已知反比例函数y=12x的图像与一次函数y=kx+4的图像相交于P、•Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.分析:由已知条件P点的纵坐标是6,而点P在反比例函数y=12x上,可以求得P•点的横坐标为x=2,即P点坐标为(2,6).又P点也在一次函数y=kx+4上,把点(2,6)•代入即可求出一次函数的解析式,•△POQ的面积可以分成△PON与△QON两部分,这两部分的面积能通过P、Q两点的坐标得到.解:(1)∵点P在反比例函数y=12x的图像上,且其纵坐标为6.∴12x=6解得x=2,∴P(2,6).又∵点P在函数y=kx+4的图像上,∴6=2k+4,解得k=1.∴所求一次函数的解析式为y=x+4.(2)解方程组12124,62122, 6.,y x x x y y y x =+⎧=-=⎧⎧⎪⎨⎨⎨=-==⎩⎩⎪⎩得 ∴点Q 的坐标为(-6,-2). 令y=0,代入y=x+4,解得x=-4.∴函数y=x+4的图像与x 轴的交点是N (-4,0).∴△PON 和△QON 的公共边ON=4,ON 边上的高分别为PA=6,QB=2. ∴S △POQ =S △PON +S △QON =12×4×6+12×4×2=16. 评注:本题涉及一次函数及反比例函数的图像,识别图形的形状位置及交点是挖掘此类题目隐含条件的关键.例9 为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图).观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,•请根据题中提供的信息,解答下列问题:(1)•药物燃烧时,•y•关于x•的函数关系式为________,•自变量x•的取值范围是__________;药物燃烧后y 关于x 的函数关系式为________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,•那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:这是一道紧扣生活热点的应用题,应引起同学们的重视,•同时要学会看图形.解:由图知药物燃烧时,函数为正比例函数设y与x的解析式为y=kx(k≠0)∵点(8,6)在直线上,∴6=8k,∴k=34,∴y与x的解析式为y=34x(0<x≤8).药物燃烧后函数为反比例函数设y与x的解析式为y=`kx(k′≠0),点(8,6)在曲线上,∴k′=8×6=48.∴y与x的解析式为y=48x(x>8).(2)将x=1.6代入反比例函数解析式中y=481.6=30(分钟)答:从消毒开始,至少要经过30分钟后学生才能回教室.(3)把y=3分别代入两个函数解析式,解得x=4和x=16,而16-4=12>10.即空气中每立方米的含药量不低于3毫克的持续时间为12分钟,∴这次消毒有效.评注:本题通过具体问题情境,既考数学的应用,又考应用的数学.•解答这类问题要善于从图象中提取有效信息、从实际问题中构建出数学模型.例10 某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投入技改资金5万元.①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)?分析:观察表格发现“投入技改资金x ”与“产品成本y ”的积不变,•故表中数据满足反比例函数关系.解:(1)设其为一次函数,解析式为y=kx+b 当x=2.5时,y=7.2;当x=3时,y=6 7.2 2.5 2.46313.2k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ∴一次函数解析式为y=-2.4x+13.2. 把x=4时,y=4.5代入此函数解析式 左边≠右边,∴其不是一次函数. 同理,其也不是二次函数. 设其为反比例函数,解析式为y=kx当x=2.5时,y=7.2可得7.2=2.5k,得k=18 ∴反比例函数为y=18x . 验证:当x=3时,y=183=6,符合反比例函数.同理可验证:x=4时,y=4.5;x=4.5时,y=4成立.∴可用反比例函数y=18x表示其变化规律. (2)解:①当x=5万元时,y=185=3.6.∵4-3.6=0.4(万元),∴生产成本每件比2004年降低0.4万元.②当y=3.2时,3.2=18x,得x=5.625,∵5.625-5=0.625≈0.63(万元).∴还需投入0.63万元.评注:这是一道渗透新课程理念的好题.它没有直接给出函数的解析式,而是让学生从表中获取信息,来索取与其变化规律相合拍的函数,并付诸于具体实际的应用问题之中.较好地考查了学生直觉思维能力和合情推理探索能力、建模能力和解决实际问题的能力.例11 已知,如图所示,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,•点C在y轴上,点B在函数y=kx(k>0,x>0)的图像上,点P(m,n)是函数y=kx上的任意一点,过P作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合的部分面积为S.(1)求B点的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数关系式.分析:把矩形面积用坐标表示,A、B坐标可求,S矩形OAGF可用含n的代数式表示,解题的关键是双曲线关于y=x对称,符合题设条件的P点不惟一,故思考须周密.解:(1)依题意,设B点坐标为(x0,y0).所以S正方形OABC=x0y0=9,x0=y0=3即B(3,3),所以x0y0=k,k=9;(2)①P (m ,n )在y=9x上,S 正方形OEP1F =mn=9,所以S矩形OAGF =3n ,由已知可得S=9-3n=92,解得n=32,m=6,•所以P 1(6,32). ②如图(a )所示,同理可求得P 2(32,6).(3)如图(b )所示,当0<m<3时,因为点P 坐标为(m ,n ),所以S 矩形OEGC =3m ,S=S 矩形OEPF -S 矩形OEGC所以S=9-3m (0<m<3)如图(c )所示,当m ≥3时,因为P 点坐标为(m ,n ) 所以S 矩形OAGF =3n ,mn=9,n=9m,所以S=9-3n=9-27m . 评注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程组得到,求符合某种条件的点的坐标,需根据问题中的数量关系和几何元素间的关系建立关于纵横坐标的方程(组),解方程(组)便可求得有关点的坐标,对于几何问题,•还应注意图形的分类讨论.例12 三个反比例函数(1)y=1k x ;(2)y=2kx ;(3)y=3k x在x 轴上方的图象如图所示,•由此推出k 1,k 2,k 3的大小关系.分析:由图象所在的象限可知:k 1<0,k 2>0,k 3>0;在(2)(3)中,为了比较k 与k 的大小,可取x=a>0,作直线x=a ,与两图象相交,找到y=2k x 与y=3k x的对应函数值b 和c ,由于k 2=ab ,k 3=ac ,而c>b>0,因而k 3>k 2>k 1. 解:k 3>k 2>k 1.评注:比较反比例函数的系数k 的大小一般先从图象上去考虑,图象在一、•三象限的k 值比图象在二、四象限的k 值大,同一个象限内图象在外部的k•值比在内部的k 值大. 例13 已知点(1,3)在函数y=kx(k>0)的图象上,矩形ABCD 的边BC 在x 轴上,E•是对角线BD 的中点,函数y=kx(k>0)的图象.经过A 、E 两点,点E 的横坐标为m .(1)求k 的值;(2)求点C 的横坐标(用m 表示);(3)当∠ABD=45°时,求m 的值.分析:由点P 在反比例函数上,可以先求出k 值,利用对称性可以求出点C 的坐标. 解:(1)因为点(1,3)在函数y=kx(x>0)的图象上, 所以3=1k,所以k=3; (2)因为点E 在函数y=3x 的图象上,所以E 点的纵坐标为3m.所以点E 的坐标为(m ,3m ),•设B 点的坐标为(b ,0),所以A 点的坐标为(b ,6m). 因为A 点在函数y=3x 的图象上,所以6m =3b ,所以b=2m.所以C 点的横坐标为OB+BC=b+2(m-b )=2m +2(m-2m )=2m +m=32m ;(3)当∠ABD=45°时,│AB │=│AD │,所以6m =32m -2m=m .所以m 2=6,又因为m>0,所以评注:此题是函数和几何综合题,所以在解题中一定要先看图、读懂图,找出图形中的内在联系.例14 有一个Rt △ABC ,∠A=90°,∠B=60°,AB=1,•将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y=x的图象上,求点C 的坐标.分析:通过画图可发现:点A 的位置有两种情况(在第一象限的那支图象上或在第三象限的那支图象上),点B 、C 的位置也有两种情况(可能点靠近原点,也可能点不靠近原点),解题时要注意利用反比例函数图象的对称性. 解:本题共有4种情况.(1)如图①,过点A 做AD ⊥BC 于D ,∵AB=1,∠B=60°,∴BD=12,AD=2,∴点A 的纵坐标为2.将其代入y=x ,得x=2,即OD=2. 在Rt △ADC 中,DC=32,所以OC=72,即点C 1的坐标为(72,0).(2)如图②,过点A 作AE ⊥BC 于E 则AE=2,OE=2,CE=32,所以OC=12.即点C 2的坐标为(12,0).• 根据双曲线的对称性,得点C 3的坐标为(-72,0),点C 4的坐标为(-12,0).所以点C 的坐标分别为:(72,0)、(12,0)、(-72,0)、(-12,0).评注:根据题意,进行分类,是解决本题的突破口.此题涉及与反比例函数相关的综合性问题,能较好地展示学生的思维过程和思维个性,着重考查学生灵活运用所学知识分析问题、解决问题的能力,具有较好的选拨功能. 巩固练习一、填空题1.若一次函数y=kx+b 的图象如图所示,则抛物线y=x 2+kx+b•的对称轴位于y•轴的_______侧;反比例函数y=kbx的图象在第_______象限,在每一个象限内,y 随x•的增大而________. 2.反比例函数y=kx的图象经过点A (m ,n ),其中m ,n 是一元二次方程x 2+kx+4=0的两个根,则A 点坐标为________. 3.如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.4.已知,点P (n ,2n )是第一象限的点,下面四个命题: (1)点P 关于y 轴对称的点P 1的坐标是(n ,-2n );(2)点P 到原点O ; (3)直线y=-nx+2n 不经过第三象限; (4)对于函数y=nx,当x<0时,y 随x 的增大而减小;其中真命题是_______.(填上所有真命题的序号) 二、选择题5.已知反比例函数y=1mx的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( ) (A )m<0 (B )m>0 (C )m<12 (D )m>126.已知反比例函数y=kx的图象如图(a )所示,则二次函数y=2k x 2-x+k 2的图象大致为( )7.函数y=-ax+a 与y=ax(a ≠0)在同一坐标系中的图象可能是( )8.如图,A 、B 是函数y=1x的图象上的点,且A 、B 关于原点O 对称,AC ⊥x 轴于C ,BD•⊥x 轴于D ,如果四边形ACBD 的面积为S ,那么( )(A )S=1 (B )1<S<2 (C )S>2 (D )S=29.如图,在直角坐标系中,直线y=6-x 与函数y=4x(x>0)的图象相交于点A 、B ,•设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ) (A )4,12 (B )8,12 (C )4,6 (D )8,6 三、解答题10.如图,已知一次函数y=kx+b (k≠0)的图像与x 轴、y 轴分别交于A 、B 两点,•且与反比例函数y=mx(m ≠0)的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.11.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M 、N 两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.12.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数图像经过(a ,b ),(a+•1,b+k )两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标; (3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.13.反比例函数y=kx的图象上有一点P(m,n),其中m、n是关于t•的一元二次方程t2-3t+k=0的两根,且P到原点O,则该反比例函数的解析式为________.14.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图像不经过第三象限;乙:函数图像经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数:_______.15.已知反比例函数y=12x的图象和一次函数y=kx-7的图象都经过点P(m,2).(1)求这个一次函数的解析式;(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A、B的横坐标分别为a和a+2,求a 的值.16.通过市场调查,一段时间内某地区特种农产品的需求量y(千克)•与市场价格x(元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其他因素影响,如果需求数量y等于生产数量z时,即供需平衡,•此时市场处于平衡状态.(1)根据以上市场调查,请你分析当市场处于平衡状态时,•该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,•而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)•元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?17.如图,直线经过A(1,0),B(0,1)两点,点P是双曲线y=12x(x>0)上任意一点,PM•⊥x轴,PN⊥y轴,垂足分别为M,N.PM与直线AB交于点E,PN的延长线与直线AB交于点F.(1)求证:AF×BE=1;(2)若平行于AB的直线与双曲线只有一个公共点,求公共点的坐标.18.已知矩形ABCD的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系.....................,设点A的坐标为(x,y),其中x>0,y>0.(1)求出y与x之间的函数关系式,求出自变量x的取值范围;(2)用x、y表示矩形ABCD的外接圆的面积S,并用下列方法,解答后面的问题:方法:∵a2+22ka=(a-ka)+2k(k为常数且k>0,a≠0),且(a-ka)2≥0,∴a2+22ka≥2k,∴当a-ka=0,•即a=a2+22ka取得最小值2k.问题:当点A在何位置时,矩形ABCD的外接圆面积S最小?并求出S的最小值;(3)如果直线y=mx+2(m<0)与x轴交于点P,与y轴交于点Q,那么是否存在这样的实数m,使得点P、Q与(2)中求出的点A构成△PAQ的面积是矩形ABCD面积的16?若存在,请求出m的值;若不存在,请说明理由.19.已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一象限内的一个分支,点P•是这条曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N•为垂足)分别与直线AB相交于点E和点F.(1)设交点E和F都在线段AB上(如图所示),分别求点E、点F的坐标(用a的代数式表示点E的坐标,用b的代数式表示点F的坐标,只须写出答案,不要求写出计算过程).(2)求△OEF的面积(结果用a、b的代数式表示).(3)△AOF与△BOE是否一定相似,如果一定相似,请予以证明;如果不一定相似或者一定不相似,请简要说明理由.(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,•大小始终保持不变的那个角和它的大小,并证明你的结论.答案:一、1.右,二、四、增大 2.(-2,-2) 3.2 4.②、③、④二、5~9.CDCDA三、10.(1)A (-1,0),B (0,1),D (1,0);(2)y=2x,y=x+1. 11.(1)将N (-1,-4)代入y=k x 中得到k=4,反比例函数的解析式为y=4x, 将M (2,m )•代入解析式y=4x 中得m=2, 将M (2,2),N (-1,-4)代入y=ax+b 中,224a b a b +=⎧⎨-+=-⎩解得a=2,b=-2,• 一次函数的解析式为y=2x-2.(2)由图象可知:当x<-1或0<x<2时反比例函数的值大于一次函数的值.12.(1)k=2,y=1x; (2)解方程组121,y x y x ⎧=⎪⎨⎪=-⎩得x 1=1,x 2=-12(舍去), 从而y=1,点A 的坐标为(1,1);(3)符合条件的点P 存在,有下列情况:①若OA 为底,则∠AOP 1=45°,OP 1=P 1A •得P 1(1,0);②若OA 为腰,AP 为底,则由P 2(0),P 30); ③若OA 为腰,OP 为底,则由OP=2,P 4(2,0).13.y=2x-. 14.可填入的答案为:y=1x (x>0)或y=-x+2或y=(x-2)2或y=│x-2│等均可. 15.(1)y=32x-7;(2)A (32a ,a-7),B (a+2,32a-4),C (a+2,122a +),D (a ,12a). 由AB=CD ,得22+32=22+(122a +-12a)2, 即(122a +-12a)=±3,解方程得a=-4,a=2均为所求的值. 16.(1)由已知市场处于平衡,此时y=z 得100000x +6000=400x (x-25)(x+10)=0, ∴x 1=25,x 2=-10(•舍去),把x=25代入z=400x 中,得z=10000(千克).• 一段时间内该地区农民的总销售收入=25×10000=250000(元).(2)∵需求函数关系未变,∴平衡点仍在需求函数图象上.由已知此时价格为(a+25)元/千克,代入y=100000x +6000中得: 此时的需求数量y 1=10000025a ++6000(千克). 又∵此时市场处于平衡,生产数量z 1=需求数量y 1, ∴此时的总销售收入为:(a+25)·(10000025a ++6000)=250000+6000a (•0<a<25). ∴农民总销售收入增加了(250000+6000a )-250000=6000a (元).17.(1)过点E ,F 分别作y 轴,x 轴垂线,垂足分别为D 、C ,则△AOB ,△FCA ,△DBE•为等腰直角三角形.设P (x 0,y 0),则FC=y 0,DE=x 0,0,∴AF·0=2x 0y 0, 又y 0=012x ,即2x 0y 0=1,∴AF ·BE=1; (2)平行于AB 的直线L 的解析式为y=-x+b ,设L 与双曲线的惟一公共点Q 的坐标为(x ,y ).联立12y x b y x =-+⎧⎪⎨=⎪⎩, 得2x 2-2bx+1=0,由△=4b 2-8=0,得所以x=2,y=2,即Q 点的坐标为(2,2). 18.(1)y=9x ,x>0; (2)S=π(x 2+y 2)=π [x 2+(9x )2]≥18π, 当且仅当x=9x ,即x=3,S 最小=18π,此时,y=9x=3, 所以当点A 的坐标为(3,3)时,矩形的外接圆面积S 最小,S 的最小值为18π.(3)存在,如图,设AB 与y 轴相交于点E ,由已知得A (3,3),Q (0,2),P (-2m,0), ∴S △PAQ =S 梯形APOE -S △AEQ -S △OPQ =12 [(-2m +3)×3-1×3-2×(-2m )]=3-1m. ∴3-1m =16×36,解得m=-13.19.(1)E (a ,1-a ),F (1-b ,b )(2)当PM 、PN 和线段AB 相交时,S △EOF =S △AOB -S △AOE -S △BOF =12×1×1-12×1×(1-a )-12×1×(-b )=12a b +-.• 当PM 、PN 中一条与线段AB 相交,另一条与线段AB 的延长线相交时,也可求得S △EOF =12a b +-. (3)△AOF 一定和△BOE 相似,∵OA=OB=1,∴∠OAF=∠EBO ,,,∴点P在函数y=12x图象上,∴b=12a,即:2ab=1.∴AF OAOB BE=,∴△AOF∽△BEO.(4)当点P在曲线上移动时,△OEF中,∠EOF=45°,∵△AOF和△BOE一定相似,•∴∠AFO=∠BOE而∠AFO=∠B+∠BOF,∠BOE=∠BOF+∠EOF,∴∠EOF=45°.。

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中数学竞赛辅导讲义及习题解答  含答案  共30讲  改好278页

初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。

【例3】 解关于的方程。

思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。

A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。

A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。

A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。

()2. 任何数乘以0都等于0。

()3. 二次函数的图像一定是一个抛物线。

()4. 平行四边形的对角线互相平分。

()5. 一元一次方程的解一定是整数。

()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。

2. 若等差数列的首项为a,公差为d,则第n项为______。

3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。

4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。

5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述二次函数的图像特点。

3. 简述勾股定理。

4. 简述平行线的性质。

5. 简述一元二次方程的解法。

五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。

2. 已知等差数列的首项为3,公差为2,求第10项。

3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。

4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。

初中数学常量、变量的意义冀教版2020年压轴题

初中数学常量、变量的意义冀教版2020年压轴题

常量、变量的意义冀教版压轴题1、地球上水的总储量为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.01 答案A 解析2、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A.6B.5 C.4D.3 答案B 解析3、函数的自变量x的取值范围是()A.x≠0B.x≠1C.x≥1 D.x≤1 答案B 解析4、不等式组的解集在数轴上表示正确的是()答案C 解析5、下列说法正确的是答案C 解析6、如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(答案B 解析7、函数y=中,自变量x的取值范围是A.B.C.D.答案A 解析8、不等式组的解集在数轴上表示如图所示,则该不等式组可能为( 答案A 解析9、-的绝对值是(;)A.-B.- C.D.5 答案C 解析10、下列运算中,不正确的是(;)A.B.C.D.答案D 解析11、实数a、b在数轴上对应的位置如图,则(; 答案C 解析12、同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是答案A 解析13、1. 下列说法不正确的是答案D 解析14、在平移过程中,对应线段(;)A.互相平行且相等B.互相答案解析15、若分式的值为0,则x的值为(;)A 2 答案B 解析16、下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个答案B 解析17、图中几何体的左视图是答案B 解析18、的倒数是A.B.C.D.答案B 解析19、方程的解是A.2B.-2C.3D.-3 答案A 解析20、下列方程的变形正确的是答案D 解析21、如图,已知正方形ABCD的边长为4 ,E是BC边上的一个动点,AE⊥EF,EF交DC于F, 设BE=,FC=,答案A 解析22、已知抛物线的开口向下,顶点坐标为(2,-3),那么该抛物线有(; ▲;)A 答案B解析23、当1<<3时,化简的结果是(答案B 解析24、已知A—G为中学化学中常见物质,它们之间有如图所示的转化关系(部分生成物已略去),其中A、E、F为单质,A、E为答案(1)化合(或氧化反应);(2)Fe3O4,FeCl2;(3)CaCO3+2HCl=CaCl2+H2O+CO2↑。

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量(constant)数学时期;以函数(function)概念产生的变量(variable)数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,函数是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系(rectangular coordinates in tWO dimen。

ions)相关的概念、函数概念、函数的表示法、函数图象(graph)概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标(coordinates)是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.。

【例l】 (1)如图l,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(一7,一4),白棋④的坐标为(一6,一8),那么,黑棋①的坐标应该是..(2005年杭州市中考题) (2)如图2,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,0A与x轴的夹角为300,那么点B的坐标是.(全国初中数学联赛题)思路点拨对于(1),由自棋②、④的坐标确定原点位置,建立直角坐标系;对于(2),过A、B分别向x 轴作垂线,将求点的坐标转化为求线段的长.【例2】某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运彳亍,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只进水,不出水;②3点到4点,不进水,只出水;③4点到6点不进水,不出水.则上述判断中一定正确的是( ).A.① B.② C.②③ D.①②③(2005年常州市中考题) 思路点拨从图象获取信息,确定该水池的蓄水量与时间的关系.【例3】如果将点P绕定点M旋转l800后与点Q重合,那么这点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、0的坐标分别为(1,0)、(0,1)、(0,0).点到P1、P2、P3、…中相邻两点都关于△AB0的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点0对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于0点对称,…对称中心分别是A,B,0,A,B,0,…且这些对称中心依次循环,已知P1的坐标是(1,1).试写出点P2、P7、P100的坐标.(2005年南京市中考题) 思路点拨通过实际操作,从寻找对称点变化规律人手.【例4】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.观将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y与x间的函数关系式,并写出X的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.(2004年河北省中考题) 思路点拨对于(2),通过求不等式组的正整数解,确定分配方案,并在此基础上,研究公司获得的最大收益.【例5】如图,在直角坐标系中,已知点A(4,0)点B(0,3),若有一个直角三角形与Rt△AB0全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).思路点拨因公共边未指明,又未知顶点有不同的位置,故解本例的关键是分类讨论.1.已知点A(2a+3b ,一2)和点B(8,3a+2b)关于x 轴对称,那么a+b= .(2005年四川省中考题)2.如图所示的象棋盘上,若“帅”位于点(1,一2)上,“相”位于点(3,一2)上,则“炮”位于3.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB= 900,有直角三角形与Rt△AB0全等且以AB 为公共边,请写出这些直角三角 形未知顶点的坐标:4.已知函数,2213---=x y 则x 的取值范围是 ,若x 是整数,则此函数的最小值是 . (2005年厦门市中考题)5.如果代数式mn m 1+-有意义,那么直角坐标系中点P(m ,n)的位置在( ).A .第一象限B .第二象限C .第三象限D .第四象限(2005年荆门市中考题) 6.函数42113-+-=x x y 的自变量x 的取值范围是( ). A .x≥1且x≠2 B .x ≠ 2 C.x>1且x≠2 D .全体实数(2005年兰州市中考题) 7.平面直角坐标系中的点)21,2(m m P -关于x 轴的对称点在第四象限,则m 的取值范围在数轴上可表示为( ).(2005年荆州市中考题)8.图l 是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.给出下列对应:(1)(a)一(e);(2)(b)一(f);(3)(c)一(h);(4) (d)一(g),其中,正确的是( ). 、A .(1)和(2).B .(2)和(3)C .(1)和(3)D .(3)和(4)(2005年镇江市中考题)9.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题:(1)图中的格点△A B C 是由格点△ABC通过哪些变换方法得到的?(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(一3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.(2005年成都市中考题)10.煤炭是龙岩市的主要矿产资源之一,每天有大量的煤炭运往外地.某煤矿现有100吨煤炭要运往甲、乙两厂.通过了解获碍甲、乙两厂的有关信息如下表(表中运费栏“元/t·km”表示每吨煤炭运送1千米所需人民币):要把l00吨煤炭全部运出,试写出总运费y元与运往甲厂x吨煤炭之问的函数关系式;如果你是该矿的矿主,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.(2005年福建省龙岩市中考题)11.在平面直角坐标系中,已知点P。

初中数学竞赛第八讲由常量数学到变量数学(含答案)

初中数学竞赛第八讲由常量数学到变量数学(含答案)

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学历训练A 组1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米;B .爸爸走了5分钟,小军仍在爸爸的前面;C .小军比爸爸晚到山顶;D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快。

浙教版2024-2025学年数学八年级上册5.1常量与变量同步练习【培优版】(含答案)

浙教版2024-2025学年数学八年级上册5.1常量与变量同步练习【培优版】(含答案)

浙教版2024-2025学年数学八年级上册5.1 常量与变量同步练习【培优版】班级:姓名:亲爱的同学们:练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。

运用所学知识解决本练习,祝你学习进步!一、选择题1.一辆汽车以50km/h的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是()A.速度与路程B.速度与时间C.路程与时间D.三者均为变量2.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r3.用一根10cm长的铁丝围成的长方形,现给出四个量:①长方形的长;②长方形的宽;③长方形的周长;④长方形的面积.其中是变量的有()A.①②③B.①②④C.②③④D.①②③④4.太阳能作为一种新型能源,被广泛应用到实际生活中,在利用太阳能热水器来加热的过程中,热水器里水的温度随着太阳光照射时间的变化而变化,这一变化过程中因变量是()A.热水器里水的温度B.太阳光的强弱C.太阳光照射的时间D.热水器的容积5.一个圆形花坛,面积S与半径r的函数关系式S=πr2中关于常量和变量的表述正确的是()A.常量是2,变量是S、π、r B.常量是2、π,变量是S、rC.常量是2,变量是S、πD.常量是π,变量是S、r6.在圆的周长公式C=2πr中,下列说法正确的是()A.C,π,r是变量,2是常量B.C,π是变量,2,r是常量C.C,r是变量,2,π是常量D.以上都不对7.已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示:下列说法错误的是()A.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10℃时,声音5s可以传播1655mD.温度每升高10℃,传播速度增加6m/s8.笔记本每本a元,买3本笔记本共支出y元,下列选项判断正确的有()A.a是常量时,y是变量B.a是变量时,y是常量C.a是变量时,y也是变量D.a、y只能是常量二、填空题9.日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是.10.圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是,因变量是.11.对于圆的周长公式c=2πr,其中自变量是,因变量是.12.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是三、解答题13.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.14.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T 表示时刻,h表示水深.上述问题中,字母T,h表示的是变量还是常量,简述你的理由.四、综合题15.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.1.答案:C2.答案:B3.答案:B4.答案:A5.答案:D6.答案:C7.答案:C8.答案:C9.答案:时间10.答案:r;v11.答案:r;c12.答案:温度;时间;时间;温度13.答案:解:由题意得:y=2x,常量是2,变量是x、y,x是自变量,y是x的函数14.答案:解:字母T,h表示的是变量.因为水深h随着时间T的变化而变化15.答案:(1)解:易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量(2)解:当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3(3)解:易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低(4)解:当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大。

绵阳市人教版 九年级数学 竞赛专题:代数最值问题(含答案)

绵阳市人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (2)求使()168422+-++x x 取得最小值的实数x 的值.(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2019,求k 的最大可能值.(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 . 4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( ) 5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E.27.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 . 3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 105.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 4356.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.11.设x 1,x 2,…,x n 是整数,并且满足: ① -1≤x i ≤2,i =1,2,…,n ② x 1+x 2+…+x n =19 ③ x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.参考答案例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∵f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时∵EBC ∽△DAC ,有224===DA EB CA BC , 从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图,原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∵am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2019,即120192k(k )+≤ k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故c的最小值为6.A 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101. 9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b+1,从而a +c ,则212>>>≥,于是a >4,即a ≥5,故b≥b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L =11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1 4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB C (2125,24k k k -++-),ABC S =V k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s 15x =s -15x x 2+(9-10s )x +25s 2-27=0,∵关于x的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b cx a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a=0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a -3>0,得到1≤a ≤523为有理数,故1≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故 当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。

A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。

()2. 任何数乘以0都等于0。

()3. 对角线相等的四边形一定是矩形。

()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。

()5. 任何数都有倒数。

()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。

2. 若2x 5 = 0,则x的值为______。

3. 若一个圆的直径为10cm,则它的面积为______cm²。

4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。

5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请简述一元一次方程的求解方法。

3. 请简述等差数列的定义及通项公式。

4. 请简述平行四边形的性质。

5. 请简述圆的周长和面积的计算公式。

五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。

九年级数学竞赛讲座 24第二十四讲 几何的定值与最值

九年级数学竞赛讲座 24第二十四讲 几何的定值与最值

【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变(湖北赛区选拔赛试题); 思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.⌒【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.(永州市竞赛题)思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.( “宇振杯”上海市初中数学竞赛题)思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.⌒学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .(江苏省竞赛题)2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .(湖北省黄冈市竞赛题)3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .( “希望杯”邀请赛试题)4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13- (湖北省荆州市中考题) 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+(贵阳市中考题)6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定(桂林市中考题)7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225 D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.(全国初中数学联赛试题)13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.( “弘晟杯”上海市竞赛题) 14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?(河南省竞赛题)15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).(北京市数学知识应用竞赛试题)参考答案。

30全国初中数学竞赛九年级预赛试题及答案[1]

30全国初中数学竞赛九年级预赛试题及答案[1]

一.选择题(共6小题,满分30分,每小题5分)1.(5分)从长度是2cm 、2cm 、4cm 、4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .B .C .D . 12.(5分)(2008•铜仁地区)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,且BN ⊥AN ,垂足为N ,且AB=6,BC=10,MN=1.5,则△ABC 的周长是( )A . 28B . 32C . 18D . 253.(5分)已知xy ≠1,且有5x 2+2011x+9=0,9y 2+2011y+5=0,则y x 的值等于( ) A . 95 B . 59 C . 52011- D . 92011-4.(5分)已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A . 6B . 7C . 8D . 95.(5分)设a ,b ,c 是△ABC 的三边长,二次函数在x=1时取最小值,则△ABC 是( )A . 等腰三角形B . 锐角三角形C . 钝角三角形D . 直角三角形6.(5分)计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3个连续存储单元已依次存人数据e ,d ,c ,取出数据的顺序则是c ,d ,e ,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有( )2013年全国初中数学竞赛九年级预赛试题A . 5种B . 6种C . 10种D . 12种二.填空题(共6小题,满分30分,每小题5分)7.(5分)设方程x 2﹣|2x ﹣1|﹣4=0,则满足该方程的所有根之和为 _________ . 8.(5分)(人教版考生做)如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若AB=4,BE=5,则DE 的长为 _________ .8.(5分)(北师大版考生做)如图B ,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则AFFG 的值为 _________ .9.(5分)已知a 2﹣a ﹣1=0,且32 ,则x= _________ .10.(5分)甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 _________ 件.11.(5分)如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A=60°,CD=4m ,,则电线杆AB 的长为 _________ 米.12.(5分)若实数x ,y ,使得这四个数中的三个相同的数值,则所有具有这样性质的数对(x,y)为 _________ .三.解答题(共4小题,满分80分,每小题20分)13.(20分)已知:(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证:a=b=c14.(20分)(2010•钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为_________;用含t的式子表示点P的坐标为_________;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.15.(20分)对于给定的抛物线y=x2+ax+b,使实数p、q适合于ap=2(b+q)(1)证明:抛物线y=x2+px+q通过定点;(2)证明:下列两个二次方程,x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.2013年全国初中数学竞赛九年级预赛试题参考答案与试题解析一.选择题(共8小题,满分160分,每小题20分)1.(5分)从长度是2cm、2cm、4cm、4cm的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是()A.B.C.D.1考点:概率公式;三角形三边关系;等腰三角形的判定.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:从长度是2cm、2cm、4cm、4cm的四条线段中任意选三条线段,有4种情况,由于三角形中两边之和应大于第三边,所以能构成等腰三角形的情况有2种,故能构成等腰三角形的概率==.故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=;用到的知识点为:等腰三角形有2条边长相等;构成三角形的基本要求为两小边之和大于第三边.2.(5分)(2008•铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28 B.32 C.18 D.25考点:三角形中位线定理.分析:延长线段BN交AC于E,从而构造出全等三角形,(△ABN≌△AEN),进而证明MN是中位线,从而求出CE的长.解答:解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN,∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25,故选D.点评: 本题主要考查了中位线定理和全等三角形的判定.解决本题的关键是作出辅助线,利用全等三角形来得出线段相等,进而应用中位线定理解决问题.3.(5分)已知xy ≠1,且有5x 2+2011x+9=0,9y 2+2011y+5=0,则y x 的值等于( ) A . 95 B . 59 C . 52011- D . 92011-选B4.(5分)已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A . 6B . 7C . 8D . 9考点:扇形面积的计算;三角形的面积;勾股定理. 专题:计算题. 分析: 如图,AC=4,S 1+S 2=10,设BC=a ,利用圆的面积公式得到S 1+S 2+S 3+S 4=π×22+π×a 2=2π+a 2,于是有S 3+S 4=2π+a 2﹣10①,再用以AB 为直径的半圆减去三角形ABC 的面积得到S 3+S 4,即S 3+S 4=π×﹣×4a=a 2+2π﹣2a ②,有①﹣②得到a 的方程,求出a ,然后代入①即可得到两个弓形(带点的阴影图形)面积之和. 解答: 解:如图,AC=4,S 1+S 2=10,设BC=a ,∴S 1+S 2+S 3+S 4=π×22+π×a 2=2π+a 2,∴S 3+S 4=2π+a 2﹣10①, 又∵AB 2=42+a 2=16+a 2,∴S 3+S 4=π×﹣×4a=a 2+2π﹣2a ②, ①﹣②得,2π+a 2﹣10=a 2+2π﹣2a ,解得a=5, ∴S 3+S 4=2π+a 2﹣10=2π+×25﹣10≈6.1, 即最接近图中两个弓形(带点的阴影图形)面积之和的是6.故选A .点评:本题考查了圆的面积公式:S=πR2.也考查了不规则图形的面积的求法,即转化为规则的几何图形的面积的和或差来解决.5.(5分)设a,b,c是△ABC的三边长,二次函数在x=1时取最小值,则△ABC是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形考点:二次函数的最值;勾股定理的逆定理.专题:计算题.分析:根据二次函数在对称轴时取得最小值,然后根据题意列出方程组即可求出答案;解答:解:由题意可得,即,所以,,因此a2+c2=b2,所以△ABC是直角三角形,故选D.点评:本题考查了二次函数的最值,难度不大,关键是掌握二次函数在二次项系数大于0时,在对称轴处取得最小值.6.(5分)计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b,a,取出数据的顺序是a,b;堆栈(2)的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有()A.5种B.6种C.10种D.12种考点:加法原理与乘法原理.专题:计算题.分析:此题实际可以理解为a、b、c、d、e这五个字母组成的排列中,不论怎样排列,a、b先后顺序和c、d、e排列的顺序不变,这样排列开头的字母只能是a或c,由此解答问题即可.解答:解:先取出堆栈(1)的数据首次取出的只能是a,可以有下列情况,abcde,acbde,acdbe,acdeb四种情况;先取出堆栈(2)的数据首次取出的只能是c,可以有下列情况,cdeab,cdabe,cdaeb,cabde,cadbe,cadeb六种情况;综上所知,共10种取法.故选C.点评:解决此题的关键是要搞清a、b先后顺序和c、d、e排列的顺序不变,从而运用一一列举的方法解答即可.二.填空题(共3小题,满分15分,每小题5分)7.(5分)设方程x2﹣|2x﹣1|﹣4=0,则满足该方程的所有根之和为_________.考点:解一元二次方程-因式分解法;绝对值;解一元二次方程-公式法.专题:因式分解.分析:因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元二次方程,求出方程的根,不在讨论范围内的根要舍去.解答:解:当2x﹣1≥0时,即x≥,原方程化为:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x1=3,x2=﹣1,∵﹣1<∴x2=﹣1(舍去)∴x=3当2x﹣1<0,即x<时,原方程化为:x2+2x﹣5=0,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣∵﹣1+>,∴x1=﹣1+(舍去)∴x=﹣1﹣.则3+(﹣1﹣)=2﹣.故答案是:2﹣点评:本题考查的是解一元二次方程,由于带有绝对值符号,必须对题目进行讨论,对不在讨论范围内的根要舍去.8.(5分)(人教版考生做)如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为_________.考点:切割线定理;平行四边形的性质;圆周角定理;弦切角定理.分析:连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长.解答:解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE ,∴∠BEC=∠BCE ,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC 2÷DA=,故选D . 点评: 此题主要考查了平行四边形的性质、切割线定理、弦切角定理以及圆周角定理的综合应用,能够判断出△BEC 是等腰三角形,是解决此题的关键.8.(5分)(北师大版考生做)如图B ,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则AF FG 的值为 _________ .考点:特殊角的三角函数值;全等三角形的判定与性质;等边三角形的性质. 分析:首先证明△CAD ≌△ABE ,得出∠ACD=∠BAE ,证明∠AFG=60°. 解答: 解:在△CAD 与△ABE 中,AC=AB ,∠CAD=∠ABE=60°,AD=BE ,∴△CAD ≌△ABE .∴∠ACD=∠BAE .∵∠BAE+∠CAE=60°,∴∠ACD+∠CAE=60°.∴∠AFG=∠ACD+∠CAE=60°.在直角△AFG 中, ∵sin ∠FAG=AF FG , ∴AF FG =21. 点评:本题主要考查了全等三角形的判定、性质,等边三角形、三角形的外角的性质,特殊角的三角函数值及三角函数的定义.综合性强,有一定难度.9.(5分)已知a 2﹣a ﹣1=0,且32 ,则x= .考点:解分式方程. 专题:计算题. 分析:本题可先根据a 2﹣a ﹣1=0,得出a 2,a 3,a 4的值,然后将等式化简求解. 解答: 解:由题意可得a 2﹣a ﹣1=0a 2=a+1a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2a 3=a •a 2=a (a+1)=a 2+a=a+1+a=2a+1 =32- =32-x=4. 点评: 本要先根据给出的a 2﹣a ﹣1=0得出对等式化简有用的一些信息,然后再将方程化简求解.本题计算过程较长,比较复杂.10.(5分)甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 12 件.考点: 二元一次方程组的应用.分析: 设共购商品2x 件,9元的商品a 件,根据两人购买商品的件数相等,且两人购买商品一共花费了172元,可列出方程,求解即可.解答: 解:设共购商品2x 件,9元的商品a 件,则8元商品为(2x ﹣a )件,根据题意得:8(2x ﹣a )+9a=172,解得a=172﹣16x ,∵依题意2x ≥a ,且a=172﹣16x ≥0,x 为大于0的自然数,∴可得9.6≤x ≤10.75,∴x=10,则a=12.所以9元的商品12件,故答案填12.点评: 本题主要考查了二元一次方程的应用及不等式组的解法.解题关键是弄清题意,找到合适的等量关系,列出方程.本题解题的关键在于按生活实际讨论未知数的取值范围.11.(5分)如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成45°,∠A=60°,CD=4m ,,则电线杆AB 的长为 _________ 米.考点:解直角三角形的应用-坡度坡角问题. 专题:应用题. 分析:延长AD 交地面于E ,作DF ⊥BE 于F ,求出BE=BC+CF+FE=,根据正切求出AB 的值即可.解答: 解:延长AD 交地面于E ,作DF ⊥BE 于F .∵∠DCF=45°.CD=4.∴CF=DF=.由题意知AB ⊥BC .∴∠EDF=∠A=60°.∴∠DEF=30° ∴EF=.∴BE=BC+CF+FE=.在Rt △ABE 中,∠E=30°.∴AB=BEtan30°=(m).答:电线杆AB的长为6米.点评:此题主要是运用所学的解直角三角形的知识解决实际生活中的问题.作辅助线、求出BE=BC+CF+FE 是解题的关键.12.(5分)若实数x,y,使得这四个数中的三个相同的数值,则所有具有这样性质的数对(x,y)为_________.考点:实数的运算.专题:分类讨论.分析:此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解答:解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,答案为(﹣1,)(﹣1,﹣)点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.三.解答题(共4小题,满分80分,每小题20分)13.(20分)已知:(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证:a=b=c考点:完全平方式.专题:计算题.分析:先把原式展开,合并,由于它是完全平方式,故有3x2+2(a+b+c)x+(ab+bc+ac)=[x+(a+b+c)]2,化简有ab+bc+ac=a2+b2+c2,那么就有(a﹣b)2+(b﹣c)2+(c﹣a)2=0,三个非负数的和等于0,则每一个非负数等于0,故可求a=b=c.解答:解:原式=3x2+2(a+b+c)x+(ab+bc+ac),∵(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,∴3x2+2(a+b+c)x+(ab+bc+ac)=[x+(a+b+c)]2,∴ab+bc+ac=(a+b+c)2=(a2+b2+c2+2ab+2ac+2bc),∴ab+bc+ac=a2+b2+c2,∴2(ab+bc+ac)=2(a2+b2+c2),即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c.点评:本题考查了完全平方式、非负数的性质.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.14.(20分)(2010•钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B 的坐标为(6,4);用含t的式子表示点P的坐标为(t,t);(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.考点:二次函数的最值;一次函数的应用;三角形的面积;矩形的性质.专题:压轴题.分析:(1)由OA=6,AB=4,易得点B的坐标为(6,4);由图可得,点P的横坐标=CN=t,纵坐标=4﹣NP,NP的值可根据相似比求得;(2)由(1)的结论易得△OMP的高为t,而OM=6﹣AM=6﹣t,再根据三角形的面积公式即可求得S与t的函数关系式,再由二次函数的最值求法,求得t为何值时,S有最大值;(3)由(2)求得点M、N的坐标,从而求得直线ON的函数关系式;设点T的坐标为(0,b),可得直线MT的函数关系式,解由两个关系式组成的方程组,可得点直线ON与MT的交点R的坐标;由已知易得S△OCN=×4×3=6,∴S△ORT=S△OCN=2;然后分两种情况考虑:①当点T在点O、C之间时,②当点T在点OC的延长线上,从而求得符合条件的点T的坐标.解答:解:(1)延长NP交OA于H,∵矩形OABC,∴BC∥OA,∠OCB=90°,∵PN⊥BC,∴NH∥OC,∴四边形CNHO 是平行四边形,∴OH=CN,∵OA=6,AB=4,∴点B的坐标为(6,4);由图可得,点P的横坐标=0H=CN=t,纵坐标=4﹣NP,∵NP⊥BC,∴NP∥OC,∴NP:OC=BN:CB,即NP:4=(6﹣t):t,∴NP=4﹣t,∴点P的纵坐标=4﹣NP=t,则点P的坐标为();(其中写对B点得1分)(3分)(2)∵S△OMP=×OM×,(4分)∴S=×(6﹣t)×=+2t.=(0<t<6).(6分)∴当t=3时,S有最大值.(7分)(3)存在.由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),则直线ON的函数关系式为:.设点T的坐标为(0,b),则直线MT的函数关系式为:,解方程组得,∴直线ON与MT的交点R的坐标为.∵S△OCN=×4×3=6,∴S△ORT=S△OCN=2.(8分)①当点T在点O、C之间时,分割出的三角形是△OR1T1,如图,作R1D1⊥y轴,D1为垂足,则S△OR1T1=RD1•OT=••b=2.∴3b2﹣4b﹣16=0,b=.∴b1=,b2=(不合题意,舍去)此时点T1的坐标为(0,).(9分)②当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则S△R2NE=•EN•R2D2=••==2.∴b2+4b﹣48=0,b=.∴b1=,b2=(不合题意,舍去).∴此时点T2的坐标为(0,).综上所述,在y轴上存在点T1(0,),T2(0,)符合条件.(10分)点评:此题综合性较强,考查了点的坐标、平行线分线段成比例、二次函数的最值、一次函数的应用等知识点.15.(20分)对于给定的抛物线y=x2+ax+b,使实数p、q适合于ap=2(b+q)(1)证明:抛物线y=x2+px+q通过定点;(2)证明:下列两个二次方程,x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.考点:二次函数图象上点的坐标特征;根的判别式.专题:证明题.分析:(1)由已知求得q=﹣b,代入抛物线y=x2+px+q,得y=x2+px+﹣b,将抛物线y=x2+ax+b的顶点横坐标x=﹣代入可求y的值,确定结果为顶点纵坐标即可;(2)方程x2+ax+b=0与x2+px+q=0的判别式分别为a2﹣4b,p2﹣4q,由2q=ap﹣2b可得出两个判别式的和为非负数,可知其中至少有一个判别式为非负数,故至少有一个方程有实数解.解答:证明:(1)由ap=2(b+q),得q=﹣b,代入抛物线y=x2+px+q,得:﹣y+x2﹣b+p(x+)=0,得,解得:,故抛物线y=x2+px+q通过定点(﹣,).(2)由2q=ap﹣2b得p2﹣4q=p2﹣2•2q=p2﹣2(ap﹣2b)=(p﹣a)2﹣(a2﹣4b),∴(p2﹣4q)+(a2﹣4b)=(p﹣a)2≥0,∴p2﹣4q,a2﹣4b中至少有一个非负,∴x2+ax+b=0与x2+px+q=0中至少有一个方程有实数解.点评:本题考查了抛物线上的点及顶点的坐标特点,判别式判断一元二次方程解的运用,明确两个数的和为非负数时,其中至少有一个数为非负数.小学六年级奥数圆柱圆锥圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。

初中数学常量、变量的意义沪科2018年版母题

初中数学常量、变量的意义沪科2018年版母题

常量、变量的意义沪科版母题1、已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为A.-5或1B.1C.-5D.5或-1 答案B 解析2、下列各数,,,,,中,无理数的个数是(;)。

、个答案B 解析3、如图,是一个正方体纸盒的展开图,若在其中三个正方形A、B、C中分别填入适当的数,使得它们折成正方体后相对的面上两答案A 解析4、下列平面图形中,既是中心对称图形,又是轴对称图形的是A.等腰三角形B.等边三角形C.等腰梯形D.菱形答案D 解析5、下列事件中,必然事件是()A.打答案C 解析6、函数的自变量x的取值范围是A.B.C.D.答案B 解析7、小明拿一张50元的人民币到银行等额换取5元或10元的人民币,请问小明换钱方式有(n 答案C 解析8、如果a是负数,那么-a、2a、a+、这四个数中,负数的个数( 答案B 解析9、某种流感病毒的直径是0.0000085cm,这个数据用科学记数法表示为(单位:cm) A.B.C.D.答案A 解析10、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是(n 答案A 解析11、下列物质间转化,能一步实现的是(;)答案C 解析12、已知下列命题:①若,则;②若,则;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命答案B 解析13、下列说法中正确的是( )A.位似答案D 解析14、若直角三角形的三边长分别为2、4、x,则x的可能值有(答案B 解析15、下列各式中,可以在有理数范围内进行因式分解的是(;)答案D 解析16、若是关于的方程的一个解,则常数a为(;).A.1B.2 答案B 解析17、一个几何体的主视图、左视图、俯视图都是正方形,那么这个几何体一定是(答案B 解析18、下列图形中,是中心对称图形的是A.等边三角形B.等腰直角三角形C.等腰梯形D.菱形答案D 解析考点:中心对称图形;轴对称图形.专题:应用题.分析:根据轴对称图形与中心对称图形的概念分别对等腰直角三角形、等边三角形、菱形、等腰梯形进行分析即可得出结果.解答:解:等边三角形、等腰梯形、等腰直角三角形是轴对称图形,不是中心对称图形,菱形是轴对称图形,也是中心对称图形.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,比较简单.19、如果a的相反数是2,那么a等于()A.﹣2B.2C.D.答案A.解析20、(2011?北京)下列图形中,即是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形答案D 解析21、已知x、y互为相反数,且x≠0,a,b互为倒数,│n│=3,求代数式x--(-y)+ ;的值答案解析22、(2014?白银)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列答案B 解析试题分析:一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.23、如果不等式无解,那么m的取值范围是(; 答案B 解析24、如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数答案B 解析25、武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年答案D 解析26、的倒数是A.B.C.D.答案B 解析27、如图1,正方形的边长为a,以各边为直径在正方形内画半圆,图中阴影部分的面积是()A.B.C.D.答案C 解析28、不用其它试剂,仅仅利用试管和胶头滴管就可以区别下列四种物质的溶液:①CuSO4;②MgCl2;③KOH;④NaN 答案C 解析29、如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,∠MNB=115°,则下列结论正确的是(答案D 解析30、下列说法中,正确的是()A.零是最小的整数B.零是最小的正数C.零没有倒数D.零没有绝对值答案C 解析31、下列图中是太阳光下形成的影子是答案A 解析考点:平行投影.分析:根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选A.32、正方形网格中,如图放置,则的值为()A.B.C.D.答案C 解析33、-5的绝对值; 答案A 解析阅读下面的文言文,完成下面5题。

浙江初三初中数学竞赛测试带答案解析

浙江初三初中数学竞赛测试带答案解析

浙江初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列等式一定成立的是()A.B.C.D.2.下列式子成立的是()A.a a=a B.(a b)= a bC.0.0081=8.1×10D.3.以下列各组数为边长,能构成直角三角形的是 ( )A.,,B.,,C.32,42,52D.1,2,34.使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25.解关于x的方程时产生增根,则m的值等于()A.-2B.-1C.1D.26.二次函数的图象可能是()7.如图几何体的俯视图是()8.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.11D.129.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP,RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定二、填空题1.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是 .2.规定"*"为一种运算,它满足a*b=,那么1992*(1992*1992)=____。

3.已知直角三角形的两条边x、y的长满足,则第三边长为4.有五根木条,分别为12cm,10cm,8cm,6cm,4cm,则从中任取三根能组成三角形的概率为5.如图所示,二次函数的图象经过点,且与x轴交点的横坐标为、,其中、下列结论:①;②;③;④;正确的结论是 .三、解答题1.解方程:2.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?3.如图,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。

初中辅导 初中数学常量与变量课后练习(含答案及解析)

初中辅导 初中数学常量与变量课后练习(含答案及解析)
常量与变量课后练习(含答案)
1.在△ABC 中,它的底边是 a,底边上的高是 h,则三角形面积 S= ah,当 a 为定长时,
在此式中( )
A.S,h 是变量, ,a 是常量
B.S,h,a 是变量, 是常量
C.S,h 是变量, ,S 是常量
D.S 是变量, ,a,h 是常量
2.在圆的周长 C=2πR 中,常量与变量分别是( )
B.R 是变量,π是常量
A.2 是常量,C、π、R 是变量
B.2π是常量,C、R 是变量
C.C、2 是常量,R 是变量
D.2 是常量,C、R 是变量
3.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量
是( )
A.金额
B.数量
C.单价
D.金额和数量
4.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是
()
A.沙漠
B.体温
C.时间
D.骆驼
【考点】常量与变量. 菁优网版 权所有
【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量 x
和 y,对于每一个 x 的值,y 都有唯一的值和它相对应”的函数定义,自变量是时间,因
变量是体温.
【解答】解:∵骆驼的体温随时间的变化而变化,
∴自变量是时间,因变量是体温,
变化的量.根据定义即可判断.
【解答】解:某人要在规定的时间内加工 100 个零件,则工作效率η与时间 t 之间的关系
中:η和 t 是变量,零件的个数 100 是常量.
故选:C.
【点评】本题考查了常量与变量的概念,是一个基础题.
11.对于圆的周长公式 C=2πR,下列说法正确的是( )

九年级数学竞赛讲座:由常量数学到变量数学

九年级数学竞赛讲座:由常量数学到变量数学

九年级数学竞赛讲座:由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:运输工具途中速度(千米/时)途中费用(元/千米)装卸费用(元)装卸时间(小时)飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2x 千米.(1)如果用Wl 、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出Wl 、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由Wl —W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A 的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . (贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a - B .22a + C .22a -- D .22a +-(年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快 (江苏省淮安市中考题) 6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是.11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为.(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a+2l,b+2),这里a、b是有理数,PA、PB分别是点P到x轴和y 轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度Vl与V 2(Vi<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:级别全月应纳税所得额税率(%)1 不超过500元部分 52 超过500元至2000元部分103 超过2000元至5000元部分15……(1)(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

初中数学竞赛讲义:第08讲-由常量数学到变量数学

初中数学竞赛讲义:第08讲-由常量数学到变量数学

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的()思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y .(1)当AP =3cm 时,求的值;(2)设AP=cm 时,求y 与x 的函数关系式;(3)当y=2cm 2,试确定点P 的位置.(2001年天津市中考题)思路点拨 对于(2),由于点P 的位置不同,y 与x 之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x 值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). 8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点).10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .1个B .2个C . 3个D .4个13.已知点P 的坐标是(a +2l ,b +2),这里a 、b 是有理数,PA 、PB 分别是点P 到x 轴和y轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个B.2个C.3个D.4个14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A 地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交级别…(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元?18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC 上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ 是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.参考答案。

初中数学专题常量与变量(含答案)

初中数学专题常量与变量(含答案)

第七章一次函数【本章学习要点和训练重点】●了解常量、变量和函数的概念及函数的3种表示方法;•会列简单实际问题的函数解析式,会求函数值和简单函数的自变量的取值范围;理解正比例函数、一次函数的概念,会求正比例函数、一次函数的解析式,会求一次函数的值,会根据已知一次函数的解析式表示直角坐标系中的直线,借助图像了解一次函数的增减性,会根据自变量的取值范围求函数的取值范围,会根据函数的取值范围求自变量的取值范围;会用函数图像刻画两个变量之间的关系,会根据一次函数图像求二元一次方程的解(或近似解),初步具有综合运用知识解决实际问题的能力.7.1 常量与变量课内同步训练1.半径是R的圆的周长C=2πR,,下列说法正确的是()A.C、π、R是常量; B.C是常量,2、π、R是常量;C.R是常量,2、π、C是常量; D.C、R是常量,2、π是常量.2.汽车以80km/h的速度行驶t时,S(km)表示行驶路程,其中常量是________,•变量是________.3.指出下列的各问题中,哪些量是变量,哪些量是常量?(1)半圆形花坛的半径为r,花坛面积为S,怎样用含r的式子表示S?(2)出租车行驶不超过3km,收起步价8元,3km后1.4元/km,出租车车费为y元,•怎样用含乘坐的路程x(x>3,单位:km)的式子表示y?(3)为改善生态环境,保护生态平衡,某乡遵照上级指示,将耕地还林、耕地还草,还林和还草的比为7:5,怎样用含还草的耕地xha•的式子表示还林、•还草的总耕地yha (1ha=10m)?(4)某运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与速度v(m/s)的关系怎样?4.举出一些变化的实例,指出其中的常量与变量.课外延伸训练1.一个三角形的底边长5cm,h可以任意伸缩,写出s随h变化的关系式,•并指出其中的常量与变量.2.给定了火车的速度v=60km/h,要研究火车运行的路程s与时间t之间的关系.在这个问题中,常量是_____,变量是________;若给定路程s=100km,要研究速度v与t之间的关系.在这个问题中,常量是______,变量是________.由这2个问题可知,常量与变量是________ 的.3.分别指出下列各关系式中的变量与常量:(1)如果直角三角形中一个锐角的度数为α,那么另一个锐角的度数β与α之间的的关系式是β=90-α.(2)如果某种报纸的单价为a元,x表示购买这种报纸的份数,•那么购买报纸的总价y(元)与x之间的关系式是y=ax.(3)n边形的内角和的度数S与边数n的关系式是S=(n-2)×180.4.A、B两地相距10km,小王由A骑车到B,速度为12km/h,在小王由A到B•这个过程中,有哪几个量?其中哪些是常量,哪些是变量?它们有何限制?7.1 常量与变量(答案) [课内同步训练]1.D 2.80km,t、s3.(1)S=12πR2,其中12、π是常量,S、R是变量(2)y=8+1.4(x-3),其中8、1.4、3是常量,x、y是变量(3)y=125x,其中125是常量,x、y是变量(4)t= 400s,其中400是常量,s、t是变量 4.略[课外延伸训练]1.s=52h,其中52是常量,h、s是变量 2.60,V、h;100、V、t 相对3.(1)常量是90,变量是β、α(2)常量是a,变量是x、y(3)常量是2、180°,变量是n、s4.•共有路程、速度、时间三个量,其中路程、时间是变量,速度是常量,• 它们满足关系式:•S=12t(其中0≤S≤10).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB=90°,有直角三角形与Rt△ABO全等且以AB为公共边,请写出这些直角三角形未知顶点的坐标.(贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a+- (年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快(江苏省淮安市中考题) 6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a2),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线+2l,b+段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB 垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x 的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

相关文档
最新文档