温室大棚环境监控系统方案

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

智慧大棚设备实施方案

智慧大棚设备实施方案

智慧大棚设备实施方案智慧大棚是一种利用现代信息技术和先进设备来实现对植物生长环境进行精准监测和智能调控的农业生产模式。

在智慧大棚中,各种传感器和控制设备可以实时监测和调控温度、湿度、光照、CO2浓度等环境因素,从而提高作物的产量和质量,降低农业生产成本,实现节水、节肥、减少农药使用等目标。

本文将介绍智慧大棚设备的实施方案,以期为农业生产提供更多技术支持和发展空间。

一、传感器设备。

1. 温度传感器,安装在大棚内部,实时监测大棚内的温度变化,并将数据传输至中央控制系统。

2. 湿度传感器,监测大棚内的湿度变化,及时调节喷灌系统,保持适宜的湿度环境。

3. 光照传感器,监测光照强度,根据光照变化调节遮阳网和补光灯,保证作物光合作用正常进行。

4. CO2传感器,监测大棚内CO2浓度,及时通风换气,保持适宜的CO2浓度。

5. 土壤湿度传感器,监测土壤湿度,根据作物需水量,实现精准灌溉。

二、控制设备。

1. 温室控制系统,根据温度传感器的数据,控制温室内通风、遮阳、加热等设备,保持适宜的温度环境。

2. 喷灌系统,根据湿度传感器和土壤湿度传感器的数据,实现对喷灌系统的智能控制,准确浇水,节约用水。

3. 光照调节系统,根据光照传感器的数据,自动调节遮阳网和补光灯,保证光照强度的均匀和稳定。

4. CO2调节系统,根据CO2传感器的数据,自动控制通风换气,保持适宜的CO2浓度。

5. 智能灌溉系统,根据土壤湿度传感器的数据,实现对灌溉系统的精准控制,减少浪费,提高用水效率。

三、监测管理系统。

1. 数据采集与存储,对传感器采集的数据进行实时采集和存储,建立大棚环境数据的历史数据库。

2. 数据分析与预警,对采集的数据进行分析,实现对大棚环境的智能监测和预警,及时发现问题并采取措施。

3. 远程监控与控制,实现对大棚设备的远程监控与控制,方便农户进行远程管理,提高生产效率。

四、实施方案。

1. 设备选型,根据大棚类型和作物种类,选择合适的传感器和控制设备。

基于物联网的温室大棚监控系统设计与实现

基于物联网的温室大棚监控系统设计与实现

谢谢观看
应用层主要包括云平台和客户端两部分。云平台负责数据的存储和处理,客 户端则可以通过电脑、手机等设备访问云平台,查看温室大棚的实时数据,并对 环境因素进行控制。
三、系统功能实现
1、数据采集:通过各类传感器采集温室大棚内的环境因素数据,如温度、 湿度、光照、二氧化碳等。
2、数据传输:通过无线通信技术将采集的数据传输到云平台。
2、数据存储和远程控制
为了方便用户对历史数据进行查询和分析,本系统需要将采集到MySQL数据库进行数据存储,并通过Java 程序实现数据的备份和恢复。
同时,为了实现远程控制,本系统需要将执行器与云平台进行连接。用户可 以通过手机APP或Web端对大棚内的设备进行远程控制,包括开关设备、调整设备 参数等。本系统使用Zookeeper进行设备管理,保证设备的可靠连接和稳定运行。
一、设计思路
基于物联网的温室大棚监控系统旨在通过各种传感器和执行器,实时监测大 棚内的环境参数,如温度、湿度、光照等,同时根据监测数据进行自动化调控, 以提供最适宜的农作物生长环境。
本系统的设计主要包括硬件和软件两部分。硬件部分主要包括各种传感器、 执行器、通讯模块和电源模块等;软件部分主要包括数据采集、处理、存储和远 程控制等功能。
二、硬件设计
1、传感器和执行器
本系统需要使用多种传感器和执行器,以实现环境参数的全面监测和调控。 传感器包括温度传感器、湿度传感器、光照传感器等,用于监测大棚内的环境参 数;执行器包括通风设备、灌溉设备、遮阳设备等,用于调控大棚内的环境条件。
2、通讯模块
通讯模块是连接传感器、执行器和数据中心的桥梁。本系统采用GPRS无线通 讯模块,实现数据的高速传输和实时监控。此外,系统还支持多种联网方式,如 Wi-Fi、以太网等,以满足不同用户的需求。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

温室大棚温湿度监测系统设计及性能分析

温室大棚温湿度监测系统设计及性能分析

温室大棚温湿度监测系统设计及性能分析温室大棚是一种用于种植蔬菜、花卉等植物的设施,通过人工调控环境条件,提供恒定的温度和湿度,增加作物的产量和品质。

为了实现对温室大棚温湿度的监测和调控,设计了一个温室大棚温湿度监测系统,并对其性能进行了分析。

温室大棚温湿度监测系统的设计目标是实时监测和记录温室内的温度和湿度,并能根据设定的阈值进行报警,实现远程监控和控制。

该系统主要由传感器模块、数据采集模块、通信模块、控制模块和人机界面组成。

传感器模块是该系统的核心部分,用于检测温室内的温度和湿度。

常用的温湿度传感器有DHT11和DHT22等,其精度和稳定性较高。

传感器将采集到的温湿度数据转化为电信号通过模拟-数字转换器(ADC)传送给数据采集模块,完成数据的采集和处理。

数据采集模块负责接收传感器模块传来的数据,并对数据进行处理和存储。

该模块通过微处理器将数据转化为数字信号,并将数据存储在存储器中,以便后续的数据分析和查询。

同时,该模块还可实现对传感器的参数设置和控制。

通信模块用于实现系统与外部设备的数据传输和远程控制。

该模块可选择无线通信方式,如Wi-Fi、蓝牙等,也可以选择有线通信方式,如以太网、RS485等。

通过与上位机或者手机APP的交互,实现对温室大棚的实时监测和控制。

控制模块是根据采集到的温湿度数据和设定的阈值进行控制操作。

当温湿度超过设定的阈值时,控制模块会触发报警装置,以提醒操作人员进行调节。

同时,控制模块还可以根据设定的控制策略,自动调节温室内的温湿度,以保持恒定的环境条件。

人机界面是操作人员与监测系统进行交互的平台。

通过人机界面,操作人员可以实时查看温室内的温湿度数据,并进行参数的设定和控制命令的下发。

界面设计应简洁直观,方便操作人员快速理解和操作。

对于温室大棚温湿度监测系统的性能分析,主要从以下几个方面进行评价:1. 精度和稳定性:传感器的精度和稳定性直接影响数据的准确性。

应选择精度高、稳定性好的传感器,减小误差和波动。

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

参考内容
一、引言
随着科技的不断发展,智能化监控系统在许多领域得到了广泛的应用。特别 是在农业领域,温室大棚监控系统的应用对农作物的生长和产量有着重要的影响。 ZigBee作为一种低功耗、低成本、高可靠性的无线通信技术,为农业温室大棚监 控系统的设计与实现提供了新的解决方案。
二、系统设计
基于ZigBee的农业温室大棚监控系统主要包括传感器节点、ZigBee协调器、 数据传输模块和上位机软件。
二、技术ห้องสมุดไป่ตู้述
Zigbee是一种基于IEEE 802.15.4标准的低速无线个人区域网络通信技术。 它具有低功耗、低成本、高可靠性、大容量等特点,非常适合于智能家居、工业 自动化、农业等领域。在农作物温室大棚监控系统中,Zigbee技术可实现传感器 数据的实时采集、设备控制以及数据传输等功能。
三、系统设计
四、系统实现
1、部署方案
在温室大棚内,根据需要布置温度传感器、湿度传感器、光照传感器和CO2 传感器,并将传感器数据通过Zigbee模块传输到监控中心。监控中心部署有接收 器和显示设备,方便工作人员实时监测大棚环境参数。
2、操作方法
工作人员可通过监控中心的显示设备实时查看各个温室大棚的环境参数。根 据需要,可通过监控中心对温室大棚进行控制,如调整通风设备、灌溉系统等。 同时,监控中心可对历史数据进行记录和分析,以便更好地了解农作物生长情况 和优化温室环境。
2、网络构建
基于Zigbee技术的温室大棚监控系统采用星型网络结构。每个温室大棚作为 一个独立的网络节点,节点上布置有多个传感器和Zigbee模块。通过Zigbee模块 将传感器数据传输到监控中心,监控中心通过显示界面展示环境参数。
3、数据传输
系统采用无线传输方式,通过Zigbee模块将传感器数据传输到监控中心。数 据传输采用UDP协议,具有较低的延迟和较高的可靠性。同时,监控中心可对各 个温室大棚的环境参数进行实时监测,并根据需要对大棚环境进行调整。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

温室大棚中温室自动化控制系统解决方案设计

温室大棚中温室自动化控制系统解决方案设计

温室大棚中温室自动化控制系统解决方案设计温室自动化控制系统简介温室自动控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。

可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素,根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。

智能温室自动化控制系统是根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,接到上位计算机上进行显示,报警,查询。

监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。

系统组网络以及通讯协议(1)系统组网络组成根据工艺运行的需求,我们做如下的网络系统设计:网络采用以太网络设计。

每个站作为一个网络节点。

这个网络采用性能可靠的工业以太网。

可以将办公网络、自动控制网络和视频监控网络无缝结合到该网络环境,实现“多网合一”。

整个系统可承载的数据分成如下的几个部分:1:工业控制数据2:采集数据3:工业标准的MODBUS总线通讯4:视频语音数据采集和监控(2)组网特点自动化控制系统是开放的控制系统,除了具有良好的网络通讯能力外,还具有与其它控制系统通讯功能和标准的对外通讯接口,以后可以任意扩展控制系统。

整个系统采用多级网络结构,即生产管理网和生产控制网,将过程实时数据、运行操作监视数据信息同非实时信息及共享资源信息分开,分别使用不同的网络。

有效地提高了通讯的效率,降低了通讯负荷。

(3)采用的通讯协议Modbus协议是应用于自动控制器上的一种通用协议。

通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。

它已经成为一种通用工业标准。

现代农业大棚控制系统(1)控制系统概述随着社会经济的发展,设施农业作为农业可持续发展的一个重要途径,已经越来越受到世界各国的重视,而设施农业中问世工程的建设与发展是都市型发展的重要组成部分,是设施农业发展的高级阶段。

温室大棚智能温室内温度、湿度、光照、土壤温度、土壤湿度、CO浓度、叶面湿度、露点温度无线监测系统

温室大棚智能温室内温度、湿度、光照、土壤温度、土壤湿度、CO浓度、叶面湿度、露点温度无线监测系统

温室大棚智能温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度无线监测系统温室大棚智能温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度无线监测系统解决方案目录一、客户需求................................................................................................................. .. (1)二、系统概述................................................................................................................. .. (1)三、系统功能................................................................................................................. .. (2)四、系统配置................................................................................................................. .. (3)五、系统图................................................................................................................. (6)一、客户需求一个农业大棚温室要求远程监测:二氧化碳、空气温湿度、土壤温度、土壤水份、光照度、土壤PH、风速风向,可以通过远程网络软件实时监控,报警时可拨打电话以及短信通知,传感器数量各一个。

现代农业温室大棚智能监测和控制解决方案精选全文完整版

现代农业温室大棚智能监测和控制解决方案精选全文完整版

可编辑修改精选全文完整版现代农业温室大棚智能监测和控制解决方案一、背景介绍近年来,农业温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。

种植环境中的温度、湿度、光照度、土壤湿度、CO2浓度等环境因子对作物的生产有很大的影响。

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

针对目前温室大棚发展的趋势,提出了一种大棚远程监控系统的设计。

根据大棚监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于490MHz、GPRS 的农业温室大棚智能监控管理系统使这些成为可能。

二、系统方案1、系统概述深圳信立科技有限公司现代温室大棚智能监测和控制系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。

农业大棚温室智能监控系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(喷灌、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。

该系统的使用,可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。

2、系统组成:整个系统主要三大部分组成:数据采集部分、数据传输部分、数据管理中心部分。

A、数据管理层(监控中心):硬件主要包括:工作站电脑、服务器(电信、移动或联通固定IP专线或者动态ip域名方式);软件主要包括:操作系统软件、数据中心软件、数据库软件、温室大棚智能监控系统软件平台(采用B/S结构,可以支持在广域网进行浏览查看)、防火墙软件;B、数据传输层(数据通信网络):采用移动公司的GPRS网络或490MHz传输数据,系统无需布线构建简单、快捷、稳定;移动GPRS无线组网模式具有:数据传输速率高、信号覆盖范围广、实时性强、安全性高、运行成本低、维护成本低等特点;C、数据采集层(温室硬件设备):远程监控设备:远程监控终端;传感器和控制设备:温湿度传感器、二氧化碳传感器、光照传感器、土壤湿度传感器、喷灌电磁阀、风机、遮阳幕等;3、系统拓扑图:XL68、XL65支持490MHz上传方式,系统通讯网络示意如下(一片区域现场节点多,可选此种方案)XL68、XL65支持GPRS上传方式,系统通讯网络示意如下(一片区域现场节点少,可选此种方案)。

智慧温室环境监控系统设计

智慧温室环境监控系统设计

智慧温室环境监控系统设计摘要:传统的生产劳作模式依旧是我国的主要农业模式,人们凭借经验进行施肥灌溉,这种传统耕种方法导致多数水分和化学肥料没有被充分利用而随地弃置,不仅造成极大的物力与人力资源浪费,也对当地自然环境造成严重损害,对我国农业可持续性发展带来严峻挑战。

随着社会的变迁与进步,原有的农业种植方法已经不能满足社会发展的需要,发展以传感器技术与通信技术为基础的生态农业和现代化农业是往后农业发展的主流趋势。

智慧温室环境监控系统设计将传感器与互联网结合起来,通过DHT11数字温湿度传感器、5516光线传感器和YL-69土壤湿度传感器对温室内空气中的温度湿度、光照强度以及土壤湿度进行数据监测。

再通过ESP8266 WiFi通信模块将检测到的相关数据上传至云端平台,这样使用者就可通过软件平台对温湿度、光照强度和土壤湿度进行远程实时查看。

并且当传感器接收到的数据超过阈值范围时自动触发蜂鸣器报警并通过继电器对相关环境数据进行调控。

达到智能化温室种植管理、减轻管理人员的工作量、节省其管理成本和用工成本的目的。

并且可以降低因突发异常情况造成的非必要财产损失。

关键词:温室环境传感器一、研究背景农业是所有国家的立国之本,以农业生产经营活动为主的相关社会活动对我国的社会以及经济发展起到了不可忽视的作用。

农业生产对气候与生态环境要求十分严格,但我国很多地区都存在土地稀少、土壤状况不佳和干旱等劣势,这些劣势对相关作物的生长造成了不利的影响;况且随着时代的变迁,农业劳动力大量流失,而对农业产物的需求却变得更加丰富严格,亘古以来的耕种方法已经无法满足人民群众的需要,必须对现有耕种方式进行技术的革新与进步。

同时随着设施农业的快速发展,尤其是现代以来的无土栽培、滴喷灌等先进技术获得了巨大的进步,这使相关生产方对智慧温室环境监控系统的需求变得迫切且可行。

因此在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。

智能温室大棚环境监测系统

智能温室大棚环境监测系统

智能温室大棚环境监测系统一、产品介绍智能温室大棚环境监测系统是由超声波气象传感器、土壤温度水分传感器、土壤温度水分电导率三合一变送器、气象监控主机和LED显示屏构成,可以实现对温室大棚内的温度、湿度、光照、土壤温度、土壤含水量、CO,浓度等与农作物生长紧密相关环境参数的实时采集,并将数据实时上传竞道农业四情测报平台。

二、监测内容针对温室大棚的空气温度、湿度、二氧化碳和光照强度的连续监测实时告警。

三、监测效果通过安装超声波气象传感器对温室大棚环境温度、湿度、二氧化碳和光照强度进行实现监测。

变送器通过RS485智能接口及通讯协议接入气象监控主机,由4G无线传输或RJ45网口将数据上传至服务器,发送到农业四情测报平台进行实时监测。

当温度、湿度、二氧化碳和光照强度超过设置的上下阈值时,系统自动触发短信、语音、邮件告警,通知管理人员紧急处理。

四、监测功能超声波气象传感器采纳ASA工程塑料材质,体积小、重量轻,采纳优质抗紫外线材质,使用寿命长,采纳高灵敏度的探头,信号稳定,精度高。

关键部件采纳进口器件,稳定牢靠,具有测量范围宽、线形度好、防水性能好、使用便利、便于安装、传输距离远等特点。

五、监测参数空气温度:—40—60℃(0.3℃);2、空气湿度:0—100%RH(3%RH);3、PM2.5:0—1000ug/m3(10%)4、PM10:0—1000ug/m3(10%)5、土壤水分:测量范围:0—100%,精度:3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢6、土壤温度:测温范围—40+125℃,测量精度0.5℃,辨别率:0.1℃7、土壤电导率:测量范围可选量程:0—5000us/cm,10000us/cm,20000us/cm,测量精度0—10000us/cm范围内为3%;10000—20000us/cm范围内为5%,辨别率0—10000us/cm内10us/cm,100000—20000us/cm内50us/cm。

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现

智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。

智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。

智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。

这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。

数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。

例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。

控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。

控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。

报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。

当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。

云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。

为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。

针对不同的环境参数监测需求,需要选择不同的传感器。

例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。

数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。

常用的数据传输技术包括无线通信、物联网等。

温室大棚环境监控系统方案

温室大棚环境监控系统方案

温室大棚环境监控系统一、概述随着国民经济旳迅速发展,现代农业得到了长足旳进步,温室工程已成为高效农业旳一种重要构成部分。

计算机自动控制旳智能温室自问世以来,已成为现代农业发展旳重要手段和措施。

它旳功能在于以先进旳技术和现代化设施,人为控制作物生长旳环境条件,使作物生长不受自然气候旳影响,做到常年工厂化,进行高效率,高产值和高效益旳生产。

二、功能论述温室环境涉及非常广泛旳内容,但一般所说旳温室环境重要指空气与土壤旳温湿度、光照、CO2浓度等。

计算机通过多种传感器接受各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。

输出和打印设备可协助种植者作全面细致旳数据分析,保存历史数据。

本系统重要具有如下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季持续工况调控系统。

比例调节环境温度、湿度与通风。

CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度旳前提下,组合调节环境温度与通风,达到强制减少环境温度旳效果。

通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求旳温、湿、光、水、气等条件,此外通过臭氧消毒净化器对温室进行消毒。

2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。

根据作物区旳需要,对水培区旳营养液成分,PH和EC 值进行综合调控。

对基培和土培区重要是根据作物生产需要,设定基质、土壤旳水势值,自动调节滴灌、喷灌系统旳灌溉时间和次数。

2.3紧急状态解决采用计算机实测环境参数、状态极限值反馈报警保护系统。

根据作物旳各项参数设定温室环境旳极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。

2.4信息解决采用计算机集散控制信息管理系统。

信息解决由中心控制计算机完毕。

主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据解决。

其功能涉及运营实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

太阳能温室大棚监测控制系统方案设计

太阳能温室大棚监测控制系统方案设计

太阳能温室大棚监测控制系统方案设计为适应市场的需求,目前温室大棚在国内外都得到了广泛的应用,其中以美国、日本、荷兰等国家发展最为迅速,基本实现了环境智能监控和远程监测。

而在国内,大部分温室大棚未采用智能控制技术,且存在环境控制能力低、自动化程度落后、价格昂贵等缺点,这在很大程度上降低了温室农作物的产量与质量,因此,广泛实现温室的智能监控很有必要。

此外,维持温室大棚的正常运行需要提供充足的电能,而一般大型的温室大棚位于离居民生活区较远的空旷地区,对电能的利用并非很方便,但是太阳能资源丰富,因此如何实现对太阳能的利用成为一个值得思考与解决的问题。

1 设计思想要实现对太阳能的利用,可以借助于太阳能电池实现光电转换,近年来太阳能电池的转换效率与使用寿命都有了很大的提高,目前单晶硅的转换效率可达30%左右。

因此利用太阳能光伏系统为温室大棚供电成为了可能,为提高太阳能利用率,可采用MPPT和光伏系统自跟踪技术。

影响农作物的生长因子主要有:温度、湿度、CO2浓度以及光照。

实现对各生长因子的智能控制,能很大程度地提高农作物的产量与质量。

基于太阳能供电的温室环境智能监控系统框图如图1所示。

太阳能温室大棚监测控制系统框图2 模块化设计2.1 太阳能供电模块该模块主要包含MPPT的实现、蓄电池充放电监控、自跟踪系统以及电压转换4个部分。

MPPT的实现和自跟踪系统均是为了实现太阳能更高效率的利用,蓄电池充放电监控则是对蓄电池、太阳能光伏组件阵列以及负载的保护,电压转换使得该系统可为各种交流和直流负载供电。

太阳能供电模块框图如图2所示。

22.1.1 MPPT的实现MPPT即最大功率点跟踪,是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值,使太阳能电池板以最高的效率对蓄电池充电。

MPPT控制的原理实质上是一个自动动态寻优的过程,通过功率的比较来改变占空比和脉宽调制信号,进而改变太阳能电池板的工作负载,改变输出功率点的位置,以达到最优。

大棚温室环境监控系统的设计

大棚温室环境监控系统的设计
制 ,强 干扰 场 合 。分别 采 用相 应 传 感 器 对 温 度 、湿 度 、光 照
圃 圆 圆
呻 圆 - . 圆 一 - 圆 圆
一 .
S 41 AD TC5 0 单片机
— T T T

收 稿 日期 :2 0 — 1 — 1 09 0 5
基金项 目:2 0 湖 南省教育厅 “ 08 研究性学 习与创新性 实验”资助项 目 ( 湘教通 [0 82 9号 2 4 。 2 0 ]6 6 )
和 C 2浓度进行检测 ,其方框图如图 1 O 所示。
1 2 系统 主要 硬 件设 计 与 实现 .
1 . 温度检测与控制模块 .1 2
温 度 是 影 响作 物 生长 发 育 最 重 要 的 环 境 因子 之 一 , 影 它
响作物体 内的一 切生理变化 。本系统根据作物生长温度条 件, 选用了美国模拟器件 公司生产的单片集成两端感温 电流 源 A 9 作温 度传感器 ,其测量精度为 03 , D5 0 .℃ 测量范围为

适应性 、季节性及 自然 灾害的影 响比较大 , 在纯 自然 的条件 下, 大部分 时间不能进行正常农业生产 , 造成 人力、物力 的 大量浪费, 行温室栽培 后就可 以极大 的减弱对作物 生长不 进 利的环境因素来促进作物 生长 ,有利于缓解季节矛盾 , 提高 作物产量。基于 此,本设计将计算机技术 、传感器技术 、控
光照和c O浓度 等信 号进 行 了监 测,一旦 某些参数值超过设定 的上 、下限值 ,微控制 器将发 出报 警,并提 示对相应参量进行 人 工或 自动调节控制。通过在永 州苗圃农场对 4号温 室实地检测 (此温 室种植黄瓜 ) ,该装置对衣作物产量的提 高起到 了积
极作用 。

《2024年温室大棚分布式监控系统设计与实现》范文

《2024年温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》篇一一、引言随着现代农业技术的不断发展,温室大棚种植已成为提高农作物产量和品质的重要手段。

然而,传统的大棚管理方式存在着效率低下、人力成本高、无法实时监控等问题。

为了解决这些问题,本文提出了一种温室大棚分布式监控系统的设计与实现方案。

该系统通过分布式传感器网络、数据传输技术和云计算平台,实现对温室大棚环境的实时监控、智能控制和数据分析,提高了大棚管理的效率和农作物的产量与品质。

二、系统设计1. 硬件设计温室大棚分布式监控系统的硬件部分主要包括传感器节点、数据传输设备和云计算平台。

传感器节点负责采集温室大棚内的环境参数,如温度、湿度、光照强度等。

数据传输设备负责将传感器节点的数据传输到云计算平台。

云计算平台则负责存储、处理和分析这些数据,为管理者提供决策支持。

在传感器节点的选择上,我们采用了低功耗、高精度的传感器,以便长时间工作并获取准确的环境参数。

数据传输设备采用无线通信技术,实现了传感器节点与云计算平台的无线连接,方便了布线和维护。

2. 软件设计软件部分包括分布式传感器网络软件、数据传输协议软件和云计算平台软件。

分布式传感器网络软件负责协调各传感器节点的工作,确保数据的实时采集和传输。

数据传输协议软件负责定义传感器节点与云计算平台之间的通信协议,确保数据的可靠传输。

云计算平台软件则负责数据的存储、处理和分析,以及为用户提供友好的界面和操作接口。

三、系统实现1. 传感器网络部署首先,根据温室大棚的实际情况,选择合适的传感器节点并部署在关键位置。

这些位置应能够反映温室大棚内的环境变化情况。

然后,通过无线通信技术将传感器节点与云计算平台连接起来,形成分布式传感器网络。

2. 数据传输与处理传感器节点实时采集环境参数,并通过无线通信技术将数据传输到云计算平台。

云计算平台对接收到的数据进行预处理和存储,然后进行进一步的分析和挖掘。

这些分析结果可以通过界面展示给用户,为用户提供决策支持。

大棚环境远程监控系统方案

大棚环境远程监控系统方案

大棚环境远程监控系统方案一、项目背景近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。

种浓度等环境因子对作物的生产有很大的影响。

传统的人工控植环境中的温度、湿度、光照度、CO2制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。

根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于GPRS的智能大棚监控系统使这些成为可能。

二、项目分析2.1系统组成2.1.1大棚现场采集控制终端大棚现场采集控制终端负责24小时采集温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数。

2.1.2无线传输设备xxxx IP MODEM F2103采用标准的232/485通信接口,只要内置一张GPRS数据卡就能和互联网进行通信,和大棚现场采集终端通过232/485连接后,将采集终端送上来的数据原封不动的通过网络传输到数据管理中心。

F2103的通用性强,即插即用,体积小巧安装使用简单便捷,无需太多专业技能,而且针对不同的工程情况可选择不同的网络IP MODEM,型号规格为F2X03。

2.1.3数据管理中心数据中心对现场实时采集的温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数进行分析处理,不仅进行完成的统计做出相应的统计报表,并做出趋势分析,且以直观的图表和曲线的方式显示给用户,并根据种植作物的需求提供各种声光报警信息。

当温湿度超过设定值的时候,自动开启或者关闭指定设备。

2.2系统总架构首先用232/485先将大棚数据采集终端和F2103连接起来,将SIM卡插进F2103中,给F2103上电即可,此时F2103会自动连接到数据中心。

基于ZIGBEE技术的温室大棚环境监控系统设计

基于ZIGBEE技术的温室大棚环境监控系统设计

基于ZIGBEE技术的温室大棚环境监控系统设计摘要:温室大棚的环境检测与控制是当前农业自动化的热点问题之一,基于ZigBee技术的无线大棚环境监控系统能够满足大棚环境监控系统所提出的低功耗、低成本以及方便后期规模扩展等要求,实现了真正意义上的无人值守,能够对各大棚的环境进行自动监控与调整,具有一定的工程实际意义和市场价值。

关键词:环境子监控ZigBee技术近年来,随着物联网、传感器、无线射频、专家系统、现代测控等技术的发展和应用,拓宽了现代农业的发展空间,重构这世界农业发展的新格局,已经成为信息时代农业的重要特征。

用信息技术装备农业,用信息手段服务、支撑农业,用信息网络服务农业,已成为我国农业现代化的客观要求,同时也是我国农业科技发展的重大技术选择。

1ZigBee技术简介在实际农业生产中,温度、湿度、光照强弱等环境因素对农作物的生长起着非常重要的影响。

在传统农业中,通过目测、经验等手段来检验这些因素,由于这些因素缺少量化的数据,并且经验的积累也并不准确,因此制约了农业的快速发展,使我国的农业生产长期处于低层次水平。

ZigBee技术是一种具有成本低、体积小、能量消耗小、传输速率低的无线通信技术。

利用该技术本文研究了温室大棚环境监控系统。

该系统能够解决传统农业的不足,逐步提高生产质量,增加经济效益,提升农业成产水平。

ZigBee技术应用在对传输速率要求不高、功耗要求很高的的领域。

但较传输速率也成为了它的一大优点,那就是超低的功耗。

2系统总体设计2.1系统架构选择在监测现场,使用采用ZigBee技术,实现采集终端设备互联互通,采用B/S结构,数据汇集后通过某种连接的方式与Internet相连,然后上传数据至数据服务器,将信息传递给用户。

采用ZigBee技术的混搭型环境监测系统是非常有发展潜力的架构。

优点:①无须布线,降低了系统安装成本。

②低成本、低功耗、体积小、维护方便。

③数据的共享性好,有利于消除信息孤岛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温室大棚环境监控系统一、概述随着国民经济的迅速发展,现代农业得到了长足的进步,温室工程已成为高效农业的一个重要组成部分。

计算机自动控制的智能温室自问世以来,已成为现代农业发展的重要手段和措施。

它的功能在于以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。

二、功能叙述温室环境包括非常广泛的内容,但通常所说的温室环境主要指空气与土壤的温湿度、光照、CO2浓度等。

计算机通过各种传感器接收各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。

输出和打印设备可帮助种植者作全面细致的数据分析,保存历史数据。

本系统主要具备以下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季连续工况调控系统。

比例调节环境温度、湿度与通风。

CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度的前提下,组合调节环境温度与通风,达到强制降低环境温度的效果。

通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求的温、湿、光、水、气等条件,另外通过臭氧消毒净化器对温室进行消毒。

2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。

根据作物区的需要,对水培区的营养液成分,PH和EC 值进行综合调控。

对基培和土培区主要是根据作物生产需要,设定基质、土壤的水势值,自动调节滴灌、喷灌系统的灌溉时间和次数。

2.3紧急状态处理采用计算机实测环境参数、状态极限值反馈报警保护系统。

根据作物的各项参数设定温室环境的极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。

2.4信息处理采用计算机集散控制信息管理系统。

信息处理由中心控制计算机完成。

主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据处理。

其功能包括运行实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

2.5温室的环境参数指标针对本系统所涉及的两栋温室,根据栽培的作物和所处的环境,具体参数如下:l 葡萄温室:a、在冬季休眠期约90多天需保持温室内温度为5℃。

休眠期以后白天需控制温室内温度为25-30℃,夜间需控制在15-18℃。

b、湿度需保持在50-75%不能超过95%。

c、光照强度应保持在45000-55000勒克斯d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。

e、PH值保持在7-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。

l 黄瓜、番茄温室:a、在苗期需保持温室内温度在13-15℃,定植后白天上午应保持在25-28℃,下午应保持在20-25℃,夜间应保持在15-18℃。

b、湿度黄瓜在白天保持在70-75%,夜间保持在85-90%;番茄白天保持在65-75%,夜间保持在75-85%。

c、光照强度番茄应保持在50000勒克斯左右,保证12个小时光照;黄瓜应保持在40000勒克斯左右,保证8-10小时光照。

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。

e、PH值保持在6.5-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。

黄瓜和番茄在冬季早春即11月中旬至下年2月上旬期间比较关键。

以上参数在监控软件中进行编写,环境参数超出设定范围时进行相应调节同时产生报警提醒值班人员注意。

三、系统设计3.1 系统硬件和软件选择设计系统的关键是硬件和软件的稳定性,根据实际的应用经验和比较选用以下配置。

硬件配置:研祥工业计算机P4 2.0G/256M/40G/20英寸彩显;西门子PLC S7-200;软件配置:系统WINDOWS 2000;组态软件2.61控制策略网络版。

3.2 软件设计方案实现智能化温室控制的关键在于1)如何根据不同的作物或相同作物的不同生长阶段设计不同的控制方案和参数。

2)实时参数的检测和数据网络化。

3.2.1配方管理模块实现了参数的批量控制根据不同的作物或相同作物的不同生长阶段,设计出不同的配方。

软件提供了简单方便的组态和操作功能,将需要修改的参数首先定义为变量,这样,操作人员可以通过操作画面,进行方便修改。

温室大棚环境监控系统[摘要]:利用昆仑中大组态软件与研祥工业计算机、西门子S7-200系列PLC及传感器、仪表等硬件建造一个现代化农业用温室大棚环境监控系统,本系统可自动监测调节农作物环境的温湿度、光照、CO2浓度等参数,通过输出和打印设备帮助种植者作全面细致的数据分析,保存历史数据。

为利用工业组态软件改造农业生产提供了参考案例。

一、概述随着国民经济的迅速发展,现代农业得到了长足的进步,温室工程已成为高效农业的一个重要组成部分。

计算机自动控制的智能温室自问世以来,已成为现代农业发展的重要手段和措施。

它的功能在于以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。

二、功能叙述温室环境包括非常广泛的内容,但通常所说的温室环境主要指空气与土壤的温湿度、光照、CO2浓度等。

计算机通过各种传感器接收各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。

输出和打印设备可帮助种植者作全面细致的数据分析,保存历史数据。

本系统主要具备以下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季连续工况调控系统。

比例调节环境温度、湿度与通风。

CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度的前提下,组合调节环境温度与通风,达到强制降低环境温度的效果。

通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求的温、湿、光、水、气等条件,另外通过臭氧消毒净化器对温室进行消毒。

2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。

根据作物区的需要,对水培区的营养液成分,PH 和EC值进行综合调控。

对基培和土培区主要是根据作物生产需要,设定基质、土壤的水势值,自动调节滴灌、喷灌系统的灌溉时间和次数。

2.3紧急状态处理采用计算机实测环境参数、状态极限值反馈报警保护系统。

根据作物的各项参数设定温室环境的极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。

2.4信息处理采用计算机集散控制信息管理系统。

信息处理由中心控制计算机完成。

主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据处理。

其功能包括运行实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

2.5温室的环境参数指标针对本系统所涉及的两栋温室,根据栽培的作物和所处的环境,具体参数如下:l 葡萄温室:a、在冬季休眠期约90多天需保持温室内温度为5℃。

休眠期以后白天需控制温室内温度为25-30℃,夜间需控制在15-18℃。

b、湿度需保持在50-75%不能超过95%。

c、光照强度应保持在45000-55000勒克斯d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。

e、PH值保持在7-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。

l 黄瓜、番茄温室:a、在苗期需保持温室内温度在13-15℃,定植后白天上午应保持在25-28℃,下午应保持在20-25℃,夜间应保持在15-18℃。

b、湿度黄瓜在白天保持在70-75%,夜间保持在85-90%;番茄白天保持在65-75%,夜间保持在75-85%。

c、光照强度番茄应保持在50000勒克斯左右,保证12个小时光照;黄瓜应保持在40000勒克斯左右,保证8-10小时光照。

d、二氧化碳浓度在上午日出后到10点左右保持在1000PPM左右。

e、PH值保持在6.5-7.5。

f、EC值离子总浓度保持在1‰-2‰,随时进行调整。

黄瓜和番茄在冬季早春即11月中旬至下年2月上旬期间比较关键。

以上参数在监控软件中进行编写,环境参数超出设定范围时进行相应调节同时产生报警提醒值班人员注意。

三、系统设计3.1 系统硬件和软件选择设计系统的关键是硬件和软件的稳定性,根据实际的应用经验和比较选用以下配置。

硬件配置:研祥工业计算机P4 2.0G/256M/40G/20英寸彩显;西门子PLC S7-200;软件配置:系统WINDOWS 2000;组态软件2.61控制策略网络版。

3.2 软件设计方案实现智能化温室控制的关键在于1)如何根据不同的作物或相同作物的不同生长阶段设计不同的控制方案和参数。

2)实时参数的检测和数据网络化。

3.2.1配方管理模块实现了参数的批量控制根据不同的作物或相同作物的不同生长阶段,设计出不同的配方。

软件提供了简单方便的组态和操作功能,将需要修改的参数首先定义为变量,这样,操作人员可以通过操作画面,进行方便修改。

详细表达式如下:3.2.2 实时参数的检测实时参数的检测永远的一线生产最主要的环节,及时反应当前生产情况,本系统选择的检测仪表尽量都是输出标准信号。

针对农艺园温室的应用环境特点是湿度较大,所以在变送器的选型上特别注意能够防潮湿,在这样的环境中分析类变送器如PH计和二氧化碳分析仪等,在检测部位容易凝结水珠,所以维护的频率要相对提高,一般需要4天左右就维护一次,这样才能作到实时参数检测及时准确。

3.2.3 数据网络化由于技术中心远离温室现场,而技术人员需要实时监控生产参数,修改最佳的生产参数,数据的网络化就是必须的。

昆仑组态可以有2种方式实现数据网络化,一是WEB功能;二是远程数据库功能。

WEB功能只能远程浏览而无权限修改参数,所以不适用本系统,定义远程数据库很好的实现了数据网络化。

系统主要对温度、湿度、光照等指标进行控制。

以葡萄温室为例,休眠期温室的温度保持在5℃,休眠期后白天控制在25-30℃,夜间控制在15-18℃,当温度超出控制范围时加热炉的风机启动,使加热炉产生的热量在温室内均匀散布,当温室内温度达到作物适合温度时,加热炉风机自动停止。

湿度控制在50-75%,当温室内湿度超出控制范围时轴流风机启动,抽出温室内湿度较高的空气,使湿度下降。

当湿度降回到正常范围时,轴流风机自动停止工作。

温室的光照度控制在45000-55000勒克斯,当温室内的光照度达不到设定指标时,温室内的补光灯自动打开进行人工补光。

当温室的光照度水平达到设定指标时补光灯自动熄灭,以节约能源。

臭氧病害防治机的使用则结合作物的具体情况来选择性的进行定期或不定期消毒灭菌。

二氧化碳发生器的操作相对麻烦一些,需到温室内按步骤进行操作,监控系统可监视二氧化碳浓度,当浓度达到有害程度时系统发出报警,提醒监视人员注意。

黄瓜、番茄温室的控制方案与之类似,主要差别在各参数的控制指标不同。

1:可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度、供电电压电流等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储监测信息,监测点位可扩充多达上千个点。

相关文档
最新文档