第3章 静定结构的受力分析

合集下载

结构力学第三章静定结构受力分析

结构力学第三章静定结构受力分析

MA

0, FP

l 2
YB
l

0,YB

FP 2
()
Fy

0,YA
YB

0,YA

YB


Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA

0, ql
l 2

XC
l

0,
XC

1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30

第三章3静定结构受力分析(平面刚架)

第三章3静定结构受力分析(平面刚架)

MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
§3-3 静定平面刚架
一. 刚架的受力特点

1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。

第三章_静定结构的受力分析(第3课)

第三章_静定结构的受力分析(第3课)

y= 4f x (l - x ) l2
0 M C 16? 6 3创 9 6 H= = = 10.5kN f 4 2 计算内力
3kN/m
y
10kN
D B
D截面的几何参数
4f 4´ 4 x(l - x) = ? 9(12 9) = 3m 2 2 l 12 dy 4 f 4´ 4 tgj D = = 2 (l - 2 x) = (12 - 2? 9) dx l 122 y=
31
结点A
å
Fy = 0
FyAD
FNAD FxAD
FyAD = - 30kN FxAD = FyAD (lx l y ) = - 30(2 1) = - 60kN FNAD = FyAD (l l y ) = - 30( 5 1) = - 67.08kN (压)
A
FNAE
30kN
5
2
1
å
结点E
Fx = 0
2) 截面所截杆数大于3,但除某一杆外,其余 各杆都交于同一点(或都彼此平行),则此杆也是 单杆。
合理拱轴线
均匀水压力
q
圆弧
A
B
土压力
qc q(x) x C
y=
qc (cosh k x - 1) g
悬链线
A y B
总结
要点:
三铰拱的主要特征:由曲杆组成;竖向荷载下产生水平支座反力;
支座反力和内力的计算公式; 拱截面上的应力比梁的均匀.,因此拱形结构比梁能跨越更大的跨度, 承担更大的荷载; 合理拱轴线.

M 0 ( x) =
B
y
A
l 2
f
x
ql 1 qx x - qx 2 = (l - x) 2 2 2

第三章 静定结构的受力分析

第三章 静定结构的受力分析

第三章静定结构的受力计算1. 教学内容从几何构造分析的角度看,结构必须是几何不变体系。

根据多余约束n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。

从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。

超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。

2. 教学目的进一步巩固杆件受力分析和内力分析的特点;理解多跨静定梁、静定平面刚架、静定桁架的概念;熟练掌握多跨静定梁、静定平面刚架、静定桁架内力的计算方法,能够画出内力图;理解截面法、结点法、联合法,熟练求出静定桁架的内力。

3. 主要章节第一节、单跨静定梁第二节、多跨静定梁第三节静定平面刚第四节、三铰拱架第五节、静定平面桁架第六节、组合结构4. 学习指导本章所学内容的基础是以前所学的“隔离体和平衡方程”,但是不能认为已经学过了,就有所放松。

其实,在静定结构的静力分析中,虽然基本原理不多,平衡方程只有几种形式,但是其变化是无穷的,因此重要的是知识的应用能力。

为了能够熟中生巧,在学习时应多做练习。

5. 参考资料《建筑力学教程》P21~P57第一节、单跨静定梁一. 教学目的复习材料力学中的内力概念和计算方法,梁的内力图的画法;熟练掌握各种荷载作用下的梁的内力图画法;掌握叠加法画弯矩图。

二. 主要内容1. 内力的概念和表示2. 内力的计算方法3. 内力图与荷载的关系4. 分段叠加法三. 参考资料《建筑力学》P21~P26各种《材料力学》教材3.1.1 内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N、剪力F Q 和弯矩M(图3-1)。

轴力----截面上应力沿轴线方向的合力,轴力以拉力为正。

剪力----截面上应力沿杆轴法线方向的合力,剪力以截开部分顺时针转向为正。

第三章 静定结构的受力分析

第三章 静定结构的受力分析

第三章静定结构的受力分析学习目的和要求不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。

所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。

通过本章学习要求达到:1、练掌握截面内力计算和内力图的形状特征。

2、练掌握截绘制弯矩图的叠加法。

3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和受力特点。

4、了解桁架的受力特点及按几何组成分类。

熟练运用结点法和截面法及其联合应用,会计算简单桁架、联合桁架既复杂桁架。

5、掌握对称条件的利用;掌握组合结构的计算。

6、熟练掌握截三铰拱的反力和内力计算。

了解三铰拱的内力图绘制的步骤。

掌握三铰拱合理拱轴的形状及其特征学习内容梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。

静定梁的弯矩图和剪力图绘制。

桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。

三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。

§3.1梁的内力计算回顾一、截面法1、平面杆件的截面内力分量及正负规定:轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。

剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。

弯矩M (bending moment) 截面上应力对截面中性轴的力矩。

不规定正负,但弯矩图画在拉侧。

2、截面内力计算的基本方法:截面法:截开、代替、平衡。

内力的直接算式:直接由截面一边的外力求出内力。

1、轴力=截面一边的所有外力沿轴切向投影代数和。

2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。

3、弯矩=截面一边的所有外力对截面形心的外力矩之和。

弯矩及外力矩产生相同的受拉边。

3静定结构的受力分析-梁结构力学

3静定结构的受力分析-梁结构力学

1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。

◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。

◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。

◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。

本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。

(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。

1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。

以拉力为正,压力为负。

剪力F Q :截面上应力沿杆轴切线方向的合力。

以绕隔离体顺时针转为正,反之为负。

弯矩M :截面应力对截面中性轴的力矩。

不规定正负,但弯矩图画在受拉侧。

在水平杆中, 当弯矩使杆件下部纤维受拉时为正。

A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。

内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。

轴力FN外力背离截面投影取正,反之取负。

剪力F=截面一边所有外力沿截面切线方向投影代数和。

Q外力绕截面形心顺时针转动,投影取正,反之取负。

弯矩M =截面一边所有外力对截面形心的外力矩之和。

外力矩和弯矩使杆同侧受拉时取正,反之取负。

2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。

2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。

结构力学第三章静定结构的受力分析

结构力学第三章静定结构的受力分析

例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA

第三章 静定结构的受力分析

第三章 静定结构的受力分析

斜直线
FS=0处
有突变
突变值为P
如变号
无变化
M图
斜直线
抛物线
有尖角


有极值
尖角指向同P
有极值
有突变
M=0
利用上述关系可迅速正确地绘制梁的内力图(简易法)8
Structural mechanics
静定结构的受力分析
简易法绘制内力图的一般步骤:
(1)求支反力。
2)分段:凡外力不连续处均应作为分段点,如集中力
15
Structural mechanics
基本部分:
静定结构的受力分析
不依赖其它部分的存在而能独立地维持其几何不变性的部 分。 如:AB、CD部分。
(a)
基本部分
(b) A
B
层叠图:
基本部分
C
附属部分:
必须依靠基本部分 才能维持其几何不变 D 性的部分。如BC部分 。
为了表示梁各部分之间的支撑关系,把基本部分画在下层, 而把附属部分画在上层, (b)图所示,称为层叠图。
3
Structural mechanics
静定结构的受力分析
§3—1 梁的内力计算的回顾
单跨静定梁应用很广,是组成各种结构的基构件之一,其受 力分析是各种结构受力分析的基础。这里做简略的回顾和必
要的补充。
1. 单跨静定梁的反力
常见的单跨静定梁有:
简支梁
外伸梁
悬臂梁

→↑
↙ ↑
→↙ ↑↑
→↑ ↙
反力只有三个,由静力学平衡方程求出。 4
16
Structural mechanics
(2)受力分析方面:
静定结构的受力分析

第3章静定结构的受力分析

第3章静定结构的受力分析

M0
1 2 ql 8
弯矩图的叠加指纵坐标的叠加, 不是图形的简单拼合。
任意直段杆的弯矩图:以(a)中的AB端为例,其隔离体如图(b)。
与图(c)中的简支梁相比, 显然二者的弯矩图相同。
因此:作任意直杆段弯矩图
就归结为作相应简支 梁的弯矩图。 AB段的弯矩图如图(d)。
M0 1 2 ql 8
§3-5 静定平面桁架
武汉长江大桥
1
桁架的特点和组成 由杆件组成的格构体系, 荷载作用在结点上, 各杆内力主要为轴力。
钢筋混凝土组合屋架
优点:重量轻,受力合理,能承受较大荷载,可作成较大 跨度。
武汉长江大桥采用的桁架形式
第3 章
静定结构的内力分析
§3-1 杆件内力计算 §3-2 静定梁 §3-3 静定刚架 §3-4 三铰拱 §3-5 静定桁架 §3-6 静定结构的内力分析和受力特点
第3章 静定结构的内力分析
本章讨论静定结构。 内容:静定结构的内力分析。 静定结构分析的要点: 1、如何选择“好的”隔离体; 2、怎样建立比较简单而又恰当的平衡方程, 计算最为简捷。
FQB FQA q y dx xA xB M B M A FQ dx xA
xB
积分关系的几何意义: B端的剪力=A端的剪力-该段荷载qy图的面积
B端的弯矩=A端的弯矩+此段剪力图的面积
5. 分段叠加法作弯矩图
图(a)结构荷载有两部分: 跨间荷载q和端部力偶MA、MB 端部力偶单独作用时,弯 矩图为直线,如图(b): 跨间荷载q单独作用时,弯 矩图如图(c): 总弯矩图为图(b)基础上叠加图 (c),如图(d):
FQ >0 F <0 增函数 降函数 Q 自左向右折角 斜直线 曲线

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0

静定结构的受力分析

静定结构的受力分析
出其弯矩值如下:
M A 0KN m
M B 17KN m
M C 26KN m
M E 30KN m
M
L F
23KN
m
M
R F
7KN
m
M G 0KN m
依次在M图上定出各控制点旳弯矩值,在AB、 BC、EF和FG各段以等直线连接。CE段有均 布荷载,须叠加上以CE为跨度旳简支梁在均 布荷载作用下旳弯矩图。经过计算D点旳弯矩 为36KN.m
❖ 选用隔离体
FNDB
A 5kN
FQDB MDB D2
D1
FQDA
5kN
MDA
B
FNDA
4kN
A FQDC 5kN
D3 FNDC MDC
5kN B
4kN
❖ 分别对隔离体应用平衡条件,可得内力如下:
FNDA FQDA
0 5kN
M DA 5kN m
左侧受拉
FNDB 4kN FQDB 5kN M DB 15kN m
B
43FP
A FP
4
FP.a
4
FP
4
FPa
弯矩图
F
E
剪力图
FE
-
FP
DC
Fpa
FP
2
2
+
C
D
Fpa
4
A B
BA
-
FP
4
内力计算旳关键在于: 正确区别基本部分和附
属部分. 熟练掌握单跨梁旳计算.
例:试求铰D旳位置,使正负弯矩峰值相等。
q
A
D
B
l-x
x
l
C l
❖ 先求得支座反力为 q(l x)

第三章静定结构受力分析三铰拱

第三章静定结构受力分析三铰拱

(1)求反力:Fy (2)列弯矩方程
(3)令M (x) 0 y
qL A FV B 2
M (x) Fy Ax
1 FH
(Fy Ax
1 2
12qFxHq2x)2q8q8LFfL2fH2
y
(1 2
qLx
1 2
qx2
)
4f L2
(L x)x
结论:均布荷载作用下,合理拱轴线方程为抛物线。
§3-3 三铰拱
a2
b2
F =F YA
YA0
F =F XA
XB
=FH
FYB0
M
0 c
[FYA0
l 2
l P1( 2
a1)]
FH= MC0 / f
§3-3 三铰拱
结论: ①简支梁不存在水平推力,三铰结构水平推力不为零;
②对于平拱、竖向反力与拱高无关; 平拱
③反力与拱轴线形式无关,只与三个铰的位置有关;
④水平推力与拱高成反比。
例2:求集中荷载作用下的合理拱轴线
(1)求反力:Fy A FyB 1.5P
(2)求合理拱轴线
FH
1 (1.5P 2a P a) a
2P
AD段 : M (x)
DC段 : M (x)
1.5Px FH y
1.5Px P(x a)
0
FH
y
y0
3x 4
y
(直线)
1 (0.5Px 2P
Pa)
§3-3 三铰拱
MK
M
0 K
FH y
FQK
FQ
0 K
cos FH
sin
FNK
F Q
0 K
sin FH
cos

第3章_静定结构的内力分析

第3章_静定结构的内力分析
第3章
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB

A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)

静定结构的受力分析

静定结构的受力分析

(4) 校核。
静定结构的受力分析 3.1 梁的内力计算的回顾
3.1.5 举例 例1
2020-11-4-00:18
解: (1) 求出结构的支座反力
Fx 0 M B 0 FRA 8 40 4 20 6 1 0
FxA 0 FRA 35kN()
M A 0 FRB 8 40 4 20 6 7 0 FRB 125kN()
Chapter 3 静定结构的受力分析
3.1 梁的内力计算的回顾 3.2 静定多跨梁 3.3 静定平面刚架和 3.4 静定空间刚架 3.5 静定平面桁架和 3.6 静定空间桁架 3.7 静定组合结构 3.8 三铰拱 3.9 小结
3.1 梁的内力计算的回顾
3.1.1 截面的内力分量及其正负号规定 3.1.2 荷载与内力之间的关系 3.1.3 分段叠加法作弯矩图 3.1.4 作内力图的步骤 3.1.5 举例
静定结构的受力分析 3.1 梁的内力计算的回顾
例1:
2020-11-4-00:18
解:
(1) 求反力 Fx 0
FxA 0
MB 0
M A 0 FRB 30kN()
(2) 求C截面的内力
Fx 0
FNLC 0
Fy 0 FQLC 30kN
MC 0
M
L C
90kNm
FRA 30kN()
(3) 根据比例画出剪力图和弯矩图,弯矩图一般规定画在受拉一 侧;
(4) 内力必须要标注有数值、正负号(剪力图)、名称等。
静定结构的受力分析 3.1 梁的内力计算的回顾 2020-11-4-00:18
例2

(1) 求出结构的支座反力
Fx 0
FxA 0
M B 0 FRA 6 3 3 1 6 3 6 0 FRA 2.5kN()

最新结构力学龙驭球第3章静定结构的受力分析语文ppt课件

最新结构力学龙驭球第3章静定结构的受力分析语文ppt课件

练习:画出该梁的内力图
130KN 1m 1m 2m
4m
M图
130
340
140
210
280
130
FQ图
30
310KN 2m
160
120 40
190
第3章 静定结构受力分析
第3章 静定结构受力分析
§3-2 静定多跨梁
计算简图
计算简图 支撑关系
第3章 静定结构受力分析
第3章 静定结构受力分析
1)静定多跨梁的组成 由若干根梁用铰联接后跨越几个相连跨度的
弯矩图习惯绘在杆件受拉的一侧,不需标正 负号。
第3章 静定结构受力分析
2. 截面法:将杆件在指定截面切开,取其中一部 分为隔离体,利用平衡条件,确定此截面的三 个内力分量。
注意:取隔离体后,未知力一般假设为正方向
轴力=截面一边的所有外力沿杆轴线方向的投影代数和。 剪力=截面一边的所有外力沿杆轴法线方向的投影代数和。 弯矩=截面一边的所有外力对截面形心的力矩代数和。
集中力 偶m作 用处
铰 处
剪力图 水平线 斜直线
有突变
(突变值=FP)
无变化
无 影 响
一般 弯矩图 为斜
直线
抛物线 下凸
有尖角 (向下)
有突变 (突变 为零 值=m)
用分段叠加法画弯矩图
简支梁的弯矩图 必须熟记
▲ 简支梁在均布荷载 作用下的弯矩图
▲ 简支梁在集中力作 用下的弯矩图
▲ 简支梁在集中力矩作 用下的弯矩图
第3章 静定结构受力分析
静定结构
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,按组成的相反

第三章静定结构受力分析三铰拱

第三章静定结构受力分析三铰拱

第三章静定结构受力分析三铰拱三铰拱是指拱脚处设置了三个支座,可以在三个方向(横向、纵向和垂直)上无约束移动。

在受力分析中,三铰拱是一个非常重要的结构。

本文将对三铰拱的受力分析进行详细介绍。

三铰拱的受力分析首先需要了解其受力形式。

三铰拱受力主要包括水平向力和垂直向力。

水平向力主要来自于拱腹对拱脚的水平压力,而垂直向力主要来自于拱腹对拱脚的垂直压力。

在分析中,我们需要计算拱脚处的支座反力和弯矩大小。

首先,我们考虑横向受力平衡。

根据平衡条件,拱脚处的水平向力和法线向力之和为零。

即:∑Fx=0∑Fy=0其中,∑Fx表示水平向力的总和,∑Fy表示垂直向力的总和。

在接下来的分析中,我们假设拱脚处三个支座的反力分别为F1、F2和F3、由于三铰拱的支座可以自由移动,在计算反力时需要考虑拱腹对支座的约束力。

接下来,我们考虑拱腹对支座的约束力。

根据平衡条件,拱腹受到的约束力可以通过对整个拱腹的受力分析来得到。

我们将拱腹切割成多个小段,每个小段的受力可以看做静定问题。

对于每个小段,我们可以分别计算其水平向力和垂直向力。

在计算过程中需要注意,由于拱脚处的支座反力的未知,我们需要通过整个拱腹的受力平衡来解算这些未知。

最后,我们通过将每个小段的受力结果进行积分,得到拱脚处支座反力的大小和作用点位置。

在进行受力分析时,还需要考虑拱腹的几何特征,如拱的形状、拱腹曲线的方程等。

这些特征对于计算拱脚处的支座反力非常重要。

总的来说,三铰拱的受力分析是一个复杂而重要的过程。

通过考虑拱腹对支座的约束力,我们可以计算得到拱脚处支座反力的大小和作用点位置。

这些结果对于设计和分析三铰拱结构非常有帮助。

第三章1 静定结构受力分析(多跨梁)

第三章1 静定结构受力分析(多跨梁)

2、集中力矩作用点
M图有一突变,力矩 为顺时针向下突变;
M图有一夹角,荷载向
下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
3、均布荷载作用段 M图为抛物线,荷载向 下曲线亦向下凸;
Q 图没有变化。
Q 图为斜直线,荷载向
下直线由左向右下斜
1.无荷载分布段(q=0),FQ图 为水平线,M图为斜直线. Pl M图 FQ图
M图
FQ图
例: 作内力图 铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 FQ图 无剪力杆的 弯矩为常数. M图 自由端有外 力偶,弯矩等于外 力偶
FQ图
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
四.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
ql A
q
D↓↓↓↓↓↓↓↓↓↓↓↓↓ E 2
ql2/8
B
ql2/4
F
ql /2
ql
l/2
ql
l/2
ql M图
l
↓↓↓↓↓↓↓↓↓↓↓↓↓ ql2/4 qL ql2/8

- Q图 qL
10kN/m
↓↓↓↓↓↓↓
2m 2m
60kN.m
15kN
2m
2m
55
30 20 30 5 m/2 m m/2 M 图 (kN.m) 30
M图 FQ图
ql / 2
2
A支座的反力 大小为多少, 方向怎样? M图
FQ图
M图
FQ图
1.无荷载分布段(q=0), FQ图为水平线,M图为斜直线. 2.均布荷载段(q=常数), FQ图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 3.集中力作用处, FQ图有突变,且突变量等于力值; M 图有尖点,且指向与荷载相同. 4.集中力偶作用处, M图有突变,且突变量等于力偶 值; FQ图无变化.

结构力学第三章静定结构受力分析1-6

结构力学第三章静定结构受力分析1-6
5m
45° 141kN
125kN.m
5m
Q1= 50 +5×5-141×0.707 =-25kN M1=125 +141×0.707×10-50×5 -5/2×5² =812.5kNm (下拉)
6
§3.2 荷载与内力之间的关系
1 ) 微分关系 ↓↓↓↓↓↓↓ Q+d dN/dx= - q x qx N+d N Q dQ/dx=-qy , qy向下为正 →→→→→ N x M+d dM/dx=Q M M 微分关系给出了内力图的形状特征 dx y A B 2) 增量关系 Q Q+ΔQ
6
C
三铰刚架的反 力计算方法二 (双截面法) O1 a
↓↓↓↓↓↓↓↓↓↓↓
q
29
a
a q
a
a
Y1
a O2
↓↓↓↓↓↓↓↓↓↓↓
19
斜梁的弯矩图也可用叠加法绘制,但叠加的是相应水平 简支梁的弯矩图,竖标要垂直轴线。
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MB
斜梁的内力除 弯矩和剪力外 还有轴力,内 力图中要包括 轴力图。
MA
l
MB MA
ql2/8
20
§3.5多跨静定梁(statically determinate multi-span beam)
25
§3.6 静定平面刚架受力分析
(statically determinate frame)
几何可 变体系 桁架 刚架
一、刚架的定义:若干直杆全部或部分用刚节点联结而成的结构 二、刚架的特点 ①内部空间大,便于使用。 ② 弯矩分布较为均匀,节省材料。 ③刚结点将梁柱联成一整体,增大了结构的刚度,变形小。

结构力学I-第三章 静定结构的受力分析(拱、隔离体法、虚位移法)

结构力学I-第三章 静定结构的受力分析(拱、隔离体法、虚位移法)

特点: 杆件都是二力杆;
分类:简单桁架、联合桁架、复杂桁架;
简单桁架 联合桁架 复杂桁架
Page
9
14:33
LOGO
回顾
桁架
内力计算:结点法、截面法、联合法;
结点法:结点为隔离体,2个平衡方程,适用于简单桁架; 截面法:隔离体包含两个以上几点,非交汇力系,3个平衡方程; 联合法:结点法和截面法的结合应用;
三铰拱受力分析
内力计算: K点
⑴ 弯矩 MK = MK 0 - FH y 拱的弯矩等于等代梁相应截面 的弯矩再减去推力引起的弯矩 ⑵ 截面力分量 Fx = - FH - Fy = FVA - F1 - F2 = FQK0 ⑶ 剪力和轴力 FQ = FQK0 cosθ - FH sinθ FN = - FQK0 sinθ - FH cosθ
FHA FHB FH 1 FH f l l l F F a F a yA 1 1 2 2 2 2 2
Page 20
FV0 A
a1 a2 a3
FVB
0
等代梁
14:33
LOGO
三铰拱
y F F K A x l/ 2 FVA x l/ 2 FVB C f B FHB F
A
三铰拱
F1 F2 K C F3 B
同跨度、同荷载的简支梁。 其反力、内力记为
0 0 0 0 M F FV F 、 、 、 VB A S
FV0 A
a1 a2 a3
FVB
0
等代梁
Page 19
14:33
LOGO
三铰拱
y F F K A F HA x l/ 2 FVA x l/ 2 FVB C f B FHB F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)组成次序:先固定梁AB, 在固定BD,最后固定DF。基 本部分与附属部分间的支撑 关系如图所示。 (2)计算分析次序:先计算
箭头画反
附属部分FD。D点反力求出, 反其指向即为梁DB的荷载。 依次类推。最后计算梁BA,
求出A端的支座反力。
23
支座反力求出后,即可做M 图和Fቤተ መጻሕፍቲ ባይዱ图(图d和e),
( d)
14
Y 0
18
FQ图 kN
10
14
M图 kN m
6
4
14
26.5 22
15
6 16
例2:
例3:
0.25ql
2
q
0.5l
0.5l
16
40kN m
例4:
2m 2m
4 kN
m
例5:
2m
20kN
2m
20kN m
17
例6:
12 kN
m
26kN
3m
1m
例7:
8 kN
m
24kN m
45
46
47
48
49
50
51
例题3-5
52
例题3-5
53
例题3-5
54
55
56
下图为一复杂桁架,对水平截面m-m,AF为截面单杆,其轴力可由此截面的水 平投影方程直接求出。此杆轴力求出后,其余各杆轴力即可用结点法依次求出 (依次取结点F、D、G、E为隔离体) 左图中均为联合桁架,每个结 点都不存在结点单杆。这些联 合桁架都是由两个简单桁架用 三个连接杆1、2、3装配而成。 对图中所示截面,连接杆1、
64
2.刚架的支座反力
在静定平面刚架的受力分析中,通常先求支座反力,再求控制截面的内力,最后做内 力图。 在左图中截断铰支座A和B如右图,共有4个未知反力FxA、 FyA、 FxB、 FyB。从 运动角度看,个隔离体可整体运动,共有三个自由度;另外两个折线杆件AC和BC还 可绕C相对转动。再增加一个自由度。与之相应,隔离体平衡时所应满足的静力平衡 方程共有4个:三个整体平衡方程+在绞C处弯矩为0静力平衡方程。
用绞C处弯矩为零的平衡方程求FxB,
取右半边为隔离体。
65
66
3.刚架中各杆的杆端内力
作刚架内力图时,首先求各杆的杆端内力,仍用截面法。
67
68
69
70
71
72
4.刚架的内力图
73
74
75
76
77
78
例题3-7
试用另一种方法上题所示刚架的FQ和FN图
上题作剪力图和弯矩图时,杆端剪力和轴力是根据截面一边的荷载及支座反力 直接求出。现首先做M图;然后取杆件做隔离体,利用杆端弯矩求杆端剪力, 最后取结点做隔离体,利用杆端剪力求杆端轴力。
M
o
qx
M dM
FQ dFQ
FN
FQ
dFQ dx
FN dFN x
y dx
dFN qx dx
q y
8
dM FQ dx
II. 增量关系
M
M0
o
FX
M M
FN
FY
FQ
y dx
FQ FQ
FN FN x
在集中荷载作用处,取微段为隔离体。Fx是水平集中力, 向右为正; Fy是竖向集中力,向下为正;M0为力偶。右 与左截面相比,内力增量分别为∆FN,∆FQ, ∆M,则有:
FN FX
FQ FY
9
M M 0
III. 积分关系
在直杆中取出一段AB,沿着x和y 方向有分布荷载qx和qy作用,
qy
MA FNA
FQA
A
MB
qx
B
B端的轴力等于A端的轴力减去此 段分布荷载qx 图的面积, B端的剪力等于A端的剪力减去此
FQB
FNB
FNB FNA qx dx FQB FQA q y dx
截开 代替 平衡
截断链杆(两端为铰的直杆,除端点外杆 上无荷载作用)时,在截面上加轴力。截 断受弯杆件,在截面上加轴力、剪力和弯 矩。去掉滚轴、铰、固定支座时分别加1、 2、3个支座反力(固定支座有一个为力偶)
1. 隔离体与周围约束要全部切断,代之以相应的约束力; 2. 约束力要符合约束性质;
(a)
(b) (c)
从几何构造来看,静定多跨梁是由几根梁组 成的,组成的次序是先固定基本部分,后固 定附属部分。
21
受力分析的角度
计算静定多跨梁时,要遵守的原则:先附属,后基础
A
E
B
F

C C
D
A
D
基本部分
22
E
B
F
附属部分
将附属部分的支座反力反其指向,就是加于基本部分的荷载
例3-2 试作图示静定多 跨梁的内力图。
2
静定结构(静力荷载作用下)
几何不变体系且没有多余约束。 利用平衡条件可以完全求解其受力状态。
静定结构的类型
3
对静定结构进行受力分析时,只需考虑平衡条件。 不需考虑变形条件 静力分析基本方法:选取隔离体,建立平衡方程。 注意:
要由会算一根梁和简单桁架提高到会算复杂的静定结构系统
了解静力分析和构造分析的内在联系,对静力分析要有规律性认识:构造分析 就是研究一个结构如何用单元组合起来,研究“如何搭”的问题。静力分析研究 如何把静定结构的内力计算分解为单元的内力计算问题,研究“如何拆”的问题。
同时加上拉杆AB。
拱的基本特点:在竖向荷载作用下有水平 反力(推力),对于有拉杆的三铰拱,推力就 是拉杆内的拉力。
101
102
103
104
105
FN
106
107
108
0
0
109
(2) 内力计算
将拱沿跨度方向分成八等分,算出每个截面的弯矩、剪力 和轴力,现以x=12m的截面D为例。
110
§3-9
用求解器确定截面单杆
思考与讨论
5
§3-10 小结
§3-1
1 3
梁的内力计算回顾
M
FN
FQ
轴力图:标明正负号 弯矩 M :水平杆件中,使杆件下部受拉为正 剪力图:标明正负号 剪力 FQ :以绕隔离体顺时针转者为正 弯矩图:画在杆件受拉一 轴力 FN :以拉力为正 边,不标正负号
6
2 3
注意事项:
◆ 荷载与内力之间的关系
◆ 分段叠加法
静定多跨连续梁
1. 几何组成 2. 计算顺序
28
§3-3 静定平面桁架
29
§3-3 静定平面桁架
钢筋混凝土组合 屋架
30
31
32
33
34
35
36
注:静定结构:几何不变 且无多于约束—W=0
37
例3-4
38
39
40
41
42
43
44
111
112
113
114
115
116
117
0
118
119
120
121
122
123
3-7 隔离体方法及其截取顺序的优选
静定结构的受力分析主要是利用平衡方程确定支座反力和杆件内力,做出结构的内力图 求静定结构约束力(支座反力和内力)的基本方法:隔离体分析,要点是:
首先,在结构中人为地截断约束,取出隔离体,把约束力暴漏出来,成为隔离体
的内力;然后建立平衡方程,以解出约束力。 1.隔离体的形式、约束力及独立平衡方程
124
125
(3)
126
127
128
129
3.8.应用虚功原理进行受力分析---虚设位移法
1.刚体体系的虚功原理
130
131
2.虚设位移法对机构进行平衡分析
132
133
134
135
136
137
3.虚设位移法求静定结构的约束力
79
80
例题:3-8
取绞C右边为隔离体
81
82
83
84
85
86
87
例题3-9
88
89
第5节 组合结构
90
1. 组合结构的受力分析
(a) (b)
(c)
91
92
93
94
95
96
97
98
2. 组合屋架的受力特点
99
100
3-6. 三铰拱
三铰拱是一种静定的拱式结构,在桥梁和 屋盖中都得到应用。图为三铰拱的两种形式。 a图为无拉杆的三铰拱,AC和BC是两根曲杆, C点用绞连接,A、B两点为铰支座。 b图为有拉杆的三铰拱,B点改为滚轴支座,
1m
3m
18
§3-2 静定多跨梁
19
AB、CD直接由支杆固定于基础,几何不变。BC两端支于梁AB和CD 的伸臂。整个结构几何不变。梁AB和CD本身就可以承受荷载,为 基本部分。梁BC依靠基本部分的支承才能承受荷载并保持平衡,
称为附属部分。
公路桥
计算简图
20
几何组成分析的角度
(a)为木檩条构造,在接 头处采用斜搭接,可看作 铰结点。(b)计算简图。 (c)为支承关系。 在竖向荷载下,CD和GH为 附属部分,AC,DG,HJ为基 本部分
2、3都是截面单杆,因而可用
截面法直接求出其轴力。
计算联合桁架时,不宜采用结点法,应首先应用截面法,并从计算三个连接杆轴力开始 57
58
59
60
61
62
3-4静定平面刚架
63
相关文档
最新文档