高等数学a试卷及答案
高等数学A(一)期末试题及答案
大学2013~2014学年第一学期课程考试试卷(A 卷) 课 程 考试时间………………注:请将答案全部答在答题纸上,直接答在试卷上无效。
………………一、填空题(每小题2分,共10分) (1) =-∞→x x x )11(lim e1 . (2) 设)tan(2x x y +=,则=dy dx x x x )(sec )21(22++ .(3) 曲线36223+++=x x x y 的拐点是 )6,1(- . (4) =-⎰10211dx x 2π . (5) =⎰∞+121dx x1 . 二、选择题(每小题2分,共10分) (1) =∞→x x x 2sin lim (A) (A) 0. (B) 1. (C) 2. (D)21. (2) 设xx x f tan )(=,则0=x 是函数)(x f 的(A) (A) 可去间断点. (B) 跳跃间断点. (C) 第二类间断点. (D) 连续点.(3) 当0→x 时,下列变量中与x 是等价无穷小的是(B)(A) x 3sin . (B) 1-x e . (C) x cos . (D) x +1.(4) 函数)(x f 在0x 点可导是它在该点连续的(C)(A) 充分必要条件. (B) 必要条件. (C) 充分条件. (D) 以上都不对.(5) 设)(x f 在),(∞+-∞内有连续的导数,则下列等式正确的是(D)(A) ⎰=')()(x f dx x f . (B)C x f dx x f dx d +=⎰)()(. (C) )0()())((0f x f dt t f x-='⎰. (D) )())((0x f dt t f x ='⎰.三、计算下列极限、导数(每小题6分,共18分) (1) 213lim 21-++--→x x x x x .解: )13)(2()13)(13(lim 213lim 2121x x x x x x x x x x x x x x ++--+++-+--=-++--→→ 62)13)(2(1lim 2)13)(2)(1(22lim 11-=++-+-=++-+--=→→x x x x x x x x x x(2) 22)2(sin ln lim x x x -→ππ.解:)2(4sin cos lim )2(sin ln lim 222x x xx x x x --=-→→ππππ 812sin lim 41sin 12cos lim 4122-=---=⋅--=→→x x x x x x πππ (3) 设函数)(x y y =由方程0ln =+-y x y y 所确定,求:dxdy 和22dx y d . 两边对x 求导得:01)1(ln ='+-'+y y y所以得; yy ln 21+=' yy ln 21+='四、计算下列积分(每小题8分,共32分)(1) ⎰-dx x x )2sin(2. 解:C x x d x dx x x +-=---=-⎰⎰)2cos(21)2()2sin(21)2sin(2222 (2) ⎰-dx x 21. 解:令t x sin =,2||π≤t ,则:⎰⎰=-tdt dx x 22cos 1 C t t t C t t dt t ++=++=+=⎰cos sin 2122sin 412)2cos 1(21 C x x x +-+=2121arcsin 21 (3) ⎰10arctan xdx . 解:⎰⎰+-=10210101]arctan [arctan dx x x x x xdx 2ln 214)]1ln(21[4102-=+-=ππx (4) ⎰10dx e x . 解:令x t =,则2t x =,tdt dx 2=,⎰⎰=10102dt te dx e t x 22][22101010=-==⎰⎰dt e te tde t t t 五、综合题(每小题10分,共20分)(1) 设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=⎰22031t u du e y t t x 所确定,求函数)(x y y =的极值. 解:23124t te dx dy t +=,令0=dxdy ,得0=t ,代入得:1=x 。
中北大学高等数学A2019-2020期中考试试题与答案
2019-2020 学年 第 1 学期 第 1 次考试试题与答案课程名称 高等数学A (1)1、下列极限不存在的是( C ). (A )1lim sin x x x→∞;(B )lim arctan x x →+∞;(C )e 1lim e 1xx x →∞+-; (D )lim x →+∞.解析:(A )11lim sin lim 1x x x x xx→∞→∞=⋅= (由于10x→,因此11sin x x )(B )πlim arctan 2x x →+∞=(C )e 11e lim lim 1e 11e x x xx x x --→+∞→+∞++==--,e 1lim 1e 1x x x →-∞+=--,因此e 1lim e 1xx x →∞+-不存在.(D )lim limx x →+∞==2、()1lim 1kxx x →∞-=( A ).(A )e k -; (B )e k; (C )1ek-;(D )1e k.解析:()()11lim 1lim 1e kkxxk x x x x ---→∞→∞⎡⎤-=-=⎢⎥⎣⎦.3、当0x →时,423sin cos x x x 与nx 为等价无穷小,则n =( B ). (A )4; (B )6;(C )7;(D )9.解析:423636600sin cos cos lim lim 1x x x x x x x x x→→== (sin x x ) 4、关于函数3233()(3)(2)x x x f x x x +--=+-的间断点,下列正确的是( D ).(A )3x =-与2x =均为无穷间断点; (B )3x =-与2x =均为可去间断点;(C )3x =-为无穷间断点,2x =为可去间断点; (D )3x =-为可去间断点,2x =为无穷间断点.解析:322233333(3)(1)18limlim lim (3)(2)(3)(2)25x x x x x x x x x x x x x x →-→-→-+--+--===-+-+--,因此3x =-为可去间断点; 当2x →时,分母极限为0,分子极限为非0实数,因此2x =为无穷间断点.5、设cos 0()20e 0x a x x f x x b x >⎧⎪==⎨⎪+<⎩在0x =处连续,则,a b 的值为( C ). (A )1,1a b ==; (B )1,2a b ==; (C )2,1a b ==;(D )2,2a b ==.解析:连续点处左右极限存在并都与函数值相等;0lim ()lim cos x x f x a x a ++→→==,00lim ()lim (e )1xx x f x b b --→→=+=+, 因此,21a b ==+,可得:2a =,1b =.6、设()(1)(2)(3)(4)f x x x x x =----,则方程()0f x '=的实根的个数为( C ). (A )1;(B )2;(C )3;(D )4.解析:显然()f x 连续可导,且满足(1)(2)(3)(4)0f f f f ====,分别在[1,2],[2,3],[3,4]三个区间内使用罗尔定理,可得()0f x '=在三个区间内至少各有一根,因此()0f x '=至少有三个根;另外,由于()f x '为三次多项式,因此最多只有三个根.综上,本题选C . 7、已知(3)2f '=,则0(3)(3)lim2h f h f h→--=( A ). (A )1-; (B )1; (C )12-; (D )12. 解析:00(3)(3)1(3)(3)1limlim (3)1222h h f h f f h f f h h →→----'=-=-=--.8、函数32()32f x x x =-+在[1,3]上的最大值和最小值分别为( D ). (A )最大值为5,最小值为0; (B )最大值为2,最小值为0; (C )最大值为0,最小值为2-;(D )最大值为2,最小值为2-.解析:2()360f x x x '=-=,可得在[1,3]只有一个驻点2x =,将驻点函数值与端点比较即可,(1)0f =,(2)2f =-,(3)2f =,可得最大值为2,最小值为2-.9、函数23()(1)4f x x =-在1x =处的曲率为( B ). (A )34; (B )32; (C )54; (D )52. 解析:33222213322(1)31(1)2x y K y x =''==='+⎡⎤⎛⎫+-⎢⎥⎪⎝⎭⎢⎥⎣⎦10、墙角处立着一个长度为5m 的梯子,如图所示,梯子顶端A 点以1.5m/s 的速度正在匀速下滑,当A 点与墙角O 点之间距离为4m 时,梯子底端B 点向右滑动的速度为( B ). (A )1.5m/s ; (B )2m/s ; (C )2.5m/s ; (D )3m/s .解析:OA 的距离设为y ,OB 的距离设为x ,显然有2225x y +=,通过这个式子可求出两个速度之间的关系, 两边对t 求导数得:d d 0d d x y xy t t +=,将3x =,4y =,d 1.5d y t =-代入解得d 2d xt=m/s 11、设()f x =()f x 的定义域是 . 答案:1e ,e -⎡⎤⎣⎦解析:由21ln 0x -≥解得1ln 1x -≤≤,再由于ln x 为单调函数,因此1e e x -≤≤.12、22212lim()12n nn n n n→∞+++=+++ . 答案:12 解析:22222222212121212111n n nn n n n n n n n n n n n n +++≤+++≤++++++++++++ 由112(1)2n n n +++=+ ,得2222211(1)(1)1222121n n n n nn n n n n n n ++≤+++≤+++++ 而21(1)12lim 2n n n n n →∞+=+,21(1)12lim 12n n n n →∞+=+,由夹逼准则得原极限为12. 13、函数()y y x =由方程2e 610y xy x ++-=确定,则(0)y ''= . 答案:2-解析:将0x =代入方程解得0y =,方程两边对x 求导得e 6620yy y xy x ''⋅+++=,将0x =,0y =代入解得(0)0y '=;方程两边对x 再求导得2e ()e 66620yyy y y y xy '''''''⋅+⋅++++= 将0x =,0y =,0y '=代入得:(0)2y ''=-.14、已知(sin )xy x =,则y '= . 答案:(sin )(ln sin cot )xx x x x + 或 1(sin )ln sin (sin )cos xx x x x x x -+⋅解法一:换底()lnsin lnsin (sin )e e ln sin (sin )(ln sin cot )x x x x x x y x x x x x x x ''''⎡⎤⎡⎤====+⎣⎦⎣⎦解法二:取对数ln ln sin y x x =,两边对x 求导,ln sin cot y x x x y'=+ 因此:(sin )(ln sin cot )xy x x x x '=+解法三:公式法(指数函数求导公式+幂函数求导公式)1(sin )ln sin (sin )cos x x y x x x x x -'=+⋅15、设arctan y =1d x y == .x解析:()2211d d 21y x x ==++,则1d x y x == 16、函数32535y x x x =-++的凹区间为 . 答案:5,3⎡⎫+∞⎪⎢⎣⎭,写成开区间也正确.解析:23103y x x '=-+,6100y x ''=->,得53x >. 17、计算极限 011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦.解:0011ln(1)lim lim ln(1)ln(1)x x x x x x x x →→⎡⎤-+-=⎢⎥++⎣⎦20ln(1)lim x x x x →-+=0111lim 2x x x→-+=01lim 2(1)2x x x x →==+18、设xy =,求0x y ='. 解:取对数11ln ln(8)2ln(2)ln(1)32y x x x x =++-+-+ 两边对x 求导,12113(8)22(1)y y x x x '=+--+++得:12113(8)22(1)x y x x x ⎤'=+--⎥+++⎦,因此20211111112124248x y =⋅⎡⎤'=+--=-⎢⎥⋅⎣⎦19、设22ln(1),(1)2arctan ,x t y t t ⎧=+⎨=+-⎩求221d d t y x =. 解:2d 22(1)d 1y t t t =+-+3222221t t t t ++=+,2d 2d 1x tt t =+ 322d d 222d 1d d 2d y y t t t t t t x x t t ++===++,2222d 21(21)(1)2d 21y t t t t x t t +++==+,因此221d 3d t y x == 20、设ln(1)y x x =-+,求函数的极值,并判断是极大值还是极小值. 解:111y x '=-+01x x==+,解得驻点:0x = 21(1)y x ''=+,(0)0y ''>,因此0x =处为极小值,函数有极小值(0)0y = 21、设1x >,证明不等式(1)ln 2(1)x x x +>-. 证明:设()(1)ln 2(1)f x x x x =+--,其中(1)0f =,11()ln 2ln 1x f x x x x x+'=+-=+-,且(1)0f '=,又由于22111()(1)0f x x x x x ''=-=->因此()f x '单增,则当1x >时有()(1)0f x f ''>=,则()f x 单增,因此当1x >时有()(1)0f x f >=. 四、解答下列各题(本题共2小题,每小题6分,共12分)22、计算极限21arctan 0sin lim xx x x +→⎛⎫ ⎪⎝⎭. 解法一:2211arctanarctan0sin sin lim lim 1xx x x x x x x x ++→→-⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2sin arctan sin 0sin lim 1x xx x x x xx x x x +--→⎡⎤-⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦30sin limex x x x +→-=20cos 1lim3ex x x +→-=22012lim 3ex x x+→-=16e -=解法二:2211sin ln arctan arctan 00sin lim lim e x x xxx x x x ++→→⎛⎫= ⎪⎝⎭21sin ln 10lim e x x x x x +-⎛⎫+ ⎪⎝⎭→=3sin 0lim e x xx x +-→= 下同解法一解法三:2211sin ln arctan arctan 00sin lim lim e xxx xx x x x ++→→⎛⎫= ⎪⎝⎭20lnsin ln limex x xx+→-=0cos 1sin lim 2ex x x xx +→-=20cos sin lim2sin ex x x x x x+→-=3200cos sin cos sin cos limlim26eex x x x xx x x xxx++→→---==2201lim66ee x x x+→--==23、在抛物线24y x =-上的第一象限部分求一点(,)P a b ,过P 点作切线,使该切线与两坐标轴所围成的三角形面积最小.解:切线斜率为22x a x a y x a =='=-=- 切线方程2(4)2()y a a x a --=--求切线与两坐标轴交点,令0y =,解得242a x a+=,令0x =,解得24y a =+三角形面积为223(4)116()844a S a a a a a +⎛⎫==++ ⎪⎝⎭,02a <≤ 求驻点22116()3804S a a a ⎛⎫'=+-= ⎪⎝⎭,即4238160a a +-=,解得243a =,a =3132()64S a a a ⎛⎫''=+ ⎪⎝⎭,0S ''>,因此当a =时面积取到最小值, 此时切点坐标为83⎫⎪⎭.。
大学《高等数学A》课后复习题及解析答案
大学数学A (1)课后复习题第一章一、选择题1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2ln )(,ln 2)(x x g x x f ==B .0)(,1)(x x g x f ==C .1)(,11)(2-=-⋅+=x x g x x x f D .2)(|,|)(x x g x x f ==2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .||)(x e x f = C .x x f cos )(= D .1sin )1()(2--=x xx x f3.极限⎪⎭⎫⎝⎛+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .21D .∞ 4.极限xxx x sin lim+∞→的值为.. …….. ……..……………………………………………………………………………...…….( )A .0B .1C .2D .∞5.当0→x 时,下列各项中与 23x 为等价无穷小的是…………………………………………………….( )A .)1(3-xe x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=xx f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要8.设函数⎪⎩⎪⎨⎧<≤--<≤≤≤-=01,110,21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )A .在0=x ,1=x 处间断B .在0=x ,1=x 处连续C .在0=x 处间断,在1=x 处连续D .在1=x 处间断,在0=x 处连续 9.极限xx x 10)1(lim -→-的值为.. …….. ……..…………………………………………………………………………………….( )A .1B .e -C .e1D .e 二、填空题10.函数ln y x =的定义域为(用区间表示) . 11. 函数xxy -+=11的定义域为(用区间表示) . 12. 已知x xx f +=1)(,则=))((x f f . 13. 函数x x y 2353+-=的反函数为 .14. =→xx x 1sin lim 20 .15. 当________=α时,αx 与x 2sin 是0→x 时的同阶无穷小.16. 设21)1(lim e kx xx =+→,则=k .17. 设1sin lim0-=→xkxx ,则=k .18. =⎪⎭⎫ ⎝⎛+++∞→11232lim x x x x .9. 设⎪⎩⎪⎨⎧≤+>=0,0,1sin )(2x x a x xx x f 在点0=x 处连续,则=a . 三、解答与证明题20. 求下列数列极限 (1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n (2))12(lim +-+∞→n n n n (3)⎪⎭⎫⎝⎛++++++∞→n n n n n n n n 22221lim (4)n n n nx 10...21lim +++∞→ 21. 求下列函数极限(1)15723lim 2323+++-∞→x x x x x (2)134lim 22++∞→x x x(3)503020)12()23()32(lim ++-∞→x x x x (4)11lim 31--→x x x (5)28lim 32--→x x x (6))1311(lim 31x x x ---→ (7))1(lim x x x -++∞→ (8)xx x x ln )1(lim1-→(9)xx x sin ln lim 0→ (10)x xx 3sin 2sin lim 0→(11)30sin tan lim xx x x -→ (12)x x x 10)51(lim -→ 22. 若432lim23=-+-→x ax x x ,求a 的值. 23. 若已知411lim21=-++→x b a x x ,求a,b 值. 24. 当 a 取何值时,函数)(x f 在 x =0 处连续:(1)⎩⎨⎧≥+<=0,0,)(x x a x e x f x . (2)⎪⎩⎪⎨⎧≤+>-+=0),cos(0,11)(x x a x xx x f . 25. 证明(1)方程01423=+-x x 在区间)1,0(内至少有一个根.(2)方程x e x 3=在)1,0(内至少有一个根.第二章一、选择题1、设函数)(x f 在点0x 可导,则=-+→hx f h x f h )()2(lim000( ).(A ) )(0x f '-; (B) )(0x f '; (C) )(20x f '; (D) )(20x f '-. 2、设函数)(x f 是可导函数,且13)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点))1(,1(f 处切线的斜率是 ……………………………………………( ). (A) 3; (B) 1- ; (C) 13 ; (D) 3-.3、设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,则)(a f '= ………( ). (A) )(a ϕ ; (B)0; (C)a ; (D))(a a ϕ.4、若0x 为函数)(x f 的极值点,则…………………………………………( ). (A)0)(0='x f ; (B)0)(0≠'x f ; (C)0)(0='x f 或不存在; (D))(0x f '不存在.5、设)0)(1ln(≠+=a ax y ,则y ''= ( ).(A)22)1(ax a +; (B)2)1(ax a +; (C)22)1(ax a +-; (D)2)1(ax a +-. 6、由方程5ln =-y xe y 确定的隐函数)(x y y =的导数=dxdy( ). (A)1-y y xe e ; (B)y y xe e -1; (C)yy e xe -1; (D)y y e xe 1-.7、)2sin sin (lim xx x x x +∞→= ……………………………………… ( ).(A)2; (B)1; (C)3; (D)极限不存在.8、设x x y =)0(>x 则='y ( ).(A)x x ; (B) x x x ln ; (C) 1-x x ; (D))1(ln +x x x .9、曲线x y sin 1+=在点)1,0(处的切线方程是…………………………( ). (A)01=--y x (B)01=+-y x (C)01=++y x (D)01=-+y x 10.下列函数在所给区间满足罗尔定理条件的是……………………( )(A) 2(),[0,3]f x x x =∈ (B) 21(),[1,1]f x x x=∈-(C) (),[1,1]f x x x =∈-(D) ()[0,3]f x x =∈ 二、填空题11、 设x x y 2sin 2+=,则=dy .12、已知x x y n ln )3(=-,(N n n ∈≥,3),则)(n y = .13、已知过曲线24y x =-上点P 的切线平行于直线x y =,则切点P 的坐标为 . 14. 已知2)1(='f ,则=-+-→2)1()(lim31x x f x f x .15. 设x a y =(0>a 且1≠a ),则=)(n y .16. 曲线3)1(-=x y 的拐点是 . 17.设函数)(x f 在0x 处可导,则xx x f x x f x ∆∆--∆+→∆)()(lim000= .18.设⎩⎨⎧≥+<=0)(x x a x e x f x ,当a =_____时,)(x f 在x = 0处可导.19.若函数5)(23-+-=x x ax x f 在),(+∞-∞上单调递增,则a 的取值范围为 .20. 设由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x (其中0>a )确定的函数为)(x y y =,则=dxdy. 三、解答与证明题21.设e x x e y +=,求y '. 22.求下列函数的二阶导数.(1) 设x e y x sin =,求y ''. (2) 设1arctan1xy x-=+,求y ''23. 求曲线21x y =在点(4,2)处的切线方程和法线方程. 24. 讨论下列函数在点0=x 处的连续性和可导性:(1) 0 0 )1ln()(⎩⎨⎧<≥+=x x x x x f , (2) 0 tan 01sin )(2⎪⎩⎪⎨⎧≤>=x x x xx x f . 25. 求由方程ln xy x y x e -=所确定的隐函数y 的导数dxdy. 26. 求极限: (1)]1)1ln(1[lim 0x x x -+→; (2)30sin tan lim xx x x -→; (3))arctan 2(lim x x x -+∞→π; (4)x x x +→0lim ;(5))1sin 1(lim 0x x x -→; (6)200sin lim xdt t xx ⎰→. 27. 设函数)(x y y =由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求22dx yd .28.求函数()(f x x =-. 29. 求函数32332y x x x =-++的凹凸区间、拐点. 30. 已知点)3,1(为曲线1423+++=bx ax x y 的拐点. (1) 求b a ,的值; (2)求函数1423+++=bx ax x y 的极值. 31. 设11xy x-=+,求()n y 32.设b a <<0,证明:a b ab ba a --<+ln ln 222. 33. 设0,()(0)0,x f x f ≥=连续,0'()x f x >当时,存在且'()f x 单调增加,证明:当0x >时函数()f x x 单调增加.34. 证明:当0>x 时,x x x x<+<+)1ln(1. 35. 证明:当0x >时,有1x x x e xe <-<成立.第三章一、选择题:1.下列凑微分正确的一个是 ( ) A .)2(sin cos x d xdx = ; B. )11(arctan 2xd xdx += C .)1(ln x d xdx = D. )1(12x d dx x -=2.若⎰+=,)(c x dx x f 则⎰-dx x f )32(= ( )A .2-3x+c ; B. c x +-31; C. x+c ; D. c x +-2)32(213.在以下等式中,正确的一个是 ( ) A .⎰=')()(x f dx x f B. ⎰=')(])([x f dx x f C .⎰=)(])([x f dx x f d D. ⎰='')(])([x f dx x f 4. 设x x f 3sin )(=',则⎰dx x f )(是 ( )A .cos3x ; B. cos3x+c ; C.c x +-3cos 31; D.2193sin c x c x++- 5. 若,0(),0x x x f x e x ≥⎧=⎨<⎩,则21()d f x x -=⎰( ). A. 13e -- B. 13e -+ C. 3e - D. 3e + 6. 下列定积分是负数的是( )(A )dx x ⎰20sin π(B)dx x ⎰20cos π(C)dx x ⎰ππ2sin (D)dx x ⎰ππ2cos7. 若4)12(1=+⎰dx x a,则a = ( )(A) 3 (B) 2 (C) 0 (D) 48.若⎰∞-=31dx e kx ,则k=( ) (A)31 (B)-31(C) 3 (D)-3 9.=+⎰)1(212x dt t t dx d ( ) (A )x x+12(B) 212-+x x(C) 241x x + (D) 2512x x +10.若,21)(21)(0-=⎰x f dt t f x且1)0(=f ,则=)(x f ( ) (A)2x e (B)x e 21 (C)x e 2 (D)x e 221 二、填空题: 1.x d xdx 3(arcsin ________312=-).2.⎰=+________________912dx x .3.若⎰+=,3cos )(c x dx x f 则f (x )= .4. ⎰='____________________)()(22dx x f x xf . 5. F(x ) =dt t x ⎰+223,则=')1(F _________.6. 极限020cos d limxx t t x→⎰= ;7. 23423sin 1x e xdx x x -++⎰= 8.设()f x 连续,(0)1f =,则曲线0()d xy f x x =⎰在()0,0处的切线方程是 ;三、解答题:1、2x dx 2、⎰-+322x x dx3、⎰+dx x x214、422331.1x x dx x ⎛⎫++ ⎪+⎝⎭⎰ 5、cos 2.cos sin xdx x x -⎰6、dx x x ⎰-42 7、⎰-+211xdx8、⎰xdx x arctan 29、1x ⎰10、10d e ex xx-+⎰11、10x ⎰12、22()e d xx x x --+⎰;13.40d 1cos2xx xπ+⎰;14.41x ⎰;15.1d ln x x x+∞⎰16.2203sin d limx x t t x→⎰;17.求曲线xxe y e y -==,及直线1=x 所围成的平面图形的面积.18. 求由曲线)cos 2(2θ+=a r 所围图形的面积19. 由曲线2y x =和2x y =所围成的图形绕y 轴旋转后所得旋转体体积. 20. 计算曲线)3(31x x y -=上相应于31≤≤x 的一段弧的弧长大学数学A (1)复习题参考答案第一章一、选择题1、D2、A3、C4、B5、C6、B7、A8、C9、D二、填空题10、]3,0( 11、)1,1[- 12、x x21+ 13、)23(2353≠-+=x x x y 14、0 15、1 16、2 17、-1 18、e 19、0三、解答与证明题20(1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n )1113121211(lim +-++-+-=∞→n n n 1)111(lim =+-=∞→n n . (2)2111211lim12lim )12(lim=+++=+++=+-+∞→∞→∞→nn n n n n n n n n n . (3)因为 1212222222+≤++++++≤+n n n n n n n n n n n n ,而 11lim lim 2222=+=+∞→∞→n n n n n n n , 所以121lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n nn . (4)因为n nn n n nn n n nn 101010...101010...211010=+++<+++<=,110lim 10lim 1==∞→∞→nn nn ,故1010...21lim =+++∞→n n n n n .21(1)15723lim2323+++-∞→x x x x x 33115723lim x xx x x +++-=∞→53=.(2)331341lim 134lim 2222=++=++∞→∞→xx x x x x . (3)503020)12()23()32(lim ++-∞→x x x x 503020122332lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→x x x x 503020)02()03()02(++-=3023⎪⎭⎫⎝⎛=. (4)11lim31--→x x x 1)1)(1(lim333231-++-=→x x x x x 3)1(lim 3321=++=→x x x .(5)12)42(lim 28lim2232=++=--→→x x x x x x . (6)112lim 131lim )1311(lim 2132131-=+++-=--++=---→→→xx x x x x x x x x x . (7))1(lim x x x -++∞→011lim=++=+∞→xx x .(8)11)1(lim ln )1(lim11=--=-→→x x x x x x x x .(9)0sin lim ln sin lnlim 00==→→xxx x x x . (10)x xx 3sin 2sin lim0→3232lim 32lim 00===→→x x x x . (11)30sin tan limx x x x -→30)cos 1(tan lim x x x x -⋅=→3202lim x x x x ⋅=→21=. (12)xx x 1)51(lim -→ xt 51-== tt t 511lim -∞→⎪⎭⎫ ⎝⎛+511lim -∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=t t t 5-=e .22 解 由题意知 0)2(lim 23=+-→a x x x ,即06232=+⨯-a ,从而3-=a .23 解 因1→x 时, 012→-x , 而函数极限存在, 则)1(0→→++x b a x即 0lim 1=++→b a x x从而01=++b a (1)故原式=)1)(1)(1(1lim 11lim121a a x x x x x a a x x x ++++--=-+-+→→ aa a x x x +=++++=→141)1)(1(1lim1即41141=+a(2) 由(1)(2)解得1,0-==b a .24 解 (1)因为 a x a x f x x =+=++→→)(lim )(lim 0,1lim )(lim 0==--→→x x x e x f ,而 ,)0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =,须且只须 1=a .所以当且仅当1=a 时,函数)(x f 在0=x 处连续.(2)因为 21111lim 11lim )(lim 00=++=-+=+++→→→x xx x f x x x , a x a x f x x cos )cos(lim )(lim 00=+=--→→,而 ,cos )0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =, 须且只须 21cos =a ,即32ππ±=k a )(Z k ∈. 所以当且仅当32ππ±=k a )(Z k ∈时,函数)(x f 在0=x 处连续.25 证 (1)令14)(23+-=x x x f ,则)(x f 在[0,1]上连续, 且,02)1(,01)0(<-=>=f f由零点定理知,),1,0(∈∃ξ使,0)(=ξf 即01423=+-ξξ,所以方程01423=+-x x 在(0,1)内至少有一个根.(2)设x e x f x3)(-=,则)(x f 在]1,0[上连续,且03)1(,01)0(<-=>=e f f ,故由零点定理知方程在)1,0(内至少有一个根.第二章一、选择题1、C2、D3、A4、C5、C6、B7、A8、D9、B 10、D 二、填空题11、dx x x )2cos 2(2+ 12、21x -13、)415,21(- 14、1215、n x a a )(ln 16、(1,0) 17、)(20x f ' 18、1. 19、),31(+∞ 20、t tcos 1sin -.三、解答与证明题21、解:1-+='e x ex e y .22、解:(1)(sin cos )xy e x x '=+,(sin cos )(cos sin )2cos x x x y e x x e x x e x ''=++-=.(2) 2111111x y x x x '-⎛⎫'=⎪+⎝⎭-⎛⎫+ ⎪+⎝⎭()()2222(1)1(1)(1)(1)1x x x x x x -+--+=⋅+++- 22212(1)(1)x x --==++()1211y x -'⎡⎤''=-+⎢⎥⎣⎦()()22222121x x x x -=+⋅=+23、解:2121-='x y ,所以4121)4(421=='=-x x y , 所以切线方程为)4(412-=-x y ,法线方程为)4(42--=-x y . 24、解:(1)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.10lim 0)0()(lim )0(00'=--=--=++→→+x x x f x f f x x ,10)1ln(lim 0)0()(lim )0(00'=--+=--=+-→→-x x x f x f f x x ,所以函数在0=x 处可导. (2)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.01sin lim 001sinlim 0)0()(lim )0(0200'==--=--=+++→→→+xx x x x x f x f f x x x , 10tan lim 0)0()(lim )0(00'=--=--=--→→-x x x f x f f x x ,所以函数在0=x 处不可导.25、解:两边同时对x 求导得,11ln ()xy y x y e y xy x ''--=+,所以,1ln xyxy yye x y x xe--'=+. 26、解:(1)原式=)1ln()1ln(limx x x x x ++-→=20)1ln(lim xx x x +-→=xx x 2111lim 0+-→=)1(21lim 0x x +→=21.(2)30sin tan lim x x x x -→=30)1cos 1(sin lim xx x x -→=x x x x x cos )cos 1(sin lim 30⋅-→121lim 320⋅⋅=→x x x x =21. (3))arctan 2(lim x x x -+∞→πx x x 1)arctan 2(lim -=+∞→π22111limxx x -+-=+∞→11lim 22=+=+∞→x x x .(4)xx x +→0lim =xx xx x x eeln lim ln 00lim +→+=→,0ln lim 0=+→x x x ,所以原极限10=e .(5))1sin 1(lim 0x x x -→ x x x x x sin sin lim 0-=→20sin lim xx x x -=→x x x 2cos 1lim 0-=→2sin lim 0x x →=0=. (6)2sin lim x dt t x x ⎰→=x x x 2sin lim 0→=21.27、解:22111221dy dy t dt t dx t dx dt t -+===+, 22221()12241d dy d y t dt dx dx t dx t dt t +===+.28、解:函数定义域为),(+∞-∞.'()f x =,令'()0f x =,得驻点1=x ,1x =-为不可导点.由上表可以看出,函数在),1(),1,(+∞--∞上单调上升,函数在(1,1)-上单调下降;函数在1-=x 处取得极大值0)1(=-f ,在1=x 处取得极小值343)1(-=f , 29、解:函数定义域为),(+∞-∞.2363y x x '=-+,666(1)y x x ''=-=-, 令0y ''=,得x =1.当1x >时,0y ''>;当1x <时,0y ''<,所以函数的拐点为(1,3),在(-∞,1)上是凸的;在(1,+∞)上是凹的. 30、解:(1)b ax x y ++='232,a x y 26+=''.由条件,有⎩⎨⎧+=+++=ab a 2601413,解得9,3-=-=b a .(2)149323+--=x x x y ,函数定义域为),(+∞-∞.)3)(1(3963)(2-+=--='x x x x x f ,)1(666)(-=-=''x x x f .令0)(='x f ,得稳定点 11-=x ,32=x . 又012)1(<-=-''f ,012)3(>=''f故149323+--=x x x y 在点1-=x 处取极大值,极大值为19)1(=-f , 在点3=x 处取极小值,极小值为13)3(-=f .31. 解:122111x y x x--+==-+++()2121(1)y x '=-+,()()()312121y x ''=--+ ()()()41212(3)1y x '''=---+…… ()n y()()1121!1nn n x +=-+32. 证明:令x x f ln )(=, 则)(x f 在],[b a 上连续,在),(b a 内可导.所以由Lagrange 中值定理知,),(b a ∈∃ξ,使)()()(ξf ab a f b f '=--,即ξ1ln ln =--a b a b .又由),(b a ∈ξ,故22211ba ab +>>ξ.. 即222ln ln ba aa b a b +>--. 33. 证明:1)令()(0)f x F x x x=>()2'()()(2)'()xf x f x F x x-=2(0)0'()[()(0)]f xf x f x f x =-- 2'()'()(0)xf x xf x xξξ-<<微分中值定理 '()'()f x f xξ-=当0x >时,'()f x 单调增加 ∴'()'(),'()'()0f f x f x f ξξ<->即故有()'()0.(0,)f x F x x>+∞即在单调增加 34. 证明:令)1ln()(u u f +=,则)(u f 在],0[x 上满足Lagrange 中值定理条件,故),0(x ∈∃ξ,使)0)(()0()(-'=-x f f x f ξ,即)0(11)01ln()1ln(-+=+-+x x ξ,即ξ+=+1)1ln(x x . 又由),0(x ∈ξ,故x xx x <+<+ξ11,即x x xx <+<+)1ln(1. 35. 证明:令()[],0,t f t e t x =∈,()t f t e =在[]0,x 应用拉格朗日中值定理 ()00,0x e e e x x ξ-=-<ξ<x e 是单调增函数,0x e e e ξ∴<<,故有1xxx e xe <-<,0x > 证毕第三章一、选择题1-5 DCBDA 6-10 CBCDC 二、填空题 1.3 2. 11arctan 33x C + 3. -3sin3x 4. 221()+C 4f x5. -2 6. -1 7. 0 8.y x =三、解答题1. 572222=557x dx x dx dx x x C --=-+⎰⎰2.2111=23(3)(1)41311ln ||43dx dx dx dx x x x x x x x Cx ⎛⎫=- ⎪+-+--+⎝⎭-=++⎰⎰⎰⎰3. 22221(1)1=ln |1|+C 1212x d x dx x x x +=+++⎰⎰ 4. 42232233113arctan .11x x dx x dx x x C x x ⎛⎫++⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰5.22cos 2cos sin (cos sin )sin cos .cos sin cos sin x x x dx dx x x dx x x C x x x x-==+=-+--⎰⎰⎰ 6.dx x x ⎰-42=c xx +--)2arccos 24(tan 227.⎰-+211xdx =cxx x +-+-211arcsin8.⎰xdx x arctan 2=c x x x x +++-)1ln(6161arctan 312239.令t x tan =,则1x ⎰=3344111cos d ln sin 21cos t t t t ππππ-=+⎰=10. 10d e e x x x -+⎰=112200e 1d de e 1e 1x x x x x =++⎰⎰1arctan(e )arctan e 4xπ==-11.10x ⎰=102⎰2121216π===⎰12. 22()e d xx x x --+⎰=22220002e d 2de 2e2e d xxx x x x x x x ----=-=-+⎰⎰⎰262e =-13.40d 1cos2x x x π+⎰=442001d d tan 2cos 2x x x x x ππ=⎰⎰ 444000111ln 2tan tan d lncos 228284x x x x x πππππ=-=+=-⎰14. 41x⎰412ln x =⎰4112x x ⎤=-⎥⎦⎰124ln 2x ⎡⎤=-⎢⎥⎣⎦⎰ 14218ln 22d x x -=-⎰8ln24=-15. ee 11d d(ln )ln(ln )ln ln e x x x x xx +∞+∞+∞===+∞⎰⎰ 16. 22220322000sin d 2sin 22(2)8=333lim lim lim x x x x t t x x x x x →→→==⎰17.如图所示,解方程组xxy e y e -⎧=⎨=⎩,得交点(0,1),所求面积为11100()d []2x x x x A e e x e e e e---=-=+=+-⎰18.解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰19. 思路: 该平面图形绕y 轴旋转而成体积V 可看作1D :⎩⎨⎧≤≤≤≤yx y 010绕y 轴旋转而成的体积1V ,减去2D :⎩⎨⎧≤≤≤≤2010y x y 绕y 轴旋转而成的立体体积2V 所得,见图解: πππ103)()(102221021=-=-=⎰⎰dy y dy y V V V20.解:12y '==, ∴3432322(21)214)1(113123313122-=+=+=-+='+=⎰⎰⎰x x dx x x dx x x dx y s ba。
大一第一学期高数1试题A及答案
2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。
高等数学期中A考卷及答案海大
专业课原理概述部分一、选择题(每题1分,共5分)1. 微分学的中心概念是()。
A. 极限B. 导数C. 微分D. 积分A. f(x) = |x|B. f(x) = x^2 + 1C. f(x) = 1/xD. f(x) =√x3. 不定积分∫(1/x)dx的结果是()。
A. ln|x| + CB. x + CC. x^2/2 + CD. e^x + C4. 多元函数f(x, y) = x^2 + y^2在点(1, 1)处的偏导数f_x'是()。
A. 0B. 1C. 2D. 35. 线性方程组Ax=b有唯一解的条件是()。
A. A为满秩矩阵B. A为方阵C. A为可逆矩阵D. A为零矩阵二、判断题(每题1分,共5分)1. 极限存在的充分必要条件是左极限等于右极限。
()2. 任何连续函数都一定可导。
()3. 二重积分可以转换为累次积分。
()4. 拉格朗日中值定理是罗尔定理的推广。
()5. 两个矩阵的乘积一定是方阵。
()三、填空题(每题1分,共5分)1. 函数f(x) = e^x在x=0处的导数f'(0)等于______。
2. 若函数f(x)在区间[a, b]上连续,则该函数在该区间上______。
3. 微分方程y'' y = 0的通解是______。
4. 矩阵A的行列式记作______。
5. 向量组线性相关的充分必要条件是______。
四、简答题(每题2分,共10分)1. 请简要说明罗尔定理的内容。
2. 什么是函数的极值?如何求函数的极值?3. 简述泰勒公式的意义。
4. 什么是特征值和特征向量?5. 简述空间解析几何中直线的方程。
五、应用题(每题2分,共10分)1. 计算极限lim(x→0) (sin x)/x。
2. 求函数f(x) = x^3 3x的导数。
3. 计算不定积分∫(cos x)dx。
4. 求解微分方程y' = 2x。
5. 计算二重积分∬D (x^2 + y^2) dxdy,其中D是由x轴,y轴和直线x+y=1围成的区域。
厦门大学《高等数学(AC)》经管类(A卷)期末试卷及答案
一、解下列各题 (每小题6分,共42分)1、 220limarctan xt x x e dtx x-→-⎰. 2、设函数()f x 连续,且31()x f t dt x -=⎰,求(7)f .3、设(cos )ln(sin )f x dx x c '=+⎰,求()f x .4、已知点()3,4为曲线2y a =a , b .5、求函数2()2ln f x x x =-的单调区间与极值.6、设函数21()cos x f x x⎧+=⎨⎩0,0.x x ≤> 求2(1)f x dx -⎰.7、求曲线3330x y xy +-=的斜渐近线.二、计算下列积分(每小题6分,共36分)1、31sin cos dx x x ⎰.2、.3、523(23)x dx x +⎰.4、41cos 2xdx x π+⎰. 5、312⎰ 6、2220x x edx +∞-⎰,其中12⎛⎫Γ= ⎪⎝⎭.三、应用题(每小题6分,共12分)1、 假设在某个产品的制造过程中,次品数y 是日产量x 的函数为: 2100,102100.x x y xxx ⎧≤⎪=-⎨⎪>⎩并且生产出的合格品都能售出。
如果售出一件合格品可盈利A 元,但出一件次品就要损失3A元。
为获得最大利润,日产量应为多少? 2、设函数()f x 连续,(1)0f =,且满足方程1()()xf x xe f xt dt -=+⎰,求()f x 及()f x 在[]1,3上的最大值与最小值.四、证明题(每小题5分,共10分)1、当0x >时,证明:(1ln x x +>2、设函数)(x f 在[],a b 上连续,()0f x ≥且不恒为零,证明()baf x dx ⎰0>.一、解下列各题 (每小题6分,共42分)1、解:2220023200011lim lim lim arctan 33xxt t x x x x x e dtx e dte x x x x ---→→→---===⎰⎰ 2、 解:两边求导有233(1)1xf x -=,令2x =,得1(7)12f =。
厦门大学《高等数学》期中试卷A及答案
二、填空题:(每小题4分共24分)
7.设函数 可表示成 ,其中 为偶函数, 为奇函数,则 =; =。
8. 。
9.设 ,则当 , 时, 处处可导。
10.设 由方程 所确定,则曲线 在 处的法线方程为。
11.设 可导,函数 由 所确定,则 。
12.设 有任意阶导数且 ,则 。(n>2)
18.溶液自深18cm顶直径12cm的正圆锥形漏斗中漏入一直径为10cm的圆柱形筒中,开始时漏斗中盛满了溶液。已知当溶液在漏斗中深为12cm时,其表面下降的速度为1cm/s,问此时圆柱形筒中溶液表面上升的速度为多少?
厦门大学《高等数学》期中试卷A参考答案
一、单项选择题:
1. B,2. C, 3. C, 4. C, 5. D, 6. A.
17.证明:令 。在 上, , ,由罗尔定理,存在 ,使 。
又 , , ,再对 应用罗尔定理,存在 ,使 ,即 。
五、应用题:
18.解:设漏斗在时刻t的水深为h(cm),筒中的水深为H(cm),则漏斗中水面半径满足 ,即 。设盛满溶液时漏斗的体积为 ,则有
上式两边对 求导,得
。
代入 , ,得圆柱形容器中溶液表面上升的速度为
厦门大学《高等数学》期中试卷A
题号
一
二
三
四
五
总成绩
得分
评卷人
一、单项选择题:(每小题4分,共ห้องสมุดไป่ตู้4分)
1.设 ,则 。
(A)0;(B)1;(C) ;(D) 。
2.设
(A)在 内有界;(B)当 时为无穷大;
(C)在 内无界;(D)当 时有极限。
3.设 时, 与 是同阶无穷小,则 为。
(A)1;(B)2;(C)3;(4)4。
高等数学a试卷及答案
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
《高等数学》考试试卷A卷及答案解析
《高等数学》考试试卷A 卷及答案解析一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________.4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________.5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段.8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.《高等数学》考试试卷A 卷答案一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yzx e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分)解:1(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n nx n 6分 1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=+⎰5分()13202xx x dx =-++6分12=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-=3分又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
高数I(一)A及答案
1 ⎧ ⎪ 1+ x , x ≥ 0 ⎪ 2.设 f ( x ) = ⎨ ⎪ cos x , x < 0 ⎪ ⎩ 2 + sin x
求
∫π
−
4
f ( x )dx .
2
序号
封
3.设函数 y = f ( x) 由参数方程 ⎨ 班级
⎧ x = ln(1 + t 2 ) dy d 2 y 所确定,求 、 . 2 d x d x = − y t t arctan ⎩
…… 5 分 …… 6 分
sin x (cos x ln x + )dx x
= ln( 2 +
序号
sin x ) − π + ∫
2
2t dt 01+ t
2
…… 4 分 …… 6 分
= ln 2 + 4 − 2 ln 3 3、已知 f ( x) 的一个原函数是 解:
⎧ x = ln(1 + t 2 ) dy d 2 y 3、设函数 y = f ( x) 由参数方程 ⎨ 所确定,求 、 . dx d x 2 ⎩ y = t − arctan t
. .
2.设 f ( x) =
e x −1 e +1
1 x
,则 x = 0 是 f ( x) 的( B. 跳跃间断点; D. 连续点.
) .
1.函数 y = 学号
2 − x + ln( x − 1) 的定义域为
A. 可去间断点; C. 第二类间断点; 3. lim(e + x) x =(
x x →0 1
2015 年秋季学期 《高等数学 (一)》课程期末考试试卷(A 卷)
注意:1、本试卷共 3 页; 3、姓名、学号必须写在指定地方; 2、考试时间 110 分钟; 4、阅卷负责人签名: 1.设 f ( x) = x + ln(1 + x) ,当 x → 0 时,有(
大学高等数学期末考试题A卷(答案)
广东海洋大学2006 —— 2007 学年第 二学期《高等数学》试题答案(A 卷)一、填空题。
(每小题3分,共24分) 1.曲线2x y =与直线xy 2= 所围成的平面图形面积为A= 34;2.设向量{}2,3,1-=a,{}2,2,1-=b,则a·b= -3 ;3. 函数221yx z--=的定义域为 }1),({22≤+y x y x ;4.过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程为: 3x -7y +5z -4=0 ;5.设函数x y Z cos =,则yx Z ∂∂∂2= -sinx ;6.改变累次积分I=⎰⎰102),(xx dy y x f dx 的次序为I = ⎰⎰10),(X yy d y x f dy ;7. 设曲线方程为⎩⎨⎧=+-=++0380422222z y x z y x ,该曲线在Oxy 面上的投影方程为: ⎩⎨⎧==+0042z y x .8. 写出函数x x f sin )(=的幂级数展开式,并注明收敛域:x sin = )(,)!12()1(!5!312153R x n xxxx n n ∈+--+-+---二、选择题。
(每小题3分,共15分)1.函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的( D )(A)必要而非充分条件 (B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 2.下列方程中,通解为12e e x x y C C x =+的微分方程是( A ). (A) 02=+'-''y y y (B) ''+'+=y y y 21; (C) '+=y y 0 (D) '=y y . 3. 设函数),(v x f Z=,),(y x v ϕ=,其中ϕ,f 都有一阶连续偏导数,则xZ ∂∂等于( B )班级:姓名:学号:试题共 页加白纸张密封线(A)xf ∂∂ ;(B)vf xf ∂∂+∂∂·x∂∂ϕ ; (C)xxf ∂∂+∂∂ϕ ; (D)xf ∂∂·x∂∂ϕ4.设函数),(y x f Z=在点(1,2)处有)2,1(='x f ,)2,1(='y f ,且1)2,1(="xx f ,0)2,1(="xy f ,2)2,1(="yy f ,则下列结论正确的是( D )(A ))2,1(f 不是极大值; (B ))2,1(f 不是极小值; (C ))2,1(f 是极大值; (D ))2,1(f 是极小值。
(完整版)大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号姓名成绩大题一二三四五六七小题12345得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.a b0a b += 2a = 2b = a b ⋅= 2、设,则.ln()z x xy =32zx y ∂=∂∂3、曲面在点处的切平面方程为.229x y z ++=(1,2,4)4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数()f x 2π[,)ππ-()f x x =()f x 在处收敛于,在处收敛于.3x =x π=5、设为连接与两点的直线段,则.L (1,0)(0,1)()Lx y ds +=⎰※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2222222393x y z z x y⎧++=⎪⎨=+⎪⎩0M (1,1,2)-2、求由曲面及所围成的立体体积.2222z x y =+226z x y =--3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?11(1)lnn n n n∞=+-∑4、设,其中具有二阶连续偏导数,求.(,sin x z f xy y y =+f 2,z zx x y∂∂∂∂∂5、计算曲面积分其中是球面被平面截出的顶部.,dSz ∑⎰⎰∑2222x y z a ++=(0)z h h a =<<三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小22z x y =+1x y z ++=值.四、(本题满分10分)计算曲线积分,(sin )(cos )x x Le y m dx e y mx dy -+-⎰其中为常数,为由点至原点的上半圆周.m L (,0)A a (0,0)O 22(0)x y ax a +=>五、(本题满分10分)求幂级数的收敛域及和函数.13nn n x n∞=⋅∑六、(本题满分10分)计算曲面积分,332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰其中为曲面的上侧.∑221(0)z x y z =--≥七、(本题满分6分)设为连续函数,,,其中是由曲面()f x (0)f a =222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰t Ω与所围成的闭区域,求 .z =z =30()lim t F t t+→-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;→→不得带走试卷。
西华大学高等数学考核参考答案(A 卷)
2a
2a
(0, 1 ) 是凸区间,[ 1 , + ∞)是凹区间, ( 1 , 1− ln 2a)是拐点。
2a
2a
2a 2
x
∫ 3、解:首先,当 x ≠ 0 时,令 xt = s ,则
g(x) =
1
f (xt)dt =
f (s)ds
0
∫0
x
x
∫ xf (x) − f (s)ds
gʹ(x) =
0
x2
其次,当 x = 0 时,由 f (x) 连续, lim f (x) = 2,知 x→0 x
0
0
6
五、参考答案及评分标准
证:设 F (x) = f (x) − x,则 F (x) 在[0, 1]上连续,在 (0, 1) 内可导,且 Fʹ(x) = f ʹ(x) −1
因为 F(0) = 0, F(1) = f (1) − 1 = 1 > 0, F(1) = f (1) −1 = −1 < 0 2 2 22 1
0
2 π
(sin
x
−
cos
x)dx
4
π
π
=
[sin
x
+
cos
]x 4 0
+ [− cos
x
− sin
]x
2 π
=
2(
2 −1)
4
1 x2
1 x cos x
∫ ∫ 3、原式=
−11+ x2 dx +
dx −1 1+ x2
1
1
∫ = 2 0 (1− 1+ x2 )dx + 0
+∞ exdx
高等数学A(下)练习题及答案
高等数学A(下)练习题一、填空题1.设k j i a43+-=,k j i b λ++=62,且a b ⊥ ,则λ= 4 ;2.设平行四边形两邻边为222a i j k =++,24b i j k =++ ,则该平行四边形的面积为3.的平面方程为03245轴且垂直于平面过=+-+z y x x 2+40y z = ;4.xoy 平面上的抛物线22y x =绕x 轴旋转生成的旋转抛物面方程为 222y +z x =;5.设y z u x =,则(1,2,3)uy∂=∂ 0 ;6.设222(,,)ln()f x y z x y z =++,则(1,2,2)gradf -= 244(,,)999- ;7.椭球面222236x y z ++=在点(1,1,1)处的法线方程为 111462x y z ---== ; 8.交换积分次序:10(,)xdx f x y dy =⎰210(,)yyd y f x y d x⎰⎰ ; 9.判别级数1n ∞=的敛散性,结论:该级数是 发散 ;10.级数01(1)(2)n n n ∞=++∑的和为 1 ;11.幂级数1nn ∞=的收敛域是 [)1,1- ;12.微分方程23(1)0dy y x dx++=的通解为 34(1)34y x C +=-+ 。
二、计算题1.()y x f z ,=由方程22222x y z z ++=确定,求2,z zx x y∂∂∂∂∂。
解:方程为:22222x y z z ++=方程两边对x 求导,得到 242x x x z z z +⋅= 整理得到: ()422x z z x -⋅=-所以: ()1224242x x z x z z --==--- 再两边对y 求导,得到 ()()221424xy y z x z z -=---方程22222x y z z ++=两边对y 求导,得到 242y y y z z z +⋅= 所以 242x y z z -=-,从而 ()()232842164242xy y z x z xy z z ---=-=---2.设22(,)z f x y x y =+,且f 具有二阶连续偏导数,求y z∂∂,xy z ∂∂∂2。
北京科技大学2024-2025学年度第1学期高等数学A试题及答案
装 订 线 内 不 得 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊(A )0 (B )1 (C )2 (D )217.在空间直角坐标系下,z 轴的对称式方程为 【 】.(A )1001zy x ==-; (B ) 2300--==z y x ; (C )001zy x ==; (D )10z y x == . 8.函数)(x f 在点a 可导,则ax a f x f a x --→)()(lim 22下列结论正确的是 【 】( A ) )('a f ( B ) )('2a f ( C ) )()('2a f a f ( D ) 09. 已知函数)(x f 具有随意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的整数时,)(x f的n 阶导数)()(x f n 是【 】(A ) 1)]([!+n x f n (B )1)]([+n x f n (C )n x f 2)]([ (D )n x f n 2)]([!。
10. 设)(x f 的导数是x sin ,则)(x f 的一个原函数为 【】(A )1+x sin (B )1-x sin (C )1+x cos (D )1-x cos三、(8分) 计算x ->+∞四、(8分)设⎪⎩⎪⎨⎧+-=++=22)1(21)1ln(t arctgt y t x 求.,22dx y d dx dy五、(8分) 求不定积分⎰-dx xx1arcsin六、(8分) 利用定积分定义计算极限 121lim +∞→+++p pp p n n n (0)p >)装 订 线 内 不得 答 题自觉遵 守考 试 规 则,诚 信 考 试,绝 不作 弊七、(8分)求极限 xx x x cos 11sin lim -→⎪⎭⎫⎝⎛八、(8分)求定积分312x dx --⎰九、(8分)求极限 )1ln(d lim21cos 02x te xt x +⎰-→十、(5分)已知汽车行驶每小时的耗油费用为y (元),它与行驶速度x (公里 / 小时)的关系为325001x y =.若汽车行驶时除耗油费用外的其它费用为每小时100元,问汽车最经济的行驶速度为多少? 装 订 线 内 不 得 答 题自觉遵 守考 试 规 则,诚 信 考 试,绝 不作 弊十一、(5分)如图:已知半径为R 的半球形水池充溢了水,求当抽出水所做的功为将水全部抽出所做的功的一半时, 水面下降的高度。
高等数学上、下册考试试卷及答案6套[1]
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
高等数学A(二)2022-2022(A)试卷及解答
高等数学A(二)2022-2022(A)试卷及解答--------------------------------------------------------------------------------------上海海事大学试卷2022—2022学年第二学期期末考试《高等数学A(二)》(A卷)(本次考试不能使用计算器)班级学号姓名总分题目得分阅卷人一二12345678910四一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分3小题,每小题4分,共12分)某y1、函数f(某,y)某2y20装订(某,y)(0,0)(某,y)(0,0)在点(0,0)处()线------------------------------------------------------------------------------------(A)连续且可导;(B)不连续且不可导;(C)连续但不可导;(D)可导但不连续.2、函数z某2y在点(3,5)沿各方向的方向导数的最大值为()(A)3;(B)0;(C)5;(D)23、设Ω是由3某2+y2=z,z=1-某2所围的有界闭区域,且f(某,y,z)在Ω上连续,则f(某,y,z)dv()dy1某23某2y2(A)2d某(C)12014某20f(某,y,z)dz(B)dz01某某dyzy23zy23f(某,y,z)d某111y2dy21y22d某1某23某2y2f(某,y,z)dz(D)d某121214某214某2dy3某2y21某2f(某,y,z)dz第1页共8页二、填空题(将正确答案填在横线上)(本大题分3小题,每小题4分,共12分)1、设函数zz(某,y)由方程zez某y所确定,则dz2、微分方程yye某的通解为0,某2,已知S(某)是f(某)的以2为周期的3、设f(某)某,某022正弦级数展开式的和函数,则S9=4三计算题(必须有解题过程)(本大题分10小题,共70分)1、(本小题7分)z2z设zarcin(某0),求,22某某y某yy2、(本小题7分)计算二重积分ID1in2(某y)d某dy,D:0某2,0y23、(本小题7分)判别下列级数的敛散性,并说明绝对收敛还是条件收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
2?y?x2?2x3?42a(0,0),b(2,2)s2xxdxx 解:由?03?03??y?2x27. 若f(x)的一个原函数是ln(x?,求?xf??(x)dx解 xf??(x)dx?xdf?(x)2分xf(x)f(x)dx 3分xf(x)f(x)c 5分f(x)??ln(x??f(x)22分8分xf(x)dx??c10分c四、应用题(每题7分,共14分)1.欲制一体积为v的圆柱形易拉罐,问如何设计用料最省?解:设底圆半径为r,则高为v,表面积2rs(r)?2?r2?2?rh?2?r2?2?rs?(r)?4?r?2v0,rr2令vv22r2r?r2当底圆半径为r?时用料最省。
2.设函数f(x)在[0,3]上连续,在(0,3)内可导,f(0)?f(1)?f(2)?3,f(3)?1.试证必存在??(0,3),使f?(?)?0证因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且f(x)在[0,2]上必有最大值m和最小值m,于是m?f(0)?m,f(0)?f(1)?f(2)m mf(1)m,故m?3m?f(2)?m.由介值定理知,至少存在一点c?[0,2],使f(c)?f(0)?f(1)?f(2)1.3因为f(c)?f(3)?1,且f(x)在[c,3]上连续,在(c,3)上可导, 所以由罗尔定理,必存在一点??(c,3)?(0,3),使f?(?)?0.【篇二:高等数学a卷】…_线__订_装___…__…__…_线_订:装名…姓…生…学线订装…………师教考监交并一纸题答与须卷试…号:……学…生线学订_装__…__…__…_线__订_装__…__…_级…班线订生装学………………内蒙古科技大学2013/2014 学年第二学期 (a) ?1?, (b) 《高等数学a(2)》考试试题a1n?2?n?1n!n1n2, (c) ?, (d) n?n?1n?n?110n二、填空题(共8题,每题3分,共24分)课程号:680000102考试方式:闭卷 1.设?(1,2,3),?(3,2,6),则??25 .使用专业、年级:任课教师:公共数学部考试时间:2014-07-07备注:2.已知向量的终点为b(2,?1,0),且它在x轴、y轴、z轴上的投影依次为1,2,?1,一、选择题(共8题,每题3分,共24分)则的始点坐标是(1,-3,1) .1.设|a|?2,|b|?2且a?b?2则|a?b|?( a)3.函数z?ln(1?x?y)的定义域是?(x,y)|x?y?1? . (a)2 (b) 22,(c) 12 ,(d) 14.设z?ln(x2?xy?y2),则xzxyzy2 . 2.直线x?3?2?y?4?7?z3与平面4x?2y?2z?3的关系是( a ) 5.设区域d为?1?x?1,0?y?1,则(a) 平行但直线不在平面上,( b) 直线在平面上,( c) 垂直相交,( d) 相交但不垂直x2ydxdy的值等于 1/3 .d3.设f(x,y)?3x3?2xy,则f)等于( a )6.设?为球面x2?y2?z2?r2.(a) 13,(b)12, (c) 2,(d) 0 7.级数?(?1)n?1xnn的收敛半径是1 . 4.设d:x2y24则??ex2?y2dxdy等于( d )n?1dn(a)442(e?1), (b) 4, (c) ?5, (d) ?(e?1)8.级数1?的和等于1/2 .n?1?35.设l是从a(1,0)到b(?1,2)的线段,则曲线积分?(x?y)ds?( b )三、解答题(共2题,每题6分,共12分)l(a) 0, (b) 22, (c) 2,(d) 2 1.设z?exey,而y?x33x,求dzdx 6.设l是圆周x2?y2?a2(a?0)负向一周,则曲线积分x2y2z24z0,求?z?22.设z(x3?x2y)dx?(xy2?y3)dy?( a ) ?x,?x2l四、解答题(共4题,每题6分,共24分)(a) ?a4,(c) ?,(d) a21.计算??xydxdy,其中d是由直线x?2,y?1及y?x所围成的闭区域.2a4, (b) ??d2.计算中?是由曲面z?x2?y2与平面z?4所围成的闭区域. 7. 若un?0,sn?u1?u2un,则数列?sn?有界是级数?un收敛的( c ) zdxdydz,其?n?13.计算2(a)充分条件但非必要条件, (b) 必要条件但非充分条件, ?l(x2?2xy)dx?(y2?2xy)dy,其中l为抛物线y?x上从点(?1,1)到点(1,1)的一段弧. (c)充分必要条件,(d)既非充分条件,又非必要条件. 8.下列级数中收敛的级数是( b )4.计算??ds,其中?是球面x2?y2?zz2a2被平面z?h(0?h?a)截出的顶部. 第 1 页共 2 页□□□□□□□□□□□□五、解答题(共2题,每题6分,共12分)1.将f(x)?ln(a?x)(a?0)展开为x的幂级数,并指出其收敛区间.2.设平面薄片所占的闭区域d由y?2px,x?x0,y?0所围成,求此均匀薄片的质心.六、证明题(本题4分)设an?0(n?1,2,?),证明若级数?an收敛,则级数?an也收敛.n?1n?1n第 2 页共 2 页【篇三:高数一a卷及答案】… … … … … …… … … … … … … … … … … … … … …姓名…… …… … … … … … …… 名… … 线姓…… 订装…… …号… … … … 学…… … … … … ……… … 号…… 学……… … … … … … …… … … … … … ……级……班…………………常州大学考试命题用纸考试科目高等数学(一)学时考试用时 2小时 (闭卷√ 开卷) 成绩 a卷共 3 页,第 1 页《高等数学一》试卷3.微分方程y2y??e2x的一个特解应具有的形式(其中a,b为常数)是[] .a.axe2xb.(ax?b)e2x 本试卷适用班级:c.x(ax?b)e2xd.x2(ax?b)e2x4.设limn??u?n,则级数?(1?1u []n?1unn?1 a.收敛于0 b.收敛于1c.发散d.敛散性不确定一、填空题题(本大题共 4 小题,每小题 4 分,共 16分)三、解答题(本大题共 6 小题,每小题 8分,共 48分)1. 已知a,b均为单位向量,且a??b??1则以向量a?,?1.设z?f(2x?3y,xy),其中f具有二阶连续偏导数,求全微分dz及?2z2b为邻边的平行四边形面积等于_____.xy.2.曲面z?2x2?3y2在点?1,0,2?处的切平面方程为_______________________.3.交换积分次序得:1edy?eyf(x,y)dx?__________________________.4.设l:x2?y24,则l(x2?y2)ds?_____________.二、选择题(本大题共4小题,每小题 4 分,共 16分)1.设?(x?az,y?bz)?0确定了隐函数z?z(x,y),?(u,v)可微,则a?z?z?x?b?y[]2.计算二重积分x2?y2dxdy,其中d是由曲线x2?y2?4及x2?y2?2x围成.a.ab.b dc.?1d.12. 设d:x2y21, f是区域d上的连续函数,则??fdxdy?[]da.2??10?f(?)d?b.4??1f()dc.2?10f(?2)d?d.4f()d3.设空间立体?由曲面z?x2?y2与z?2?x2?y2所围成,试求其体积.5.求幂级数nnx? 的收敛区间及和函数. n?1x2y21上具有二阶连续偏导数,l为取顺时针方向的椭圆周 4. 设f(x,y)在区域d:4x2?f??f?y21,计算曲线积分??3y??dx?dy.l4?x??y?6.将f(x)?1展开成x的幂级数,指出展开式成立的区间, 3?x并由此计算级数1的和. ?n6n?0四、解答题(本大题共 1 小题,每小题 10 分,共 10分)五、解答题(本大题共 1小题,每小题 10 分,共 10 分)设函数f(x)具有连续导数,且f(1)?0,试求函数f(x), 使得曲线积分求函数z?x2?y2?12x?16y在区域x2?y2?25上的最大值和最小值. llnxyf(x)?dx?f(x)dy在右半平面内与路径无关.x高等数学(一)a卷参考答案一.填空题?4??4?16??体积v? =dv?d2?x2?y2?x2?y2dxdy (4分)22?0d??102??d? (6分)1.22. 4x?z?2?03.=? 4.432?1 (8分)e1dx?lnx0f(x,y)dy4. 16?二.单选题?4??4?16?? 1. d, 2. a, 3. a, 4. b三.解答题?8??6?48?? ?z1. =2f1??yf2?,?z=3f1??xf2? (4分) ?x?yl2f?ff?2f3?dxdy (5分) ??3y??dx?dy=x??y?y?x?x?y??d?=?3dxdy (6分)d6? (8分)dz?(2f1??yf2?)dx?(3f1??xf2?)dy(5分)2z=2(3fxf)fy(3fxf)=f6f(2x3y)fxyf (8分)1112221222111222xy2.n?11(1分)x??n(-1,1)收敛半径r?1,收敛区间为(3分) 5.??limnxn?1n=xnxn?1nn?1(4分)dx2?y2dxdy=?2?0d2d2?d??222cos?02d(4分)=x(xn?1)?x?=x (6分)1?x??2?321620cos3d (6分) =33016?32= (8分) 393.d:x?y?1 (2分)22=xx?(?1,1) (8分)(1?x)21116.f(x)?(2分)x3?x31?3yf(x)?dx?f(x)dy在右半平面内与路径无关,x11lnx所以,?lnx?f(x)??f?(x),即f?(x)?f(x)?…….(4分)xxx因为曲线积分llnx1??x?=(4分) 3n?0?3?=n11?lnx这是一阶线性方程,于是f(x)?ex??xdx?c?…….(6分) ?x?3n?01n?1x (5分)n1x??lnxdx?c?…….(7分)c,…….(8分) x=lnx?1?x?(?3,3) (6分)11?1??1?6?3?3f (8分) ??nn?1??225n06n03n因为f(1)?0,所以c?1…….(9分) 故f(x)?lnx?1?1…….(10分) xz2x120x6x四、(10分)令?得?, .........(1分)..........(3分)zy82y160y因为(6,?8)不在圆内,所以,最大值及最小值在x?y?25上取得。