生物信息学期末复习知识点总结
生物信息学期末复习资料(小字)
生物信息学期末复习资料(小字)名词解释或辨析。
1.生物信息学:生物信息学是包含生物信息的获取、处理、贮存、分发、分析和解释的所有方面的一门学科,它综合运用数学、计算机科学和生物学的各种工具进行研究,目的在于了解大量的生物学意义。
2.基因芯片:固定有寡核苷酸、基因组DNA或互补DNA 等的生物芯片。
利用这类芯片与标记的生物样品进行杂交,可对样品的基因表达谱生物信息进行快速定性和定量分析。
3.人类基因组计划:HGP,是一项规模宏大,跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而描绘人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。
4.中心法则:分子生物学的基本法则,是1958年由克里克(Crick)提出的遗传信息传递的规律,包括由DNA到DNA的复制,由DNA到RNA的转录和由RNA 到蛋白质的翻译等过程。
20世纪70年代逆转录酶的发现,表明还有由RNA逆转录形成DNA的机制,是对中心法则的补充和丰富。
5.相似性和同源性:相似性(similarity)和同源性(homology)是两个完全不同的概念。
同源序列是指从某一共同祖先经过趋异进化而形成的不同序列。
相似性是指序列比对过程中检测序列和目标序列之间相同碱基或氨基酸残基序列所占比例的大小。
当两条序列同源时,他们的氨基酸或核苷酸序列通常有显著的一致性(identity)。
如果两条系列有一个共同进化的祖先,那么他们是同源的。
这里不存在同源性的程度问题,两条序列要么是同源的要么是不同源的。
1.生物信息学:综合计算机科学、信息技术和数学的理论和方法来研究生物信息的交叉学科。
包括生物学数据的研究、存档、显示、处理和模拟,基因组遗传和物理图谱的处理,核苷酸和氨基酸序列分析,新基因的发现和蛋白质结构的预测等。
2.蛋白质组:指由一个基因组,或一个细胞、组织表达的所有蛋白质。
生物信息学期末考试重点
第一讲生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。
生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。
生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。
生物技术与生物信息学的区别及联系生物信息学的发展历史•人类基因组计划(HGP)•人类基因组计划由美国科学家于1985年提出,1990年启动。
根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。
HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。
(百度百科)随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。
换句话说,人类基因组计划为生物信息学提供了兴盛的契机。
上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。
:】第二讲回顾细胞结构细胞是所有生命形式结构和功能的基本单位细胞组成细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等细胞核最大的细胞器DNA的结构碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G)。
核苷酸核苷酸是构成DNA分子的重要模块。
每个核苷酸分子由一分子称作脱氧核糖的戊糖(五碳糖)、一分子磷酸和一分子碱基构成。
每种核苷酸都有一个碱基对,也就是A、T、C、G基因是什么基因是遗传物质的基本单位基因就是核苷酸序列。
大部分的基因大约是1000-4000个核苷酸那么长。
生物信息复习资料
生物信息复习资料生物信息复习资料生物信息学是一门综合性学科,涉及生物学、计算机科学和统计学等多个领域。
它的出现和发展,为我们深入研究生物体的基因组、蛋白质组以及其他生物大数据提供了强有力的工具和方法。
在生物信息学的学习和研究过程中,我们需要掌握一些基本的概念、技术和工具。
下面,我将为大家整理一些生物信息学的复习资料,希望能够对大家的学习有所帮助。
一、基本概念1. 生物信息学:生物信息学是一门研究生物体内信息的获取、存储、处理和分析的学科。
它通过运用计算机科学和统计学的方法,挖掘和解释生物体内的基因、蛋白质等分子信息,从而揭示生物体内的生命规律和机制。
2. 基因组学:基因组学是研究生物体基因组结构、功能和演化的学科。
它通过对生物体DNA序列的测定和分析,揭示基因组的组成、基因的定位和功能等信息。
3. 蛋白质组学:蛋白质组学是研究生物体蛋白质组成、结构和功能的学科。
它通过对生物体蛋白质的测定和分析,揭示蛋白质的组成、互作关系和功能等信息。
4. 基因表达谱:基因表达谱是指在特定条件下,生物体内基因的表达水平和模式。
通过对基因表达谱的分析,可以了解基因在不同组织、不同发育阶段或者不同环境条件下的表达情况,从而揭示基因的功能和调控机制。
二、常用技术和工具1. DNA测序技术:DNA测序技术是获取生物体基因组序列的重要方法。
常见的DNA测序技术包括Sanger测序、高通量测序和单分子测序等。
其中,高通量测序技术如Illumina测序和Ion Torrent测序,具有高通量、高准确性和低成本的特点,广泛应用于基因组学和转录组学研究。
2. 生物信息学数据库:生物信息学数据库是存储和管理生物学数据的重要资源。
常见的生物信息学数据库包括GenBank、EMBL、DDBJ、NCBI、Ensembl和Uniprot等。
这些数据库提供了丰富的生物学数据,如基因序列、蛋白质序列、基因表达数据等,为生物信息学的研究和分析提供了基础。
生物信息学,复习资料
第一章生物信息学是生命科学、计算机科学、现代信息科学、数学、物理学以及化学等多个学科交叉结合形成的一门新学科,是利用信息技术和数学方法对生命科学研究中的生物信息进行存储。
检索和分析的科学。
1982年创建了GenBank数据库。
(1)序列数据资源:储存了生物信息学研究的原始数据,是生物信息学存在和发展的基础。
(2)序列比对与比对搜索:相似性分析是生物信息学最早涉及的问题之一。
常用的分析方法是序列比对。
(3)基因组结构注释(4)分子系统发生分析:系统发生关系是表示物种进化关系的参考依据。
通过分析分子水平的序列数据,可以了解物种系统发生的关系,目前常用树的形式来表示不同物种间的进化关系。
(5)蛋白质结构:蛋白质的空间结构是其行使功能的基础。
(6)蛋白质序列分析与功能预测。
(7)微阵列数据分析:微阵列是一种重要的基因表达高通量检测技术。
(8)蛋白质组数据分析:高通量的蛋白质组工程能够大范围地确定蛋白质功能,能确定蛋白质在哪种特殊的生理条件下会出现,还能确定那些蛋白质之间有相互作用。
(9)疾病相关研究:寻找疾病相关基因是认识疾病发生机理、研制疾病的基因诊断与防治手段的基础,也是人类基因组研究的重要手段。
(10)SNP芯片及深度测序数据分析。
视黄醇结合蛋白是一个相对分子质量小、被大量分泌的蛋白质,能结合血液中的视黄醇。
性质:①在多个物种中有许多蛋白质和RBP4同源,包括人、小鼠和鱼总的蛋白质。
②也有许多人类蛋白质额RBP4紧密相关,它们和RBP4的家族成为lipocalin家族——一群多样的小配体结合蛋白,它们倾向于分泌到细胞外空间。
③有细南的lipealin 蛋白,它们在对抗生素的抗性中起作用。
编码细菌lipocalin 的基因可能是一古老基因,它通过水平基因转移的过程进人真核生物基因组。
④些lipocalin 蛋白的表达水平受到显著的调控。
⑤lipealin 蛋白小而丰富,并且是可溶性的,它们的生物化学性质已被详细研究,许多蛋白质的三维结构也以x线晶体街射的方法被解析出来。
生物信息学B复习要点
生物信息学B复习要点(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--知识点:1.生物信息学:生物信息学是一门(交叉)学科,它包含了生物信息的获取、处理、存储、分发、分析和解释在内的所有方面。
他综合的应用(数学)、(计算机科学)和(生物学)的各种工具,来阐明和理解大量数据中包含的生物学意义。
2. 人类基因组计划 :(human genome project,HGP)是一个国际合作项目,由美国/德国/法国/英国/日本和中国科学家共同参与。
其旨在测定组成人类染色体(指单倍体)中所包含的30亿个核苷酸序列的碱基组成,从而绘制人类基因组图谱,辨识并呈现其上的所有基因及其序列,进而破译人类遗传信息。
人类基因组计划是人类为了解自身的奥秘所迈出的重要一步,是继曼哈顿原子弹计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。
3. 一级数据库数据库:直接来源于实验获得的原始数据,只经过简单的归类整理和注释。
包括:基因组数据库,序列数据库(核酸和蛋白质)以及结构数据库。
4. 二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。
5.公共序列数据库:1988 年3个数据库达成协议,组成合作联合体。
它们每天交换信息,并对数据库 DNA 序列记录的统一标准达成一致。
每个机构负责收集来自不同地理分布的数据(EMBL 负责欧洲, GenBank 负责美洲, DDBJ负责亚洲等),将所有信息汇总在一起,共同享有并向世界开放,故这 3 个数据库又被称为公共序列数据库。
6.主要核酸序列数据库: GenBank、EMBL、 DDBJ7.主要蛋白质序列数据库:Swissprot, PIR8. 蛋白质结构分类数据库包括:SCOP和CATH。
格式,又称Pearson 格式。
特点:最常用、最简单的序列注释格式命名规则:(理解即可)1、以大于号“>"起始2、标题行( a single-line description) 位于文件的第一行,(中英均可)3、序列行随后,序列行中不允许有空间,每行文字不超过80个字符4、组成序列信息字符串的符号应为IUB/IUPAC(International Union Of Pure And Applied Chemistry)核苷酸或氨基酸的符号5、核苷酸字符大小写均可,氨基酸字符应大写6、"-"单个连字符表示一个空位“gap”7、序列中不允许有数字、不明确的核苷酸用N表示,氨基酸用X表示8、氨基酸序列中“*”表示终止9、常保存为.txt文档GBFF序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。
生物信息学复习总结
生物信息学复习总结第一篇:生物信息学复习总结生物信息学复习总结1.生物信息学的发展历史。
A.20世纪50年代,生物信息学开始孕育。
B.20世纪60年代,生物分子信息在概念上将计算生物学和计算机科学联系起来。
C.20世纪70年代,生物信息学的真正开端。
D.20世纪70年代到80年代初期,出现了一系列著名的序列比较方法和生物信息分析方法。
E.20世纪80年代以后,出现一批生物信息服务机构和生物信息数据库。
F.20世纪90年代后,HGP促进生物信息学的迅速发展。
2.生物信息学主要研究内容。
(1)生物分子数据的收集与管理;(2)数据库搜索及序列比较;(3)基因组序列分析;(4)基因表达数据的分析与处理;(5)蛋白质结构预测。
3.蛋白质的一二三级结构。
(1).蛋白质的一级结构是指多肽链中氨基酸的序列(2).蛋白质的二级结构主要有以下几种形式:(i)ą螺旋;(ii)ß折叠–平行折叠反平行折叠;(iv)无规卷曲-没有确定规律性的肽链构象,但仍然是紧密有序的稳定结构。
(v)无序结构。
(3).蛋白质的三级结构(tertiary structure):在二级结构基础上的肽链再折叠形成的构象。
4.一二级数据库(怎样查?)一级数据库----数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释二级数据库----对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验数据和理论分析的基础上针对特定的应用目标而建立的。
5.国际上权威的核酸序列数据库(1)欧洲分子生物学实验室的EMBL。
(2)美国生物技术信息中心的GeneBank。
(3)日本遗传研究所的DDBJ。
6为什么要对protein进行预测?寻找一种从蛋白质的氨基酸线性序列到蛋白质所有原子三维坐标的一种映射。
7.蛋白质预测的思路和方法。
思路:a.通过相似序列的数据库比对确定功能:具有相似性序列的蛋白质具有相似的功能。
b.确定序列特性:疏水性、跨膜螺旋等:许多功能可直接从蛋白质序列预测出来。
生物信息学期末考试重点
1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计算机科学相结合形成的一门新学科.它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
3、表达序列标签从一个随机选择的cDNA 克隆进行5'端和3’端单一次测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。
EST 来源于一定环境下一个组织总mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。
4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白.ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个真正的单一的基因产物。
ORF的识别是证明一个新的DNA序列为特定的蛋白质编码基因的部分或全部的先决条件。
5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基本结构。
蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理功能的必要基础.6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。
生物信息学复习资料
生物信息学复习资料第一章1、什么是生物信息学?生物信息学是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具来阐明和理解大量数据所包含的生物学意义2、BIOINFORMATICS这个词是谁提出的?林华安3、生物信息学的发展经过了哪些阶段?前基因组时代、基因组时代、后基因组时代4、HGP是什么意思?什么时候开始?什么时候全部结束?人类基因组计划、1990.10、20035、生物信息学的研究对象是什么?6、生物信息学的研究内容有哪些?获取人和各种生物的完整基因组、新基因的发现、SNP分析(单核苷酸多态性:single nucleotide polymorphism,SNP)、非编码区信息结构与分析、生物进化;全基因组的比较研究、蛋白质组学研究、基因功能预测、新药设计、遗传疾病的研究以及关键基因鉴定、生物芯片7、学习生物信息学的目的是什么?阐明和理解大量数据所包含的生物学意义第二章1、生物信息数据库有哪些要求?时间性、注释、支撑数据、数据质量、集成性2、生物信息数据库分为哪几级,每一级是如何让定义的,每一级各包含哪些数据库?一级数据库二级数据库;一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验数据和理论分析的基础上针对特定的应用目标而建立的一级数据库:包括基因组数据库、核酸和蛋白质一级结构数据库、生物大分子(主要是蛋白质)三维空间结构数据库二级数据库:根据生命科学不同研究领域的实际需要,对基因组图谱、核酸和蛋白质序列、蛋白质结构以及文献等数据进行分析、整理、归纳、注释,构建具有特殊生物学意义和专门用途的数据库3、请列出至少三个国际知名生物信息中心网站、至少三个核酸数据库、至少三个蛋白数据库。
网站:NCBI、EBI、SIB、HGMP、CMBI、ANGIS、NIG、BIC核酸数据库:EMBL、DDBJ、GenBank蛋白质序列数据库:PIR(Protein Information Resource)、SWISS-PROT、TrEMBL、UniProt、NCBI生物大分子数据库:PDB(Protein Data Bank)蛋白质结构分类数据库SCOP、蛋白质二级结构数据库DSSP、蛋白质同源序列比对数据库HSSP4、NCBI和EBI使用的搜索引擎分别是什么?NCBI提取工具:Entrez EBI提取工具:SRS65、GENBANK使用的基本信息单位是什么,包括哪几个部分,最后以什么字符结尾?基本信息单位:GBFF(GenBank flatfile, GenBank平面文件)格式:GBFF是GenBank数据库的基本信息单位,是最为广泛使用的生物信息学序列格式之一哪几个部分:头部包含整个记录的信息(描述符)、第二部分包含了注释这一记录的特性、第三部分是核苷酸序列本身最后字符:所有序列数据库记录都在最后一行以“//”结尾6、什么是Refseq?The Reference Sequence database 参考序列数据库RefSeq数据库,即RefSeq参考序列数据库,美国国家生物信息技术中心(NCBI)提供的具有生物意义上的非冗余的基因和蛋白质序列7、FASTA格式有哪些部分组成,以什么字符开始?8.NCBI的在线和离线序列提交软件是什么?在线提交软件:Bankit 离线提交软件:Sequin第三章1、什么是同源、直系同源、旁系同源?同源性和相似性有什么区别?同源性:两条序列有一个共同的进化祖先,那么它们是同源的相似性:序列间相似性的量度同源性和相似性的区别:同源性是序列同源或者不同源的一种论断,而相似性或者一致性是一个序列相关性的量化,是两个不同的概念直系同源(orthology):不同物种内的同源序列旁系同源(paralogy):同一物种内的同源序列2、什么是序列比对、全局比对、局部比对?序列比对的关键问题是什么?序列比对:根据特定的计分规则,将两个或多个符号序列按位置比较排列后,得到最具相似性的排列的过程。
生物信息学期末考试重点总结
第一章DNA、RNA和蛋白质序列信息资源生物信息学的概念:专指应用信息技术储存和分析基因组测序所产生的分子序列及其相关数据,也称分子生物信息学。
三大核酸序列数据库GenBank(NCBI)美国国家生物技术信息中心,EMBL欧洲分子生物学实验,DDBJ日本DNA序列资料库序列信息通常用FASTA和GenBank两种格式显示第二章双序列比对数据库查询:指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配。
数据库搜索:通过特定相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。
区别:数据库搜索专门针对核酸和蛋白质序列数据库而言,其搜索对象不是数据库的注释信息,而是序列信息。
检测序列:新测定的,希望通过数据库搜索确定其性质或功能的序列目标序列:通过数据库搜索得到的和检测序列具有一定相似性的序列同源性的意义:具有共同祖先。
两个物种中有两个性状满足下列任一条件,就可称为同源性状:(1)它们与这些物种的祖先类群中所发现的某个性状相同(2)(2)它们是具有祖先一后裔的不同性状同源(homology)-具有共同的祖先同源序列:共同祖先趋异进化形成垂直同源(ortholog)种系形成过程中起源于一个共同祖先的不同种系中的DNA或蛋白质序列水平同源(paralog)由序列复制事件产生的相似(similarity)用来描述检测和目标序列之间相同DNA/蛋白质序列占比高低。
同源序列一般是相似的,但相似序列不一定是同源的。
相似性:大于50%可认为是同源性序列,小于20%无法确定同源性目的:通过数据库搜索,推测该未知序列可能属于哪个基因家族,具有哪些生物学功能。
可能找到已知三维结构的同源蛋白质而推测其可能的空间结构。
在序列数据库中对查询序列进行同源性比对.整体比对:从全长序列出发(分子系统学)局部比对:序列部分区域相似性(分子结构与功能性研究)数据库搜索的基础是序列的相似性比对,即双序列比对(pairwise alignment)。
生物信息学知识点总结分章
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。
生物信息学复习重点
生物信息学就是一门交叉学科, 包含了生物信息得获取、加工、存储、分配、分析、解释等在内得所有方面, 它综合运用数学、计算机科学与生物学等得各种工具来阐明与理解大量数据所包含得生物学意义。
生物信息学宗旨在揭示基因组信息结构得复杂性及遗传语言得根本规律。
从生物分子获得与挖掘深层次生物学知识。
人类基因组计划(HGP):获得遗传图、物理图、序列图、转录图;终极目标:阐明人类基因组全部DNA序列;识别基因;建立储存这些信息得数据库;开发数据分析工具;研究HGP实施所带来得伦理、法律与社会问题。
其中我国承担了人类3号染色体短臂。
记录:一个数据库记录一般由两部分组成:原始序列数据与描述这些数据生物学信息得注释。
冗余:在一个数据库存在着多个相同得项,如两个或者更多得记录中有一个相同序列Fasta格式开始于一个标识符:">",然后就是一行描述。
GenBank格式:每个基因描述可有多个描述行,包含一行以LOUCUS开头描述行,基因序列以ORIGN开头,以//结尾。
EMBL:入口标识符ID,序列开始标识符SQ,结束就是//。
数据库得特点:①数据库就是可以检索得,即具有检索功能;②数据库应该就是定时更新得,即不断有新版内容发布;③数据库就是交叉引用得,特别就是在互联网时代,数据库应该通过超链接与其她数据库相连。
EST序列:表达序列标签对cDNA文库测序得到得,就是转录得DNA序列。
STS序列:序列标签位点染色体上位置已定得、核苷酸序列已知得、且在基因组中只有一份拷贝得DNA短片断,(200bp-500bp)。
STS序列标签位点就是基因组上定位明确、作为界标并能通过PCR扩增被唯一操作得短得、单拷贝DNA 序列,用于产生作图位点。
GSS序列:基因组概览测序基因组DNA克隆得一次性部分测序得到得序列。
HTG序列:高通量基因组序列三大数据库:NCBI(GenBank):美国生物技术中心,建立了一系列生物信息数据与各种服务。
生物信息复习资料
生物信息复习资料名词说明1、类似性:描述序列相干性的量,同源蛋白质总在三维构造上有明显的类似性。
2、一致性:描述序列相干性的量,两序列同源时,他们的氨基酸或者核苷酸里平日具有明显的一致性。
3、生物信息学:20世纪分子生物学与运算机学交叉产生的新学科,用运算机数据库和运算机算法来分析蛋白质、基因和构成生物体的全部脱氧核糖核酸(基因组)。
4、蛋白质组学:对高通量蛋白质数据库进行分析的生物信息学对象与方法。
能够或许大年夜范畴的为蛋白质制订功能,确信蛋白质在哪个专门心理前提下会显现,确信蛋白质之间的感化。
5、比较基因学:应用生物在进化上的亲缘关系,赐与基因组图谱和测序差不多上,对已知的基因和基因组构造进行比较,来明白得基因的功能、表达家里和物种进化,来比较他们与人类之间的类似与相异,即比较基因组学。
6、同源(直系/旁系):两条序列之间有一个合营的祖先,那么他们确实是同源的,直系同源序列是不合物种内的同源序列,来自物种形成的合营祖先基因;旁系同源基因是经由过程类似基因复制的机制产生的同源序列。
7、Blast:全然局部比对搜刮对象,NCBI用来将一个蛋白质或DNA序列和各类数据库中其他序列进行比对的重要对象,是研究一个蛋白质或基因的最全然方法之一。
8、家族(family):一组金华市相干的共享一个或多个构造域/反复域的蛋白为一个家族。
9、构造域(模块)/domain(module):蛋白质中能折叠成特定三维构造的一段区域。
10、模体(指纹)/motif(fingerprint):蛋白质序列中较短的保守区域,平日指按必定模式分列的氨基酸残基,平日决定一个家族。
11、反复:反复区并不只年度折叠成一个球状的构造域,还包含一些短的反复模体序列。
12、PBD数据库:蛋白质和其他大年夜分子构造的仓库,复制聚拢蛋白质的构造信息,收录大年夜量蛋白质三维构造文件,记录有原始构造数据,包含院子坐标,配基的化学构造和晶体构造的描述,经由过程评估模型质量和它们与实验数据的吻合程度来证实构造,今朝拥有跨过20000个构造记录。
生物信息学复习资料
生物信息学复习资料生物信息学是一门融合了生物学、计算机科学、数学和统计学等多个学科的交叉领域。
它的出现和发展为我们理解生命的奥秘提供了强大的工具和方法。
以下是对生物信息学的一些关键知识点的复习。
一、生物信息学的定义和范畴生物信息学主要是研究如何获取、处理、存储、分析和解释生物数据的学科。
这些数据包括但不限于基因组序列、蛋白质结构、基因表达数据等。
它的应用范围广泛,涵盖了从基础生物学研究到临床诊断和药物研发等多个领域。
二、生物数据的获取(一)测序技术现代测序技术的发展使得我们能够快速而准确地获取大量的生物序列信息。
第一代测序技术如 Sanger 测序法,虽然准确性高,但成本较高、通量较低。
而新一代测序技术如 Illumina 测序、Ion Torrent 测序等,则大大提高了测序的通量和速度,降低了成本,但在准确性上可能略有不足。
(二)基因芯片技术基因芯片可以同时检测成千上万个基因的表达水平,为研究基因表达模式和调控机制提供了重要的数据。
(三)蛋白质组学技术质谱技术是蛋白质组学研究中的重要手段,能够鉴定蛋白质的种类和修饰状态。
三、生物数据的存储和管理面对海量的生物数据,高效的数据存储和管理至关重要。
常用的数据库包括 GenBank、UniProt、PDB 等。
这些数据库采用了特定的数据格式和管理系统,以确保数据的完整性、准确性和可访问性。
四、生物数据的分析方法(一)序列比对序列比对是生物信息学中最基本的分析方法之一,用于比较两个或多个生物序列的相似性。
常见的比对算法包括全局比对(如NeedlemanWunsch 算法)和局部比对(如 SmithWaterman 算法)。
(二)基因预测通过对基因组序列的分析来预测基因的位置和结构。
常用的方法有基于同源性的预测、基于信号特征的预测等。
(三)蛋白质结构预测包括从头预测法和基于同源建模的方法。
从头预测法基于物理化学原理来构建蛋白质的三维结构,而同源建模法则利用已知结构的同源蛋白质来推测目标蛋白质的结构。
生物信息知识点总结高中
生物信息知识点总结高中一、生物信息学的基本概念1. 生物信息学的定义生物信息学是生物学与信息学相结合的新兴交叉学科,它主要以计算机和信息技术为工具,利用数学和统计学的方法,对生物学数据进行分析、整合和挖掘,以揭示生物学规律和发现新的生物学知识。
2. 生物信息学的研究对象生物信息学的研究对象主要包括生物学数据的获取、存储、管理、分析和可视化等方面。
生物学数据可以来自基因组、蛋白质组、代谢组和转录组等多个层面,包括基因序列、蛋白质序列、基因表达数据、代谢产物数据等。
3. 生物信息学的研究内容生物信息学的研究内容主要包括生物数据库的构建与维护、生物信息资源的开发与共享、生物数据的存储与管理、生物数据的分析与挖掘、基于生物信息学的生物学模拟与预测、以及生物信息学软件和工具的开发等。
4. 生物信息学的发展历程生物信息学的发展可以追溯到上世纪50年代,随着第一台电子计算机的出现,科学家们开始将计算机应用于生物学研究。
随着DNA测序技术的发展和生物大数据的爆发,生物信息学得到了迅猛发展,成为当今生物学研究中不可或缺的一部分。
二、生物信息学的基本方法1. 生物信息学的数据获取生物信息学的数据获取主要包括生物学实验数据、生物学数据库数据和公开共享数据等多个来源。
生物学实验数据可以通过生物学实验技术获取,如基因测序、蛋白质质谱和基因表达芯片等。
生物学数据库数据可以通过生物信息学数据库获取,如GenBank、Swiss-Prot、KEGG和GO等。
公开共享数据可以通过公共数据库和数据仓库获取,如NCBI、EBI和DDBJ等。
2. 生物信息学的数据存储与管理生物信息学的数据存储与管理主要包括生物学数据库的构建与维护、生物信息资源的开发与共享、生物数据的存储和管理等方面。
生物学数据库可以是本地数据库和网络数据库,可以使用关系型数据库、非关系型数据库和分布式数据库等技术进行存储和管理。
3. 生物信息学的数据分析与挖掘生物信息学的数据分析与挖掘主要包括生物学数据的统计学分析、生物学数据的数据挖掘与模式识别、生物学数据的生物信息学算法与工具等多个方面。
(完整word版)生物信息学期末资料(word文档良心出品)
一、名词解释1)人类基因组测序计划: 是一项规模宏大, 由美国科学家于1985年率先提出, 于1990年正式启动的跨国跨学科的科学探索工程。
其宗旨在于测定组成人类染色体中所包含的30亿个碱基对组成的核苷酸序列, 从而绘制人类基因组图谱, 并且辨识其载有的基因及其序列, 达到破译人类遗传信息的最终目的。
2)BLAST搜索: 又称为"类BLAST比对工具", 基本局部比对搜索工具, 用于相似性搜索的工具, 对需要进行检索的序列与数据库中的每个序列做相似性比较。
3)SNP: 称单核苷酸多态性, 是指在基因组上单个核苷酸的变异, 包括转换、颠换、缺失和插入, 形成的遗传标记, 其数量很多, 多态性丰富。
4)物理图谱: 利用限制性内切酶将染色体切成片段, 再根据重叠序列确定片段间连接顺序, 以及遗传标记之间物理距离碱基对(bp) 或千碱基对(kb)或兆碱基对(Mb)的图谱。
5)一级数据库: 记录实验结果和一些初步的解释, 数据库中的数据直接来源于实验获得的原始数据, 只经过简单的归类整理和注释。
6)分子系统树: 从生物大分子(氨基酸、核苷酸)的遗传信息推断生物进化的历史, 并以系统树(谱系)的形式表达出来。
7)基因识别: 是生物信息学的一个重要分支, 使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。
基因识别的对象主要是蛋白质编码基因, 也包括其他具有一定生物学功能的因子, 如RNA 基因和调控因子。
8)基因组作图: 确定界标或基因在构成基因组的各条染色体上的位置, 以及染色体上各个界标或基因之间的相对距离, 绘制遗传连锁图或物理图。
9)功能蛋白质组学: 指对蛋白质间、蛋白质与DNA/RNA间的相互作用的研究。
以细胞内某个功能有关的或某种条件下的一群蛋白质为主要研究内容, 由此建立细胞内外信号传递的复杂网络。
10)HMM隐马尔可夫模型: 由马尔科夫链发展扩充而来的一种随机模型。
生物信息学复习总结
生物信息学复习总结生物信息期末总结1. 生物信息学( Bioinformatics )定义:(第一章) ★ 生物信息学是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具来阐明和理解大量数据所包含的生物学意义。
(或:) 生物信息学是运用计算机技术和信息技术开发新的算法和统计方法,对生物实验数据进行分析,确定数据所含的生物学意义,并开发新的数据分析工具以实现对各种信息的获取和管理的学科。
(NSFC)2. 科研机构及网络资源中心:NCBI :美国国立卫生研究院NIH 下属国立生物技术信息中心;EMB net :欧洲分子生物学网络;EMBL-EBI :欧洲分子生物学实验室下属欧洲生物信息学研究所;ExPASy:瑞士生物信息研究所SIB下属的蛋白质分析专家系统;(Expert Protein Analysis System)Bioinformatics Links Directory ;PDB (Protein Data Bank);UniProt 数据库3. 生物信息学的主要应用:1.生物信息学数据库;2.序列分析;3.比较基因组学;4.表达分析;5.蛋白质结构预测;6.系统生物学;7.计算进化生物学与生物多样性。
4. 什么是数据库: ★1、定义: 数据库是存储与管理数据的计算机文档、结构化记录形式的数据集合。
(记录record、字段field、值value)2、生物信息数据库应满足5 个方面的主要需求:( 1)时间性;( 2)注释;( 3)支撑数据;( 4)数据质量;( 5)集成性。
3、生物学数据库的类型:一级数据库和二级数据库。
(国际著名的一级核酸数据库有Genbank数据库、EMBL核酸库和DDBJ库等; 蛋白质序列数据库有SWISS-PROT等;蛋白质结构库有PDB等。
4、一级数据库与二级数据库的区别:★1)一级数据库:包括:a基因组数据库----来自基因组作图;b. 核酸和蛋白质一级结构序列数据库;c. 生物大分子(主要是蛋白质)的三维空间结构数据库,(来自X-衍射和核磁共振结构测定);2)二级数据库:是对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验数据和理论分析的基础上针对特定的应用目标而建立的。
生物信息学期末复习知识点总结
生物信息学:利用数学、物理、化学的理论、技术和方法,以计算机为工具,对生命现象加以研究,得到深层次的生物学知识。
研究任务:收集与管理生物分子数据,对数据进行处理分析,为其它生物学研究提供服务四大“模式生物”:酵母、线虫、果蝇、小鼠糖的生物功能,作为燃料(是生命活动所需的能源),重要的中间代谢物,参与生物大分子组成,作为信号分子脂类的生物功能,构成生物膜的骨架,储存能量(效率是糖的2倍左右),构成生物表面的保护层、保温层,重要的生物学活性物质蛋白质的生物功能,是遗传信息转化成生物结构和功能的表达者;参与基因表达的调节,以及细胞中氧化还原反应、电子传递、神经传递、学习记忆等重要生命过程;酶(一类重要的蛋白质)在细胞和生物体内各种生化反应中起催化作用;蛋白质的空间结构一级结构(primary structure)多肽链中氨基酸数目、种类和线性排列顺序二级结构(secondary structure)氢键形成-螺旋( -helix)链间形成-折叠(-sheet)三级结构(tertiary structure)肽链进一步沿多方向盘绕成紧密的近似球状结构四级结构(quaternary structure)具有特定构象的肽链进一步结合,并在空间相互作用检索方法:1)追溯法:通过已知文献后附有的参考文献中提供的线索来查找文献。
(2)常用法:利用各种检索工具来查找文献。
(3)循环法:是将常用法和追溯法交替使用的一种综合文献检索方法。
(4)浏览法:是从本专业期刊或其它类型的原始文献中直接查阅文献资料。
检索途径:著者途径:分类途径:主题途径:其它途径;检索过程:(1)分析研究课题(2)制定检索策略(3)查找文献线索(4)获得原始文献大规模基因组DNA测序:鸟枪法( Shot-gun sequencing)方法:借助物理或化学的手段将整个基因组随机打断成一定大小的片段进行测序,再根据序列间的重叠关系进行计算机排序与组装,确定它们在基因组中的位置。
生物信息学复习资料全
一、名词解释(31个)1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。
狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。
2.二级数据库:对原始生物分子数据进展整理、分类的结果,是在一级数据库、实验数据和理论分析的根底上针对特定的应用目标而建立的。
3.多序列比对:研究的是多个序列的共性。
序列的多重比对可用来搜索基因组序列的功能区域,也可用于研究一组蛋白质之间的进化关系。
4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树状分支的图形来概括各种〔类〕生物之间的亲缘关系,这种树状分支的图形称为系统发育树。
5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该是进化保守的并且在其他物种中具有直系同源性。
指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。
〔来自百度〕6.旁系〔并系〕同源:是那些在一定物种中的来源于基因复制的蛋白,可能会进化出新的与原来有关的功能。
用来描述在同一物种由于基因复制而别离的同源基因。
〔来自百度〕7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或氨基酸字符串。
8.开放阅读框〔ORF〕:是结构基因的正常核苷酸序列,从起始密码子到终止密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。
〔来自百度〕9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为严密,各行其功能,称为结构域。
10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空位并进展罚分,以控制空位插入的合理性。
〔来自百度〕11.表达序列标签:通过从cDNA文库中随机挑选的克隆进展测序所获得的局部cDNA的3’或5’端序列。
生物信息学期末复习考点汇总!!!.docx
生物信息学必须掌握的考点汇总!!!—、绪论生物信息学Definition of Bioinformatics :利用数学、物理、化学的理论、技术和方法,以计算机为工具,对生命现象加以研究,得到深层次的生物学知识。
※计算生物学:更偏重计算、理论和方法※分子生物信息学:狭义的生物信息学,主要研究DNA和Protein※理论生物学:包含生物信息学※信息生物学:新概念,以生命信息的遗传,传输,调节和表达的基本规律为研究中心※系统生物学:研究生物系统组成成分的构成与相互关系的结构、动态与发生,以系统论和实验、计算方法整合研究为特征的生物学研究目标:揭示蕴藏在生物数据中的生物规律和内涵研究任务:1. 收集与管理生物分子数据2. 对数据进行处理分析3. 为其它生物学研究提供服务(提供工具)4. 最终解释生命是什么研究内容:1. 数据管理层面上:开发、设计一系列相关的工具,能够方便有效的获取、管理以及使用各种类型的数据和信息。
2. 算法开发层面上:开发新的算法及统计学的方法来揭示大规模数据之间的联系。
3. 研究对象层面上:分析和解释各种类型的生物学数据,包括核酸、氨基酸序列、蛋白质功能结构域以及蛋白质三级结构等。
研究意义:1. 生物学从传统的实验科学转向实验、理论相互结合的科学2. 从理论上认识生物的本质的必要途径3. 人类健康、医药卫生发展的新途径研究对象:碱基一 -►基因组-------------- ►蛋白质表型基因组学蛋白质组学信息的存储密码表的进化单核甘酸多态(SNP)基因识别非编码区功能基因演化染色体分析基因组比较结构预测定位预测蛋白质修饰蛋白质功能蛋白质互作表达网络代谢网络调控网络生物信息学特点:杂,乱,难,新其实应该是我我都说是我了关我啥事啊?那我呢?长相要知道——鲍林,戴霍夫,林华安,薛定谱bioinformatics :作为专有名词是由林华安博士在二十世纪80年代末(1987 )创造的人们公认的生物信息学的创始人是Temple F, Smith或Margret Dayhoff历史事件:二十世纪五十年代,为储备期1953年Watson和Crick提出DNA双螺旋结构1956年在美国田纳西州召开首次“生物学中的信息理论研讨会二十世纪六十至七十年代,为萌芽期。
《生物信息学》复习提纲
《生物信息学》主要知识点一、基本名词和概念1、bioinformatics 生物信息学,狭义的生物信息学是指将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的一门交叉学科。
广义上的生物信息学是指运用计算机技术,处理、分析生物学数据,以揭示生物学数据背后蕴藏的意义的所有知识体系。
2、ORF Open Reading Frame,开放阅读框,是指在给定的阅读框架中,不包含终止密码子的一串DNA序列3、CDS Coding sequence,基因的编码区(也叫Coding region),是指DNA或RNA中由外显子组成,编码蛋白质的部分。
4、UTR Untranslated Regions,即非翻译区,是指mRNA分子两端的非编码片段,包括5'-UTR(或称“前导序列”)和3'-UTR(或称“尾随序列”)5、genome 基因组,是指包含在一种生物的单倍体细胞中的全套染色体DNA(部分病毒是RNA)中的全部遗传信息,包括基因和非编码DNA。
6、proteomics 蛋白质组学,对特定的通路、细胞器、细胞、组织、器官和肌体中包含的所有蛋白质,进行鉴定、表征和定量,提供关于该系统准确和全面数据的学科。
7、transcriptome 转录组,也称为“转录物组”,广义上指在相同环境(或生理条件)下的一个细胞、组织或生物体中出现的所有RNA的总和,包括mRNA、rRNA、tRNA及非编码RNA;狭义上则指细胞所能转录出的所有mRNA。
8、metabonomics 代谢组学,属于系统生物学的一个重要组成部分,效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,从而研究生命体对外界刺激、病理生理变化、以及本身基因突变而产生的其体内代谢物水平的多元动态反应。
其研究对象大都是相对分子质量1000以内的小分子物质。
9、functional genomics 功能基因组学,是一门利用结构基因组学研究所得到的各种信息,建立和发展各种技术和实验模型来测定基因和基因组非编码序列的生物学功能的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学:利用数学、物理、化学的理论、技术和方法,以计算机为工具,对生命现象加以研究,得到深层次的生物学知识。
研究任务:收集与管理生物分子数据,对数据进行处理分析,为其它生物学研究提供服务
四大“模式生物”:酵母、线虫、果蝇、小鼠
糖的生物功能,作为燃料(是生命活动所需的能源),重要的中间代谢物,参与生物大分子组成,作为信号分子
脂类的生物功能,构成生物膜的骨架,储存能量(效率是糖的2倍左右),构成生物表面的保护层、保温层,重要的生物学活性物质蛋白质的生物功能,是遗传信息转化成生物结构和功能的表达者;参与基因表达的调节,以及细胞中氧化还原反应、电子传递、神经传递、学习记忆等重要生命过程;酶(一类重要的蛋白质)在细胞和生物体内各种生化反应中起催化作用;
蛋白质的空间结构
一级结构(primary structure)多肽链中氨基酸数目、种类和线性排列顺序
二级结构(secondary structure)氢键形成-螺旋( -helix)链间形成-折叠(
-sheet)
三级结构(tertiary structure)肽链进一步沿多方向盘绕成紧密的近似球状结构
四级结构(quaternary structure)具有特定构象的肽链进一步结合,并在空间相互作用检索方法:1)追溯法:通过已知文献后附有的参考文献中提供的线索来查找文献。
(2)常用法:利用各种检索工具来查找文献。
(3)循环法:是将常用法和追溯法交替使用的一种综合文献检索方法。
(4)浏览法:是从本专业期刊或其它类型的原始文献中直接查阅文献资料。
检索途径:著者途径:分类途径:主题途径:其它途径;
检索过程:(1)分析研究课题(2)制定检索策略(3)查找文献线索(4)获得原始文献大规模基因组DNA测序:
鸟枪法( Shot-gun sequencing)方法:借助物理或化学的手段将整个基因组随机打断成一定大小的片段进行测序,再根据序列间的重叠关系进行计算机排序与组装,确定它们在基因组中的位置。
适用范围:主要用于重复序列少、相对简单的原核生物基因组的测序工作。
不适用于分析较大的、更复杂的基因组。
优点:速度快、简单易行、成本低
克隆重叠群法(clone contig sequencing)方法:先将染色体打成比较大的片段(几十-几百Kb),利用分子标记将这些大片段排成重叠的克隆群,分别测序后拼装。
需要绘制物理图谱,以鸟枪法为基础。
适用范围:较大的、更复杂的基因组
蛋白质结构解析:X射线晶体衍射;核磁共振波谱学
其他方法:扫描隧道电子显微镜–圆二色谱一级数据库:直接来源于实验获得的原始数据,只经过简单的归类、整理和注释。
二级数据库:在一级数据库、实验数据和理论分析的基础上,针对不同的研究内容和需要,对生物学知识和信息的进一步整理得到的数据库。
序列比较的根本任务是:通过比较生物分子序列,发现他们之间的
相似性,找出序列之间共同的区域,同时辨别序列之间的差异。
同源性:是指序列们是由共同祖先进化而来,讲两条序列的同源关系,只有两种情况:同源、不同源。
相似性:指序列间的差别,是一个度量。
同源与相似的关系:一般认为序列相似性达到一定程度,即可认为是同源,但不绝对。
序列比对算法实现:点阵分析:寻找序列间可能的性状对位排列;寻找蛋白质、DNA序列中正向或反向重复;预测RNA中自补区域;直观,整体水平;动态规划算法:精确而全面,非常耗费资源;启发式算法
滑动窗口技术:使用滑动窗口代替一次一个位点的比较是解决这个问题的有效方法。
动态规划算法计算过程:1计算过程从d 0 ,
0开始,2 可以是按行计算,每行从左到右,也可以是按列计算,每列从上到下。
3当然,任何计算过程,只要满足在计算d i , j 时d i-1 , j 、d i-1 , j-1、和d i, j-1都已经被计算这个条件即可。
3在计算d i , j 后,需要保存d i , j 是从d i-1 , j 、d i-1 , j-1、或d i, j-1中的哪一个推进的,或保存计算的路径,以便于后续处理。
上述计算过程到d m , n 结束。
最优路径求解:与计算过程相反,从d m , n 开始,反向前推。
基因的定义1、基因是一段与多肽链或功能RNA 产生有关的DNA 片段,包括编码区前的引导序列、编码区后的尾部序列、编码区内的插入序列和编码区序列。
基因的种类:结构基因、调控基因, rRNA 基因和tRNA 基因 启动子,操纵基因
因组(genome )是指一个细胞或病毒包含的全部遗传信息的总和。
TP (true positive ):实际编码区的核酸中被成功预测的核酸数目; TN (true negative ):实际非编码区的核酸中被成功预测的核酸数目; FN (false negative ):实际编码区的核酸中被误测为非编码的核酸数目; FP (false positive ):实际非编码区的核酸中被误测为编码的核酸数目。
敏
感性
(sensitivity ,Sn ):FN TP TP
Sn +=
特异性(specificity ,Sp ):
FP TP TP Sp +=
FM 法:1.找出关系最近的序列对,如A 和B 2.将剩余的序列作为一个简单复合序列,分别计算A 、B 到所有其他序列的距离的平均值 3.用这些值来计算A 和B 间的距离
4.将A 、B 作为一个单一的复合序列AB ,计
算与每一个其他序列的距离,生成新的距离矩阵
5.确定下一对关系最近的序列,重复前面的步聚计算枝长
7.从每个序列对开始,重复整个过程
8.对每个树计算每对序列间的预测距离,发现与原始数据最符合的树
蛋白质亚细胞定位预测的方法 : 1)基于信号肽的方法来预测蛋白质亚细胞定位 (2)基于氨基酸组份或氨基酸物理化学性质的方法来预测蛋白质亚细胞定位 (3)基于蛋白质功能注解的方法来预测蛋白质亚细胞定位 (4)基于系统发生的分布图、结构域投影或结合进化和结构信息的方法来预测蛋白质亚细胞定位
Sn=TP/(TP+FN) 项目
Lengt h T P F
P
FN Sn Sp acc
ura
cy
ZCURVE_V 12 12 0 2 0.86 1 0.93 Glimmer NCBI
14
10 4 4 0.71 0.71 0.71 GeneMark
NCBI
9
9 0 5
0.64 1 0.8
2
核酸数据库:GenBank 、EMBL 、DDBJ
蛋白质序列数据库:SWISS-PROT 、PIR
蛋白质结构数据库:PDB。