电液伺服与比例控制简介

合集下载

电液伺服阀和电液比例阀的概述

电液伺服阀和电液比例阀的概述

电液伺服阀和电液比例阀的概述摘要 介绍了电液伺服阀和电液比例阀的组成及功能特点,同时对两种阀进行了比较,得出两种阀的使用特点和使用场合。

关键词 电液伺服阀 电液比例阀 闭环控制 力矩马达 比例电磁铁 反馈装置1.前沿阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁换向阀、电液换向阀。

另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。

所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流、压力控制。

2.电液伺服阀电液伺服阀是一种自动控制阀,它既是电液转换组件,又是功率放大组件,其功用是将小功率的模拟量电信号输入转换为随电信号大小和极性变化、且快速响应的大功率液压能[能量(或)和压力]输出,从而实现对液压执行器位移(或转速)、速度(或角速度)、加速度(或角加速度)和力(或转矩)的控制。

电液伺服阀通常由电气-机械转换器、液压放大器(先导阀和功率级主阀)和检测机构组成。

电液伺服阀的基本组成有前置级液压放大器的伺服阀,无论是射流放大器还是喷嘴挡板放大器,其产生阀芯驱动力都要比比例电磁铁大得多(高一个数量级)。

就这个意义上讲,伺服阀阀芯卡滞的几率比比例阀小。

特别是射流管伺服阀的射流放大器因为没有压力负反馈,前置级流量增益与压力增益都较高,推动阀芯的力更大,所以伺服阀有更高的分辨率和较小的滞环。

简单地说,所谓伺服系统就是带有负反馈的控制系统,而伺服阀就是带有负反馈的控制阀。

伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。

伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。

液压伺服和比例控制系统ppt

液压伺服和比例控制系统ppt

差) 经放大器放大后,加于电液伺服
阀转换为液压信号(图中A、b),以推
动液压缸活塞,驱动控制对象向消除偏
差方向运动。当偏差为零时,停止驱动,
因而使控制对象的位置总是按指令电位
图 7-9 统
电液伺服系
器给定的规律变化。
1-电位器;2-电液伺服阀;3-
液 压缸;4-负载;5-反 馈;
6-指令电位器;7-放大器
液压伺服和比例控制系统
第一节 液压伺服控制 第二节 电压比例控制
液压伺服阀
液压伺服阀是液压伺服系统中最重要、最基本的组成部分,它 起着信号转换、功率放大及反馈等控制作用。电液伺服阀是应用最广 泛的一种,它在接受电器信号模拟后,相应输出调制的流量和压力控 制信号,控制系统压力、流量、方向的变化。它既是电液转换元件, 也是功率放大元件,它能够将小功率的微弱电器输入信号转换为大功 率的液压能(流量和压力)输出。在电液伺服系统中,它将电气部分 和液压部分连接起来,实现电液信号的转换与液压放大。电液伺服阀 是电液伺服系统控制的核心。
量油增路加关,闭而,滑液阀压开缸x0口不量动逐,渐负减载少停。止当在x一0 增个加新到的
x0
位置

x时i ,则开口量为零,
,达到一个新的平
衡状态。
号继续如向果右继运续动给。控反制之滑,若阀给向控右制的滑输阀入输信入号一个x负i ,位液移压x缸i 就0会(向跟左随为这负个)信
液压伺服阀系统
反液之压缸,若就给会控跟制随滑这阀个输信入号一向个左负运位动移。xi 0 (向左为负)输入信号,则
液压伺服阀
3〕射流管式伺服阀
组成:如图7-3所示,采用衔铁式力矩马达8带动 射流管及其接收口2,两个接收口直接和滑陶阀 芯5两端面连接,控制滑阀阀芯运动。滑阀陶芯 5靠一个板簧定位,其位移与滑阀阅芯两端压力 差成比例。

液压伺服、比例控制

液压伺服、比例控制

液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。

液压伺服系统的工作原理可由图1来说明。

图1所示为一个对管道流量进行连续控制的电液伺服系统。

在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。

阀板转动由液压缸带动齿轮、齿条来实现。

这个系统的输入量是电位器5的给定值x i。

对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。

阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。

液压缸下腔的油液则经伺服阀流回油箱。

液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。

同时,液压缸活塞杆也带动电位器6的触点下移x p。

当x p所对应的电压与x i 所对应的电压相等时,两电压之差为零。

这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。

图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。

反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。

用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。

而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。

电液比例控制及电液伺服控制技术 绪论

电液比例控制及电液伺服控制技术 绪论
系统(用阀控制泵的流量)
液压传动( 开关型控制)
液压


控制12比液伺压例服控控制制(闭开闭环环环控控控制制制)
3数字控制伺步服进电电机机控控制制((
开环控制) 闭环控制)
二、电液比例技术的概念
• 电液比例技术是将电信号按比例转换为液压功
率输出的电液转换技术。 • 电液比例技术是电液伺服的基础上降低了控制特
伺服阀
伺服比例阀(20世纪 90年代中期出现)
比例阀(20世纪80年代初出现)
早期比例阀(20世纪60年代后期出现)
压力控制阀
流量控制阀
方向控制阀
液压控制系统的分类:
1、电液比例控制系统、电液伺服控制系统和 电液数字控制系统。
2、位置、速度、加速度、力和压力控制系统 3、闭环控制系统和开环控制系统 4、阀控制系统(主要是节流控制)和泵控制
电液伺服阀
• 因此,主阀芯的位移量就能精确地随著电 流的大小和方向而变化,从而控制通向液 压执行元件的流量和压力。
Moog公司电液伺服阀
电液伺服阀的应用
• 注意:电液伺服阀不分压力控制阀、方向 控制阀和流量控制阀。
三、两者的发展概况
• 目前,国内生产伺服阀的厂家主要有:航空 工业总公司第六O九研究所、航空工业总公 司第六一八研究所、航空工业总公司秦峰机 床厂、北京机床研究所、中国运载火箭技术 研究院第十八研究所、上海航天控制工程研 究所及中国船舶重工集团公司第七O四研究 所。
比例阀的国内发展概况
• 自2009年以来已获得较好的推广应用,完 成的 6通径、10通径、16通径、25通径高 频响伺服比例阀(含控制器)产品已有600 余套应用于高速铁路建设中,实现销售收 入4000余万元。

液压伺服控制和电液比例控制

液压伺服控制和电液比例控制

14 西华大学
电液比例控制系统
图示为电液比例压力阀用于钢带冷轧 卷取机的液压系统。 。该系统进行轧制 工作时,先给定以个张力值储存于电开 展器内,而在轧锟与卷筒之间安装一张 力检测计,将检测地实际张力值反馈与 给定张力值进行比较,当比较得到地偏 差值达到某一限定值时,电控制器输入 比例压力阀的电流变化一个相应值,使 控制压力p改变,于是液压马达的输出转 矩T及张力F作相应的改变,使偏差消 失或减小。 在轧机的实际工作中,随着钢带卷半径R的增大,实际张力F减小,出 现的偏差为负值。这时输入电流增加一个相应值,液压马达的进出压力p 增加一个相应值,从而使液压马达输出转矩T及张力F相应增加,力图 保持张力F等于给定值。
滑阀的开口形式
8 西华大学
零开口四边滑阀
阀芯向右偏移, 阀口1和3开启, 2和4关闭。压力 油源经阀口1通 往液压缸,液压 缸的回油经阀口 3回油箱。
零开口四边滑阀
9 西华大学
电液伺服控制系统
由电液伺服阀1、液压缸2、活塞杆带队的机械手手臂3、电位器5、 步进电动机6、齿轮齿条4和放大器7等元件组成。
第八章 液压伺服控制和电液比例控制 主讲 宋春华
1
西华大学
液压伺服控制 和电液比例控制
2
西华大学
第一节
液压伺服控制
液压伺服控制是以液压伺服阀为核心的高精 度控制系统。液压伺服阀是一种通过改变输入 信号,连续,成比例的控制流量和压力进行液
压控制的。
3 西华大学



根据输入信号的方式不同,又分电液伺服阀和机液 伺服阀。 电液伺服阀将小功率的电信号转换为大功率的液压 能输出,实现执行元件的位移、速度、加速度及力 的控制。 机液伺服阀的输入信号是机动或手控的位移。 伺服阀控制精度高,响应速度快,特别是电液伺服 系统容易实现计算机控制,在航空航天、军事装备 中得到广泛应用。但加工工艺复杂,成本高,对油 液污染敏感,维护保养难,民用工业应用较少。

对电液比例与伺服控制系统综述

对电液比例与伺服控制系统综述

摘要本文详尽阐述了电液比例控制系统构成、分类和特点,结合对液压伺服控制系统的控制结构及其特点和基本要求的论述,分析了两种控制系统目前的发展状况。

回顾电液控制系统发展历史,展望电液控制系统的发展趋势。

关键词:比例控制伺服控制发展趋势AbstractThe paper expounded the composition, classification and the characteristics of the electro-hydraulic proportional control system。

Combined with the discussion of the control structure,basic requirements and the characteristics of hydraulic servo control system, the paper analyzed the state of the development of the two kinds of control systems。

Reviewing the development history of the electro-hydraulic control system,the paper elaborated the development trend of the electro-hydraulic control system.Keywords:proportional control , servo control,development trend目录摘要 0Abstract (1)1、引言 (2)2、电液比例控制系统组成和分类 (3)2。

1电液比例控制系统的组成 (3)2.2电液比例控制系统的分类 (3)3、电液比例控制系统特点 (4)4、电液伺服控制系统的控制结构 (6)5、电液伺服控制系统的特点及要求 (7)5。

电液比例及伺服控制技术-太钢讲课

电液比例及伺服控制技术-太钢讲课

造波电液伺服系统
造波 系统 液压缸 位置 x A U D VB A
U
VA
缸 压力 缸 压力 A D D A
接 口
D
p p U
T
qpu
ps
M
实验系统软件
计算机控制系统
热卷取踏步控制电液伺服系统
夹 送棍

钢带位置 传感器




x
p U
U
卷筒
p
U

A
B




p p
T
二号助 卷辊
U U p p A B
二、按被控物理量的名称分类 位置伺服控制系统、速度伺服控制系统、其它物理 量的控制系统。 三、按电液动力元件的控制方式或电液控制元件的形 式分类 节流式控制(阀控式)系统:阀控电液缸系统和阀控 电液马达系统 容积式控制系统:伺服变量泵系统和伺服变量马达 系统。 四、按信号传递介质的形式分类 机械电液伺服系统、电气电液伺服系统和气动电 液伺服系统等。
1.3 电液伺服和比例控制系统的优缺点

(一)、电液伺服控制的优点 (1)电液元件的功率—重量比和力矩-惯量比大 可以组成结构紧 凑、体积小、重量轻、加速性好的伺服系统。 (2)电液动力元件快速性好,系统响应快。 (3)电液伺服系统抗负载的刚度大,即输出位移受负载变化的影 响小,定位准确,控制精度高。 (二)、电液伺服控制的缺点 (1) 电液元件,特别是精密的电液控制元件(如电液伺服阀)抗污 染能力差,对工作油液的清洁度要求高。 (2) 油温变化时对系统的性能有很大的影响。 (3) 当电液元件的密封设计、制造相使用维护不当时.容易引起 外漏,造成环境污染。 (4) 电液元件制造精度要求高,成本高。 (5) 电液能源的获得和远距离传输都不如电气系统方便。

第一章 电液比例与伺服控制系统概述

第一章 电液比例与伺服控制系统概述

天津大学
机械工程学院
10
1.2 电液伺服控制系统工作原理及特点
1.2.2 电液伺服控制系统特点
(1)功率重量比、力矩惯量比或力质量比大
电动机10倍 10~20倍
(2)固有频率高(电机1s,液压马达1/10s) (3)负载刚度大(精度高,受外界影响小) (4)负反馈的随动系统,靠偏差工作 (5)油液精度高(一般系统10μm,高性能3~5μm) (6)阀加工精度高,工艺性差,公差与配合严格(间隙2μm) (7)油液中空气、温升对控制精度影响大 (8)理论描述近似
(4)按系统的控制方式分类
开环控制、闭环控制 定值控制、程序控制、伺服控制(随动控制)
天津大学
机械工程学院
16
1.4 电液比例与伺服控制系统的分类与组成
1.4.2 组成
天津大学
机械工程学院
17
1.4 电液比例与伺服控制系统的分类与组成
1.4.2 组成
(1)指令元件:给定控制信号的产生与输入的元件。可以是机械、电气或 气动式,如电位器、计算机、靠模等。 (2)检测反馈元件:检测被控量或中间量,反馈回输入端。各种传感器。 (3)比较元件:将输入与反馈信号进行比较,得出偏差输入信号的元件。 (4)放大、转换、控制元件:将偏差或输入信号放大、转换成液压信号 (流量或压力),以控制液压执行元件运动的元件。放大器、阀等 (5)液压执行元件:产生调节动作、加于被控对象,实现调节任务的元 件。如液压缸、液压马达等。 (6)控制对象:被控制的机械设备或其它物体。 (7)其它:校正装置,不包含在液压回路中的液压能源等。
天津大学
机械工程学院
14
1.3 电液比例控制系统工作原理及特点
1.3.2 电液比例控制系统特点

第6章电液伺服系统与比例系统

第6章电液伺服系统与比例系统

第6章 电液伺服系统与比例系统6 1电液伺服系统与比例系统的类型(50分钟)(第十五次课)电液伺服系统的分类方法很多。

可以从不同的角度分类。

如位置控制、速度控制、力控制等。

阀控系统、泵控系统,大功率系统、小功率系统,开环控制系统、闭环控制系统等。

根据输入信号的形式不同,又可分为模拟伺服系统和做数字伺服系统两类。

6.1.1 模拟伺服与比例系统在模拟伺服系统小,全部信号都是连续的模拟量,模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。

伺服系统的精度在很大程度上取决于检测装置的精度,另外模拟式检测装置的精度一般低于数字式检测装置.所以模拟伺服系统分辨能力低于数字伺服系统。

另外模拟侗服系统中微小信号容易受到噪声和零漂的影响、因此当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制了。

6.1.2 数字伺服与比例系统在数字伺服系统中,全部信号或部分信号是离散参量。

因此数字伺服系统又分为全数字伺服系统和数字—模拟伺服系统两种。

6.1.3 混合伺服与比例系统数字—模拟伺服系统又称混合伺服与比例系统数字检测装置有很高的分辨能力,所以数字伺服系统可以得到很高的绝对精度。

数字伺服系统的输入信号是很强的脉冲电压,受模拟量的噪声和零漂的影响很小。

所以当要求较高的绝对精度,而不是重复精度时,常采用数字伺服系统。

此外,它还能运用数字计算机对信息进行贮存、解算和控制,在大系统中实现多环路、多参量的实时控制.因此有着广阔的发展前景。

6 2电液位置伺服系统与比例位置伺服系统电液位置伺服系统是最基本和最常用的一种液压伺服系统。

如机床工作台的位置、板带轧机的板厚、带材跑偏控制、飞机和船舶的舵机控制、雷达和火炮控制系统以及振动试验台等。

在其它物理量的控制系统中,加速度控制和力控制等系统中,也常有位置控制小回路作为大回路中的一个环节。

6.2.1系统的组成及其传递函数电液伺服系统的动力元件不外乎阀控式扣泵控式两种基本型式,但由于所采用的指令装置、反馈测量装置和相应的放大、校正的电子部件不同.就构成了不同的系统。

液压伺服与比例控制系统课件-电液力控制系统

液压伺服与比例控制系统课件-电液力控制系统

6.5 电液力控制系统
图6-35 力控制系统方块图 图6-36 电液位置伺服系统方块图
当满足
6.5 电液力控制系统
则传递函数可近似写成: 简化方块图:
图6-37 简化方块图
6.5 电液力控制系统
简化传递函数: 负载固有频率:
刚度与负载质量形成的固有频率:
加滞后校正 、速度与加速度校正 、压力反馈和动压反馈校正的主要 目的是什么?
思考题
8. 电液速度控制系统为什么一定要加校正 ,加滞后校正和加积分校正 有什么不同?
9. 在力控制系统中负载刚度对系统特性有何影响?影响了哪些参数? 10.力控制系统和位置控制系统对伺服阀的要求有什么不同?为什么?
6.5 电液力控制系统
以力为被调量的液压伺服控制系统称为液压力控制系统。 在工程实际中 , 力控制系统应用的很多 , 如材料试验机 、结构 疲劳试验机 、轧机张力控制系统 、车轮刹车装置等都采用电液力控
制系统。
一 、 系统组成及工作原理
系统主要由伺服放大器 、 电液伺服阀 、液压缸和力传感器等组成。 当指今装置发出的指令电压信号作用于系统时 , 液压缸便有输出力。 该力由力传感器检测转换为反馈电压信号与指令电压信号相比较 , 得 出偏差电压信号 。然后经伺服放大器放大后输入到伺服阀产生负载压 差作用于液压缸活塞上 , 使输出力向减小误差的方向变化 , 直至输出 力等于指令信号所规定的值为止。
6.5 电液力控制系统
图6-34 电液力控制控制系统原理图
6.5 电液力控制系统 二、 基本方程与开环传递函数
力传感器传递函数: 放大器传递函数: 伺服阀传递函数: 阀控液压缸的三大基本方程:
F g=APPL=(MS2+BS+K)XP

电液伺服控制阀和比例阀

电液伺服控制阀和比例阀


x s const
C d wxs 2 ρ( pp pL )
流量特性
伺服阀的流量特性如图所示,其中图a所示为零开口阀的理 论流量曲线和实际流量曲线,图b和图c所示分别为负预开口 阀和正预开口阀的流量曲线。
图 伺服阀的流量特性
a)零开口阀 b)负预开口阀 c)正预开口阀
阀的流量增益(流量放大系数)
图 射流管
1—液压缸 2—接受板 3—射流管
射流管装臵的优点是: 结构简单,元件加工精度要求低;
射流管出口处面积大,抗污染能力强; 射流管上没有不平衡的径向力,不会产生“卡住”现象。 射流管装臵的缺点是: 射流管运动部分惯量较大,工作性能较差; 射流能量损失大,零位无功损耗亦大,效率较低; 供油压力高时容易引起振动,且沿射流管轴向有较大的轴 向力。 ※ 射流管主要用于多级伺服阀的第一级的场合。
电液伺服阀多为两级阀,有压力型伺服阀和 流量型伺服阀之分,绝大部分伺服阀为流量型伺 服阀。 在流量型伺服阀中,要求主阀芯的位移XP与 的输入电流信号I 成比例,为了保证主阀芯的定 位控制,主阀和先导阀之间设有位置负反馈,位 置反馈的形式主要有直接位置反馈和位置-力反 馈两种。
一、直接位置反馈电液伺服阀
喷嘴-挡板间距离很小时抗污染能力差
※ 喷嘴-挡板宜在多级放大式伺服元件中用作第一
级(前臵级)控制装臵。
三、伺服阀的特性分析 1. 静态特性
伺服阀的流量-压力特性
伺服阀的流量-压力特性是指它 在负载下阀心作某一位移时通过 阀口的流量qL与负载压力pL之间 的关系。
图 零开口伺服阀计算简图
以图示的理想零开口阀为例,假定阀口棱边锋利,油源压力稳定, 油液是理想液体,阀心和阀套间的径向间隙忽略不计,执行元件 是双杆液压缸。当阀心向右移动时,阀口1、3打开,2、4关闭, 伺服阀在进油、回油路上各有一个节流开口,进油开口处压力从 pp降到p1,回油开口处从p2降到零。

电液比例与伺服控制教学设计

电液比例与伺服控制教学设计

电液比例与伺服控制教学设计摘要本文介绍了一种电液比例与伺服控制教学设计方案。

该方案主要针对机械、自动化、电气等相关专业的学生,旨在通过模拟实际工业控制系统并实现控制任务、调试及优化,提高学生的实践能力和控制系统设计水平。

介绍当前,随着传感器、执行器和控制器技术的不断发展,机电控制系统已经成为了现代工业自动化生产线重要的组成部分。

电液比例与伺服控制是现代机电控制领域中的一个重要应用方向。

电液比例管路是一种通过电磁阀控制截面积实现流量控制的技术,广泛应用于液压系统中。

伺服控制则是通过传感器采集机械运动位置反馈信号,控制执行器的输出力和位置,使得机械系统能够实现高精度控制。

本文旨在介绍一种电液比例与伺服控制教学设计方案,通过该方案能够实现对机械控制系统的仿真、控制任务的实现以及控制优化等教学目的。

设计方案系统组成电液比例与伺服控制教学系统主要由控制箱、液压执行器、伺服电机、位置传感器、力传感器、信号发生器、示波器和电脑等部分组成。

其中,控制箱包含了微处理器、电源电路、信号分配器、开关和数字信号读取器等,负责控制电气部分的操作。

练习任务1.机械位置控制实验:通过精确控制电机和液压缸,实现对机械位置的控制,并可通过示波器实时监测机械运动状态。

2.力量控制实验:通过采集力学元件的数据,实现对机械输出力量的控制,并可获得需要的力学数据。

3.推力控制实验:通过控制电机和液压缸的输出,实现机械输出推力的控制,并可实现对机械推力环境下的调节和优化。

教学目标1.了解电液比例与伺服控制原理;2.熟悉控制系统中的传感器、执行器、控制器和信号等相关部件;3.熟练掌握机械位置、力量和推力的控制原理及其在实际工业中的应用;4.学习控制系统的调节和优化方法,并能够在实验中进行应用。

实验步骤1.结合仿真环境,让学生熟悉控制系统和其各部件,并学习如何进行控制任务的编码;2.通过仿真进行实际控制任务的模拟,如机械位置、力量和推力的控制;3.在示波器上监测机械系统运动状态,获得力建议和优化策略;4.研究控制系统中的不确定性和噪声等因素,设计相应的控制优化方案;5.实验结果的分析和总结,通过实验渐进式提高学生的实践能力和控制系统设计水平。

电液比例与伺服控制系统概述

电液比例与伺服控制系统概述

1.2.2典型液压伺服系统
(1)车床液压仿形刀架
1.2.2典型液压伺服系统
(1)车床液压仿形刀架
电液仿形液压控制系统
1.2.2典型液压伺服系统
(2)工作台位置控制伺服系统
执行元件
被控对象
放大元件
传感器1
比较元件
传感器2 指令元件
1.2.2典型液压伺服系统
(3)伺服变量泵控制液压马达的速度控制系统
第一章 电液比例与伺服 控制系统概述
本章主要内容为 :
❖ 1.1 电液比例与伺服控制技术发展概况 ❖ 1.2 液压伺服系统基本概念及典型系统举例 ❖ 1.3 电液比例控制系统工作原理及特点 ❖ 1.4 电液比例与伺服控制系统的分类及组成
1.1电液比例与伺服控制系统发展概况
1.1电液比例与伺服控制系统发展概况
军工:自动火炮系统(高低位机) 交通:汽车伺服转向、飞机舵机 冶金:轧机液压厚度自动控制系统
带钢跑偏控制系统 连续铸钢控制系统
航空航天:飞行模拟器、环境模拟设备
射出成型機之射出壓力控制系統
軋鋼厚度控制
動力輔助轉向系統
碟式煞車機構
鼓式煞車機構
液壓剎車系統
ABS(Anti-Lock Brake System) 防鎖死煞車系統
1.2液压伺服系统基本概念及典型 系统举例
❖ 伺服系统
凡是输出能以一定精度自动、快速、准确地复现 输入变化规律的自动控制系统
❖ 液压伺服系统
采用液压控制元件和液压执行元件的伺服系统
伺服控制 ❖ 控制物体的位置、方向、姿态,并能追踪任意变化
之目标的控制系统
液压伺服控制 ❖ 能以一个极小的信号输入,来控制出力极大的液压
船舶操控系統1

高频响电液伺服阀与比例阀在电力系统中的应用研究

高频响电液伺服阀与比例阀在电力系统中的应用研究

高频响电液伺服阀与比例阀在电力系统中的应用研究引言:随着电力系统的发展,电力设备对于高精度和快速响应的要求不断增加。

在电力系统中,高频响电液伺服阀和比例阀被广泛应用于控制系统中,它们可以有效地实现电力设备的精确控制和稳定运行。

本文将对高频响电液伺服阀和比例阀在电力系统中的应用进行探讨,并分析其效果和潜力。

一、电力系统中的高频响电液伺服阀高频响电液伺服阀是一种能够快速响应和实现高精度控制的液压执行元件。

在电力系统中,高频响电液伺服阀广泛应用于发电机、液压故障检测和控制系统等领域。

1. 发电机控制系统中的应用高频响电液伺服阀可以实现对发电机转速、负载和电压的精确控制。

通过控制液压油流进出高频响电液伺服阀,可以调节发电机的转速和负载,实现对电力输出的精确控制。

此外,高频响电液伺服阀还可以监测电压的变化,并根据实时数据调整液压系统的工作状态,以保证发电机的稳定运行。

2. 液压故障检测系统中的应用在电力系统中,液压油泵和阀门的故障可能会导致设备损坏和工作中断。

高频响电液伺服阀的应用可以实时监测液压系统的工作状态,并快速响应故障信号。

当故障信号被检测到时,高频响电液伺服阀可以自动切换液压系统的工作状态,以防止进一步损坏和事故发生。

二、电力系统中的比例阀比例阀是一种能够根据输入信号输出相应比例流量的液压元件。

在电力系统中,比例阀被广泛应用于水轮发电机调速系统、蒸汽轮机调节系统等领域。

1. 水轮发电机调速系统中的应用比例阀在水轮发电机调速系统中起到了至关重要的作用。

通过根据输入信号控制比例阀的开度,可以调整水轮发电机的转速,以实现对电力输出的精确控制。

通过精确控制比例阀的开度,可以提高水轮发电机的效率和稳定性。

2. 蒸汽轮机调节系统中的应用蒸汽轮机是电力系统中常用的能量转换设备,而比例阀在蒸汽轮机调节系统中发挥重要作用。

通过控制比例阀的流量,可以调整蒸汽轮机的转速和负载,以实现对电力输出的精确控制。

比例阀的快速响应和高精度控制功能使蒸汽轮机能够实现稳定的工作状态,并提高能源的利用率。

比例阀与电液比例技术

比例阀与电液比例技术

Байду номын сангаас 恒压泵+蓄能器油源
四通阀控制差动缸
位置控制系统
速度控制系统
二阶固有频率和阻尼比
力控制系统
力控制问题的设计目标是通过为系统设计适当的时间常数来形 成一阶响应。通过适当选择比例和积分控制增益,可以根据控 制系统输出所需的稳定时间来增大或减小时间常数。注意,公 式中的一阶控制系统是基于直线液压缸移动缓慢这一假设设计 的。如果该系统所需的响应时间过短,那么在建模过程中被忽 略的高阶动态将变得更加重要,观察到的输出结果也可能不尽 人意。在这种情况下,需要对系统进行更复杂的分析,以确保 令人满意的响应特性。
EHA技术介绍
闭式回路中差动液压缸的泵控制
AGC液压泵站
AGC控制回路
比例阀与电液比例技术
信号流程图
电液比例阀的发展历史
开关阀技术
细分
1.5 电液伺服阀既是电液转换元件,又是功率放大元件。 电液伺服阀是液压控制系统的核心元件。 电液伺服阀控制精度高,响应速度快。 根据输出液压信号的不同,电液伺服阀分为电液流量控制伺服阀和电液压力 控制伺服阀
1-负载;2-二次元件;3-光电编码器;4-单向截止阀;5-液压蓄能器;6-过滤器;7-电液伺服阀;8变量控制油缸;9-斜盘摆角传感器;10-速度控制器;11-摆角位置控制器;12-控制放大器
二次调节静液传动系统工作原理图
燕山大学机械工程学院
补偿
特性曲线
特性曲线
特性曲线
直动式比例溢流阀
进口压力补偿器
泵控开环速度控制系统
带位置环的泵控闭环速度控制系统
不带位置环的泵控闭环速度控制系统
通过改变二次元件 排量V2的大小可改变输 出转矩M2大小,从而建 立起与之相适应的转速 ω2 (n2);通过改变二次 元件斜盘的摆动方向 (过零点)来改变二次元 件的旋转方向。液压泵 /马达可在四个象限内 运行工作,二次元件既 可以工作在液压马达工 况,也可以工作在液压 泵工况,为能量的回收 和再利用创造了条件.

电液比例控制技术简介

电液比例控制技术简介

电液比例控制技术简介
电液比例控制作为一种新的液压传动控制技术,在液力传动系统中取得了较好的使用效果。

通过采用此项技术,可将液压系统的某些控制功能集成到电液比例控制器内,简化液压系统的构成,提高液压系统动作的稳定性和可靠性。

电液比例控制主要是采用电液比例控制器控制比例电磁铁带动先导阀,从而达到控制液压系统动作的目的。

电液比例控制主要作用在系统起动及停止时,不必采用外部减压阀就可达到自动减压减速的目的,较采用减压阀更稳定、更易于调整。

电液比例控制的主要构成部件为电液比例控制器,其主要工作原理是通过采用内部控制电路,按输入电压呈线性比例来控制输出电流,以实现对液压阀的比例控制。

即通过对电的比例控制达到对液压的比例控制,以实现电液比例控制。

电液比例控制器的主要功能如下:
a、输出斜坡时间可调,即比例系数可调,其时间调整可为内置或外置调整。

b、输入电压可调,既可内置调整,亦可外置调整。

控制要求不高时,可内置调整;控制要求较高或功能较多时,可外置调整。

c、多路输入可选,即设置多个输入回路供灵活选择,以提高可靠性,同时也可通过对输入回路的不同控制达到对系统的多功能控制。

d、可与外部PC机及计算机联接,按编制的程序接收控制信号,
执行程序功能。

e、采用标准插板,便于安装及与其它控制设备连接。

双辽发电厂翻车机系统ZDC型重车调车机牵车臂的液压控制回路经改造后采用VT3006BS30型比例控制器,避免了大臂在起落过程及中途停止时的冲击,取消了原装外部减压阀及减压阀控制曲线板,简化了系统,提高了稳定性和可靠性。

运行实践证明,此项技术先进、可靠,具有推广使用价值。

液压伺服与比例控制系统基本知识

液压伺服与比例控制系统基本知识

第七章液压伺服与比例控制系统基本知识第一节概述液压传动的三个阶段:开关控制、伺服控制和比例控制。

在普通液压传动系统应用中,控制方式无论是采用手动、电磁、电液等形式,还是采用计算机或可编程控制器(PLC),都属于开关式点位控制方式,控制精度和调节性能不高。

狭义上讲,伺服系统是指输出能以一定精度跟随输入的位置控制系统。

目前常把各种机械量(位移、速度和力)的自动控制系统统称为伺服系统。

故液压伺服系统是指以液压为动力的机械量自动控制系统。

系统中信号的传输和控制部分如采用电气,则为电液伺服系统,也属于液压伺服系统的范畴。

和电气伺服系统相比,液压伺服系统具有体积小、重量轻、响应快等优点。

液压伺服控制组成框图(图7-1)指令元件:按要求给出控制信号的器件,如计算机、可编程控制器、指令电位器或其它电器等;检测反馈元件:检测被控制量,给出系统的反馈信号,如各种类型的传感器;比较元件:把具有相同形式和量纲的输入控制信号与反馈信号加以比较,给出偏差信号。

比较元件有时不一定单独存在,而是与指令元件反馈检测元件及放大器组合在一起,由一个结构元件完成;放大、转换和控制元件:将偏差信号放大,并作为能量形式转换(电—液;机—液等),变成液压信号,去控制执行元件(液压缸、液压马达等)运动。

一般是放大器、伺服阀、电液伺服阀等;执行元件:直接对被控对象起作用的元件。

如液压缸、液压马达等;被控对象:液压系统的控制对象,一般是各类负载装置。

按被控制量是否被检测与反馈:开环控制系统,闭环控制系统。

按液压控制元件的不同:阀控系统,泵控系统。

按信号产生和传递方式的不同:机械—液压伺服系统,电气—液压伺服系统。

按被控对象的不同:流量控制,压力控制,位置控制,速度控制,复合控制。

按输入信号的变化规律:定值控制,程序控制,伺服控制。

液压伺服控制系统的优点:系统刚度大、控制精度高、响应速度快,可以快速启动、停止和反向。

缺点:其控制元件(只要是各类伺服阀)和执行元件因为加工精度高,所以价格贵、怕污染,对液压油的要求高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
回首页
2、射流管式电液伺服阀 图10-3是MOOG公司D661-G系列位移电反 馈射流管式伺服阀的结构示意图,本书以该阀为 例介绍射流管阀的工作原理。
图10-3 射流管式二级电液伺服阀 1—力矩马达;2—射流管;3—放大器;4—位置反馈 传感器;5—主阀芯
指令信号和 反馈信号的差值 通过电流负反馈 放大器3放大作 用在先导阀的力 矩马达1上,如 果差值不为零, 这样产生的转矩 驱动射流管2发 生偏转,使得主 阀芯5两端产生 压降而发生移动。 同时,位置反馈 传感器4与主阀 一起移动,
11
回首页
1、电液比例方向阀
1. 直动式的比例方向阀 图10-4是最普通的直动式比例方向阀的典型结构。
图10-4 直动式比 例方向阀 1—阀体 2—控制 阀芯 3、4—弹簧 5、6—电磁铁 7— 丝堵
工作原理:电磁铁5和6不带电时,弹簧3和4将控制阀 芯2保持在中位。比例电磁铁得电后,直接推动控制阀芯2, 例如,电磁铁b(6)得电,控制阀芯2被推向左侧,压在 弹簧3上,位移与输入电流成比例。这时,P口至A口及B 口至T口通过阀芯与阀体形成的节流通道。电磁铁6失电, 2被3重新推回中位。弹簧3,4有两个任务:①电磁铁5和 6不带电时,将控制阀芯2推回中位;②电磁铁5或6得电时, 其中一个作为力—位移传感器,与输入电磁力相平衡,从 而确定阀芯的位置。 12
3
回首页
电气伺服放大器、电液伺服阀均属于此类元件。 执行元件——将产生调节动作的液压能量加 于控制对象上的元件,如液压缸和液压马达。 控制对象——各类生产设备,如机器工作台、刀 架等。 比例控制元件的也包括上述六部分组成,所 不同的是放大、能量转换元件为比例放大器和电 液比例阀。
4
回首页
二、电液伺服阀
电液伺服与比例控制简介
2018年9月
1
一 、概述
1、电液伺服与比例控制概念
电液伺服系统又称电液控制系统,是以电气 信号为输入、以液压信号为输出构成的闭环控制 系统。由于是电气和液压的结合,此系统可以充 分发挥二者的优点。电气信号便于测量、转换、 放大、处理和校正;液压信号输出功率大、速度 快,且其执行机构具有惯量小等优点。所以二者 相结合所组成的电液控制系统具有控制精高、响 应速度快、信号处理灵活、输出功率大。结构紧 凑、重量轻等优点。 比例控制是实现元件或系统的被控量(输出) 与控制量(输入或指令)之间线性关系的技术手 段,依靠这一手段来保证输出量的大小按确定的 比例随着输入量的变化而变化。它与伺服系统的 区别主要表现在控制元件的应用范围、电—机械 转换器、阀芯结构、加工精度、中位机能等方面.
2
2、电液伺服与比例系统的组成
由上节的举例可见,液压伺服系统是由以下 一些基本元件组成: 输入元件——将给定值加于系统的输入端的 元件。该元件可以是机械的、电气的、液压的或 者是其它的组合形式。 反馈测量元件——测量系统的输出量并转换 成反馈信号的元件。各种类型的传感器常用作反 馈测量元件。 比较元件——将输入信号和反馈测量信号相 比较,得出误差信号的元件。 放大、能量转换元件——将误差信号放大, 并将各种形式的信号转换成大功率的液压能量的 元件。

力矩马达的电磁力矩、滑阀两端压差通过弹簧片作用于衔 铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡, 衔铁就不再运动。同时作用于滑阀的油压力与反馈弹簧 的变形力相互平衡,滑阀在离开零位的一段距离上定位 。也就是滑阀离开零位的距离和电磁力矩成正比。
图10-3 力反馈式伺服阀的结构原理图 1—永久磁铁 2—衔铁 3—扭轴 4—喷嘴 5—弹簧片 6—过滤器 7—滑阀 8—线圈 9—轭铁
8
回首页
4的反馈杆的位移量与反馈电压成比例,反馈电压跟随指 令电压变化达到相等,这时射流管不动,滑阀位置和指令 信号成比例。 这种阀适用于电液位置、速度、力、压力控制系统, 也能胜任高动态响应要求的系统。它的先导阀部分是由力 矩马达控制的射流管。主阀采用四边滑阀结构。机械反馈 式射流管伺服阀的阀芯上带有反馈弹簧杆(或板簧),弹 簧杆的安装方式与力反馈式伺服阀相似。
9
回首页
10
回首页
三、电液比例阀
电液比例控制阀简称比例阀,由电—机械比 例转换装置和液压阀本体两部分组成。前者将输 入的电信号连续地、按比例地转换为机械力或力 矩输出,后者把这种力或力矩转化液压参量。由 于比例阀与电子控制装置结合在一起,因此可以 十分方便的对各种输入、输出信号进行运算和处 理,实现复杂的控制功能。同时还具有抗污染、 低成本以及响应较快的特点,在液压控制工程中 获得越来越多的应用。
回首页
2、比例阀与伺服阀的比较
电液伺服阀既是电液转换元件,又是功率放大元件, 它能把微小的电信号转换成大功率的液压能(流量和压力) 输出,其性能的优劣对系统的影响很大。因此,电液伺服 阀是电液控制系统的核心和关键。
1、力反馈喷嘴挡板式电液伺服阀
力反馈式电液伺服阀的结构和原理如图10-1所示,无 信号电流输入时,衔铁和挡板处于中间位置。这时喷嘴4 两腔的压力p a p b ,滑阀7两端的压力相等,滑阀处于零 位。输入电流后,电磁力矩使衔铁2连同挡板偏转角 。 pa pb 设 角为顺时针偏转,则由于挡板的偏移使 ,滑阀 向右移动,滑阀的移动通过反馈弹簧片又带动挡板和衔铁 反方向旋转(逆时针),两个喷嘴的压力差又减小。在衔 铁的原始平衡位置(无信号时的位置)附近,
5
回首页
同时由于力矩马达的电磁力矩和输入电流成正比。所以滑阀 位移与输入电流成正比,也就是通过滑阀的流量与输入电流 成正比,并且电流的极性决定液流的方向,这样便满足了电 液伺服阀的要求。 由于采用了力反馈,力矩马达基本上在零位附近工作, 只要求其输出电磁力矩与输入电流成正比(不像位置反馈中 要求力矩马达衔铁位移和输入电流成正比),因此线性度易 于达到。外,滑阀的位移量在电磁力矩一定的情况下,取决 于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了 方便。 力反馈式电液伺服阀的方框图如图10-2所示。
相关文档
最新文档