高Q值跳频带通微波光子滤波器

高Q值跳频带通微波光子滤波器
高Q值跳频带通微波光子滤波器

微波滤波器

12 1. 滤波器简介 2.滤波器的典型结构 2.1 低通滤波器(Low Pass Filter) 摘要:本文介绍了广播电视发射系统中常用的低通滤波器、高通滤波器、带通滤波器以及带阻滤波器的基本原理、典型结构及性能指标。 Abstract: Basic theory and typical structures of low pass filter, high pass filter,band pass filter and band stop filter are presented in this paper, the main specifications of these filters are introduced. 射频滤波器是用来分离不同频率射频信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,而只让需要的信号通过。在广播电视发射天馈线系统中,滤波器是必不可少的设备。为了对发射机产生的带外信号进行抑制,规范输出信号的频谱,一般在发射机的输出端和天线之间加接输出滤波器。滤波器还是构成多工器必不可少的设备。 滤波器按频率的通带范围可分为低通、高通、带通和带阻四个类型。这四种滤波器在广播电视发射系统中都有应用,其中以带通滤波器的应用最为广泛。 滤波器设计的基本思路是根据滤波器的指标要求(如中心频率、通带带宽、通带损耗、阻带衰减以及输入输出阻抗等),选定低通原型滤波器(常用的包括巴特沃斯函数、切比雪夫函数和椭圆函数等)及谐振腔的数目;然后通过频率变换得到所需滤波器的理论模型;最后通过实际结构或电路来实现滤波器。调频和电视的发射频率为50MHz—862MHz,即VHF和UHF波段,如果在这么高的频率上用集中参数元件实现滤波功能,那么器件的损耗很大,功率容量受到限制,而且性能不稳定。因此,一般情况下,高频率范围内的滤波器都是用分布电感和分布电容来实现的。同轴传输线和波导是两种最常用的微波滤波器实现结构。 低通滤波器的典型结构是高、低阻抗传输线交替级联组成的糖葫芦式滤波器。它用高阻抗线来等效串联电感,用低阻抗线来等效并联电容,通过调整高低阻抗值及其长度可以制造出结构简单性能优良的低通滤波器。 图1是一个典型的低通滤波器的内部结构,图2是该结构的等效电路,图3为该结构的仿真结果。隋强Qiang Sui /金梅珍Meizhen Jin 微波滤波器Microwave Filter 第一部分:技术资料 Part A: Technical Papers

THz波段的F_P光子晶体滤波器

THz 波段的F -P 光子晶体滤波器 * 周 梅 1) 陈效双 2)- 王少伟 2) 张建标 2) 陆 卫 2) 1)(中国农业大学理学院应用物理系,北京 100083) 2)(中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083) (2005年11月23日收到;2005年12月11日收到修改稿) 理论上设计了一系列一维非周期光子晶体,这些光子晶体具有超窄带滤波的特性.并利用成熟的半导体工艺制备出了具有此性能的滤波器.通过比对理论和实验上的透射光谱,得到了两者符合较好的结果. 关键词:THz 波段,F -P 滤波器,非周期,光子带隙 PACC :7820P,4270Q *国家重点基础研究发展规划(973)(批准号:2001CB61040),中国科学院/百人计划0基金(批准号:200012),国家自然科学基金重点项目(批准号:10234040),上海科学技术委员会重点基金项目(批准号:02DJ14066)和上海市自然科学基金(批准号:03ZR14023)资助的课题.-E -mail:xschen@mail.si https://www.360docs.net/doc/667890397.html, 11引言 THz(Terahertz)波段是介于红外与微波之间的一个波段,其频率范围一般在011)10THz(1THz=1012 Hz),具有广泛的应用前景,而以往却是研究得最少.由于最近发现THz 波段在医学影像、化学检测与分析、天文学甚至无线通讯等领域有着巨大的应用潜力 [1)3] ,使得人们对该领域产生了很大的兴趣. 最近THz 波段激光器(414THz)的研制成功[1] ,无疑 将对该领域起到极大的促进作用.众所周知,对于任何波段电磁波的应用都有三个重要环节:光源、传输和探测,只有对这三个重要环节的研究都有所突破,才能真正实现THz 波段的应用.目前对THz 波段的研究主要集中在THz 光源和探测上,控制其传输方面的研究相对较少. 光子带隙作为光子晶体的一个基本特性,具有控制电磁波传输的能力 [4)6] ,可应用于如滤波器、偏 振器及反射器等许多光学元件[7)10] ,因此对THz 波 段光子晶体的研究有利于人们对THz 波段电磁波传输的调控.尽管大部分光子晶体材料的实验研究都集中在微波 [9,11,12] 、红外 [13,14] 及可见 [15,16] 波段,但 是最近,人们也通过微机械加工[17] 、激光快速原位 成形(laser rapid prototyping )等方法[8,18,19] 制备出了 THz 波段的光子晶体,这些对THz 波段光子晶体的 研究和应用都具有相当重要的意义. 作为最简单的一维光子晶体,其理论研究和实验研究都已经比较成熟 [20] ,而且早在光子晶体的概 念提出之前就已经得到广泛应用.比如光学薄膜中的K P 4高反膜就属于一种特殊结构的一维光子晶体,在激光和光学设备中应用广泛.然而,这种多层膜的高反区(反射率高于95%的区域,high refractive region,HRR)较窄,除了增大高、低折射率层的折射率反差外[21] ,如果适当地引入无序,也可以使HRR 变宽[6,22] .当前对一维系统光局域的理论[23)30] 和实 验 [31] 研究表明,如果在一维多层周期膜系(一维光 子晶体)中引入无序,光就会被局域起来.因此,可以利用这种特性,来实现光子晶体的一些特殊用途.本文就是利用这样的特性,在理论上设计了THz 波段的F -P 光子晶体滤波器,并借助于成熟的半导体工艺制备出具备此性质的样品. 21THz 波段F -P 滤波器的设计 常规的超窄带通滤光片多采用类似于F -P 干涉仪的结构,即在两个K P 4膜系构造的高反射层间夹共振腔的设计.这种设计可以给出带宽非常窄的滤光片,但它对膜系中厚度的涨落非常敏感.只要膜层厚度出现微小的涨落,就会使滤光片的性能明显退化.为此,我们提出用非周期型的膜系替代常规的两 第55卷第7期2006年7月1000-3290P 2006P 55(07)P 3725-05 物 理 学 报 AC TA PHYSIC A SINICA Vol.55,No.7,July,2006 n 2006Chin.Phys.Soc.

新型宽带大动态毫米波器件及应用中的微波光子学基础研究论文已处理

新型宽带大动态毫米波器件及应用中的微波光子学基 础研究论文 项目名称: 新型宽带大动态毫米波器件及应用中的微波光子学基础研究 首席科学家: 起止年限: 依托部门: 一、研究内容 围绕三个关键科学问题,对六项内容展开研究: 1.基于全光频域信号变换的复杂宽带毫米波信号的产生 (1)光频梳新原理与新方法研究 研究以较低频率的微波调制信号通过电光调制变换产生宽带光谱的新方法。研究激光器相位噪声与微波信号的相互作用机理,揭示光源相位噪声对输出谱线相位影响的内在规律;探索进一步增大输出光谱可利用带宽的新方法。 (2)光学非线性光频谱扩展与光频梳稳定的机制研究 将基于非线性光学理论,研究多谱线光谱扩展与稳定的方法。研究高功率密度的多光频分量在高非线性器件中的相互作用机理,揭示非线性过程对频谱相位噪声影响的内在规律;研究高转换效率的非线性光谱展宽技术和相关器件的实现方法;研究反馈控制回路特性、光腔稳定方法等对频谱噪声、抖动等特性的影响,探索获得高稳定度带宽光谱输出的新方法。 (3)全光频域信号变换机制对光生毫米波信号保真度的作用研究 研究全光频域信号变换中的信号失真与混叠机理;研究空域光束分布及

变换方式等对波形失真影响的机理。 2. 光波相位控制机理与毫米波稳相传输 (1)毫米波光纤传输中相位噪声的形成与演化过程研究 研究光纤色散、非线性、偏振效应与毫米波相位噪声之间的物理关联性,揭示毫米波光纤传输中相位噪声的形成与演化机理,为毫米波传输相位噪声的控制提供依据。 (2)光纤传输的时域非互易性规律及其对稳相精度的影响研究 探索基于时域非互易的光纤传输稳相理论,研究非互易性控制方法。重点研究光纤相位扰动互易性与光纤物理参数之间的规律;研究高精度、大范围的光波相位误差检测理论和方法,创建基于光波相位误差检测的光纤传输相位测量系统;探索新型的相位校正理论和方法。 (3)毫米波相位控制机制与毫米波光子移相器的研究 光波相位与毫米波相位之间的相互作用和控制机制,研究基于光波相位控制的毫米波光子相位控制方法;研制相应的毫米波光子移相器。 (4)相位误差检测机制与光波、毫米波鉴相器的研究 研究毫米波鉴相精度与非线性混频效率和激光相位噪声之间的物理关联性,研究基于光学非线性效应的毫米波相位误差检测机制;研制高精度的毫米波光子鉴相器。 3.光-毫米波频谱转换理论与宽带毫米波的动态可重构信号处理 (1)光载毫米波信道化滤波器的原理与方法 研究PS-FBG的结构、提高PS-FBG通带和截止带之间过渡带斜率的工艺。面向频率覆盖至300GHz及以上频段,研究增强PS-FBG透过谱带宽的理论与工艺。

微波谐振腔特性参数的计算和仿真

大连海事大学毕业论文 二0一一年六月

微波谐振腔特性参数的计算和仿真 专业班级:通信工程3班 姓名:张振北 指导教师:傅世强 信息科学技术学院

摘要 微波谐振腔其内部的电磁场分布在空间三个坐标方向上都将受到限制,均成驻波分布.微波谐振腔在微波电路中起着与低频LC振荡回路相同的作用,是一种具有储能和选频特性的谐振器件.这次主要研究矩形谐振腔和圆柱体谐振腔的特性参数的计算和仿真.计算时用VC++中的MFC编写一个小界面计算工具,当输入变量参数时,类似计算器形式直接输出计算结果,仿真所用软件为HFSS,对矩形谐振腔和圆柱谐振腔进行仿真,输入变量得出仿真结果并与上述结算结果进行比较。本文首先介绍了微波谐振腔的发展及前景和理论基础知识和MFC,Hfss等软件.然后分别进行了: 1.对金属谐振腔中特性参数的特性及计算方式进行深入探讨,学习其基本特 性与基本分析方法。 2.矩形谐振腔和圆柱谐振腔特性参数的计算在小界面计算方式方式下表示, 并举例输入变量得出计算结果。 3.用Hfss微波技术仿真软件对矩形谐振腔和圆柱谐振腔仿真,与之前的结 果进行比较。 4.在小界面计算工具在输入不同尺寸,内部填充不同材料,以及用铜,铁, 铝等材料作为谐振腔表面材料等多种情况下计算,得出不同结果,并用仿 真软件对矩形及圆柱谐振腔仿真,两组数据比较并得出结果。 本文主要研究金属谐振腔中矩形谐振腔及圆柱谐振腔特性参数的特性及计算方法,对其特性参数的特点,计算方式进行深入研究,然后运用编程软件对其编程,得到一个便捷的计算工具,并对矩形及圆柱谐振腔仿真,计算结果与仿真结果比较来判别计算工具的实用性与便捷性。 关键词:金属谐振腔,特性参数,MFC,小界面,Hfss,仿真

微波光子学及其链路研究进展与应用综述

微波光子学及其链路研究进展与应用综述 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

微波光子学及其链路研究进展与应用综述 摘要:微波光子学以光子技术为工具,生成、处理、传输微波/毫米波信号,注重微波与光子在概念、器件和系统方面的结合。微波光子学典型研究包括了微波信号的光产生、处理和转换,微波信号在光链路中的分配和传输等。微波光子链路技术与传统电子技术相比则具有非常明显的优势:重量轻,易于铺设,抗电磁干扰,低损耗,高带宽等。本文通过对微波光子链路领域相关文献的阅读与学习,对该领域的研究进展和技术应用进行简要综述。 关键词:微波光子学;微波光子链路;系统应用 引言 微波光子学(MicrowavePhotonics,MWP)作为微波与光子技术结合的一种新兴学科,发展迅速。在过去30年中,微波光子学在理论、器件、关键技术和系统应用层面都取得了进步与发展,某些应用甚至已经实现了实用化。在船舰、机载、卫星、雷达系统、无线通信等或民用或军用领域的复杂多元化电磁环境中,微波光子信息处理技术的地位日益凸显,有着广阔的应用前景。 微波光子链路(MicrowavePhotonicLink,MPL)也得益于微波光子学快速的发展与进步而受到广泛地关注与研究。光生毫米波技术、光纤无线电(ROF)技术、光控相控阵技术等作为微波光子学技术的分支,近年来已成为国内外研究热点。微波光子链路作为这些技术的重要组成部分,优势明显,在电子战、雷达、遥感探测、无线通信等领域得到广泛应用。 一、微波光子学及微波光子链路的研究进展与研究现状 微波光子学及其链路背景 光波分复用技术及掺铒光纤放大器(EDFA)出现后,光通信得到迅速发展。无线通信容量需求也不断发展增加,应用于光纤系统中光发射和接收中的微波技术也在迅速发展。传统的微波传输介质在长距离传输时具有很大损耗,但光纤系统具有低损耗、高带宽特性,对于微波传输和处理相当具有吸引力。

微波带通滤波器设计

文章编号:1009-8119(2005)12-0036-02 基于SERENADE软件的微波带通滤波器的设计和仿真 张磊夏永祥 (北京理工大学信息科学技术学院,北京 100081) 摘要论述了应用Ansoft 公司的Serenade 8.7 微波仿真软件设计微波带通滤波器的方法,并给出了优化仿真结果。试验结果表明,利用此软件的优化结果设计出的滤波器具有良好的滤波性能,而且无需调试,一致性好,适用于工程设计。 关键词带通滤波器,Ansoft, 耦合微带线 Design and Simulation of Microwave Band-pass Filter Based on SERENADE Zhang Lei Xia Yongxiang (School of Information and Science,Beijing Institute of Technology,Beijing 100081) Abstract In this paper,the method of design and simulation of microwave band-pass filter based on Serenade8.7 was introduced,and one specific design and simulation is given too. Through the result of the test, we can see that the filter designed based on Serenade8.7 has very good performance and consistency. Keywords Microwave filter,Ansoft, Microstrip line 1 引言 在设计模拟电路时,对高频信号在特定频率或频段内的频率分量做加重或衰减处理是个十分重要的任务,因此,微波带通滤波器便成为现代电子系统中的一种关键部件,它的好坏直接决定系统的整体性能。微带平行耦合带通滤波器是工程上较为常见的一种微波带通滤波器,它是根据反对称原型滤波器设计的,这样构成的平行耦合滤波器是关于其中心对称的。它由N节平行耦合微带线组成,两个微带线之间通过平行耦合线进行耦合,这些耦合线的两端开路,长度在中心频率上为半个波长,这种滤波器可看作由N+1个平行耦合节组合而成,这些耦合节在中心频率上是1/4波长。它的输入、输出由微带T型接头与之相连接,输入、输出阻抗为50欧姆。具有结构简单,易于实现微波部件和系统的集成化等优点。 传统的滤波器设计计算方法比较复杂,而且工作量十分大,而由于现在软件技术的飞速发展,设计手段也变得越来越多,工作效率也越来越高。本设计就是利用ANSOFT公司的SERENADE软件来进行设计和优化。 2 设计步骤 本文所述的微波带通滤波器的设计方法主要包括两个部分: 1.将标准切比雪夫低通滤波器变换为符合要求的特定带通滤波器。 ①首先建立归一化低通切比雪夫滤波器的结构; ②利用频率变换将其低通频率特性变换为带通滤波器频率特性。 2.根据将集总参数元件变为分布参数元件的Richards变换和Kuroda规则用分布参数元件实现这些滤波器。 3 设计实例 滤波器设计要求如下。 信号带宽:1638~1658MHz。 插入损耗:小于1.5dB。 带内波动:小于±0.2dB。

光子晶体滤波器

光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。  =0,- E 2m + 2??? ??ψ?????????? ????? ???→→t V r r

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程: 其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

【CN209299241U】基于微波光子转换和平衡零拍探测的微波接收机【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920379897.1 (22)申请日 2019.03.25 (73)专利权人 安徽问天量子科技股份有限公司 地址 241000 安徽省芜湖市高新区漳河路 14号 (72)发明人 韩正甫 安雪碧 石英亮 周胜  郝鹏磊 宋红岩 丁禹阳 章丽  王春生 秦武  (74)专利代理机构 江苏斐多律师事务所 32332 代理人 王纯洁 王长征 (51)Int.Cl. H04B 1/18(2006.01) H04B 10/61(2013.01) G01S 7/285(2006.01) G01S 7/35(2006.01) (54)实用新型名称 基于微波光子转换和平衡零拍探测的微波 接收机 (57)摘要 本实用新型公开了一种基于微波光子转换 和平衡零拍探测的微波接收机,包括微波天线及 信号预处理系统、微波光子转换单元和平衡零拍 探测器,微波天线及信号预处理系统与微波光子 转换单元连接,微波光子转换单元与平衡零拍探 测器连接;微波天线及信号预处理系统用于探测 待测物体反馈的回波信号并对回波信号进行预 处理;微波光子转换单元用于将预处理后的微波 信号转换为光子信号;平衡零拍探测器用于接收 微波光子转换单元转换的光子信号和与光子信 号具有固定相位差的本振光并对光子信号和本 振光进行处理从而得到输出信号。本实用新型先 将微波转换为光子,后利用平衡零拍探测器对光 子信号进行探测,可大幅提高微波接收机探测的 灵敏度。权利要求书1页 说明书5页 附图3页CN 209299241 U 2019.08.23 C N 209299241 U

微波滤波器的发展历史趋势及种类

微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。 发展历史: 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者作出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法作出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡献,都可以说是微波滤波器发展史上的重大突破。

微波光子滤波器在复杂电磁环境下的应用

光纤光栅技术与应用专题讲座(四) 第7讲 微波光子滤波器在复杂电磁环境下的应用 Ξ 丁小玉1,张宝富2,谢 畅3(1.解放军理工大学通信工程学院研究生3队,江苏南京210007;2.解放军理工大学通信工程学院电信工程系; 3.解放军理工大学通信工程学院研究生1队) 摘 要:随着空间电磁信号越来越密集,电磁环境尤其是战场电磁环境变得更加复杂化,对各种通信设备和 武器装备构成了威胁。以无线方式传播的微波信号遭到了严重的干扰和压制,通信系统的距离大为缩短、性能急剧下降甚至无法实现通信。针对日益复杂的电磁环境,人们利用光纤的巨大带宽和天生的抗电磁干扰优势,采用光子学的方法产生、传输和处理微波信号,从而开辟了一个崭新的研究领域即微波光子学,微波光子滤波器是其重要的应用领域之一。在复杂电磁环境下,通过微波光子滤波器技术对微波信号进行处理可获得优越的性能,因而在军事通信中获得了广泛的应用。文中对微波光子滤波器的基本概念、结构原理、关键技术与实现方法进行了详细和深入的介绍,并探讨了其在复杂电磁环境下的应用。 关键词:复杂电磁环境;微波光子滤波器;光载无线;延时单元 中图分类号:TN 253文献标识码:A 文章编号:CN 3221289(2009)022******* Ap p lica t i o n o f P ho ton ic 2m i c row a ve F ilte r i n C om p lica ted El e c trom ag ne t i c Env iro nm e n t D IN G X ia o 2y u 1,ZH AN G B ao 2f u 2,X I E Ch ang 3 (1.Postgradua te Team 3I C E ,PLAU ST ,N anji ng 210007,C hina ; 2.D epa r t m en t of Te lecomm unicat i ons Engineer ing I C E,PLAU ST; 3.Postgradua te T eam 1I C E,PLAU ST ) A b s t r a c t :A s the density of elect rom agne tic signals is denser and denser in the space ,the e lect rom agnet ic envir onm ent ,especia lly the ba t tle f ield electrom agne tic environm en t becom es m ore and m ore com p lica ted .It threa tens the c omm unicat i on equi pm ent s and the w eapon fu rnishm ent . T he m icrow ave signa ls using w irele ss suffe rs from se ri ou s jamm ing and supp ression,and the c om 2m unica tion distance and p erfo r m ance sha rp ly dec reases ,and even can not car ry ou t com m unica 2t i on.F aced w ith the m ore and m o re com pl ica ted elect rom agne tic environm ent,the p hoton ic m ethod w a s adop ted by u sing op t ica l fibe r ’s advant age of g reat w ide bandw idth and ant i 2jamm ing to generate,t ran s m it and p roce ss m icrow ave signals .A ne w study a rea ca lled m icrow ave pho tonic s w a s op ened ,w ith the m icrow ave pho tonic filte r a s one of the m o st i m portan t app lica tions .In c om 2p lica ted elect rom agne tic environm ent,bet ter perfo r m ances can be ga ined by using m icrow ave photonic filte r to p r ocess m icrow ave signal s,so the f ilt er can be w idely app lied in t he m ilita ry comm un ica t i on .In this p aper ,the basic concep t ,the st ructu re and p rinciple and the key technology f 2f 2 第30卷第2期  2009年6月军 事 通 信 技 术Journa l of M ilita ry Comm un i ca ti ons Techno l ogy V ol .30No .2Jun .2009 Ξ收稿日期22;修回日期2326 作者简介丁小玉(3),女,硕士生o the photonic m icro w ave ilter were introduced and its app licati ons under co mp licated electro :20090110:200902:198-.

微波光子信号处理技术

I 光纤布拉格光栅FBG 1、光纤布拉格光栅简述 光纤Bragg 光栅是掺锗单模石英光纤经紫外光照射成栅技术形成的全新光纤型光栅,其结构如图1-1所示。成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应。这种光栅的基本光学特性就是以共振波长为中心的窄带光学滤波器,像镜子一样工作,它只反射Bragg 中心波长B λ的光,而对所有其 它的波长进行传输 。图1-2用输入光波的反射谱和透射谱很直观地说明了这个问题。布拉格波长为 2B eff B n λ=Λ (1-1) 其中eff n 为有效折射率,B Λ为光栅的布拉格周期。 图1-1 光纤布拉格光栅结构示意图 图1-2 光纤布拉格光栅光谱特性说明

2、光纤布拉格光栅的分类 光纤Bragg光栅的周期一般在100nm数量级,按照折射率调制的周期和幅度的不同,可以分为均匀光纤Bragg光栅、啁啾光纤Bragg光栅、相移光纤Bragg 光栅和取样光纤Bragg光栅等等。 均匀光纤Bragg光栅的特点就是光栅的周期和折射率调制度大小均为常数,是最常见的一种光纤光栅。 啁啾光纤Bragg光栅就是在普通的均匀光栅中引入啁啾量,即光栅周期不再是一个恒定值,而是随位置而改变。光栅的Bragg反射波长是关于光栅周期的一个函数,因此它也随位置而改变。图1-3所示为啁啾光纤光栅的结构示意图。 图1-3 啁啾光纤光栅的结构图 相移光纤光栅的特点是光栅在某些位置发生相位跳变,通常是P相位跳变,从而改变光谱的分布。相移的作用是在相应的反射谱中打开一个缺口,相移的大小决定了缺口在反射谱中的位置,而相移在光栅波导中出现的位置决定缺口的深度,当相移恰好出现在光栅中央时缺口深度最大,因此相移光纤光栅可用来制作窄带通滤波器,也可用于分布反馈式光纤激光器。 采样光纤光栅的特点是光栅由许多小段光栅构成,折变区域不连续,如果这种不连续区域的出现有一定周期性则又称为超结构光栅,其反射谱出现类似梳状滤波的等间距尖峰,且光栅长度越长则每个尖峰的带宽越窄,反射率越高;采样光栅结构示意图如图1-4所示。

交叉耦合带通滤波器

大学 课程设计任务书 序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS 一、背景知识 1、滤波器的发展 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各

微波滤波器的设计及实例

滤波器(Filter ) (一)滤波器之种类 以信号被滤掉的频率范围来区分,可分为「低通」(Lowpass)、「高通」(Highpass)、「带通」(Bandpass)及「带阻」(Bandstop)四种。 若以滤波器原型之频率响应来分,则常见有「巴特沃斯型」(Butter-worth)、「切比雪夫I型」(Tchebeshev Type-I)、「切比雪夫II 型」(等几类。 Active)及「被动型」(Passive)型」(L-C Lumped)及「传输线型」( (Interdigital)、「梳型」()及「发针型」 )、「柴比雪夫I 型」(

(二)「低通滤波器」设计方法 (A)「巴特沃斯型」(Butterworth Lowpass Filter) 步骤一:决定规格。 电路特性阻抗(Impedance): Zo (ohm) 通带截止频率(Cutoff Frequency): fc (Hz) ): Ap (dB) ):Ax(dB) ≥ N )。 1 、 1g1 = = + n g N K N K g K ,...., 2,1 , 2 )1 2 ( sin 2= - ? = π 步骤四:先选择「串L并C型」或「并C串L型」,再依公式计算实际电感电容值。 (a)「串L并C型」 Zo f g C f Zo g L c even even C odd odd? = ? = π π2 , 2 (b)「并C串L型」 c even even C odd odd f Zo g L Zo f g c π π2 , 2 ? = ? =

(B)「切比雪夫I型」(Tchebyshev Type-I Lowpass Filter) 步骤一:决定规格。 电路阻抗(Impedance): Zo (ohm) 通带截止频率(Cutoff Frequency): fc (Hz) 阻带起始频率(Stopband Frequency): fx (Hz) 通带涟波量(Maximum Ripple at passband): rp (dB) :Ax(dB) N≥ 1 10 10 10 / 10 / 2 - =- rp Ax N 步骤三:计算原型组件值(Prototype Element Values,g K)。 N K B g A A g A g K K K K K ,..., 3,2 , 4 2 1 1 2 1 1 1 = ? = = - - - α γ α 其中 N K ( sin B N ,..., 2,1 K , N 2 )1 K 2( sin A N 2 sinh , 37 . 17 rp coth ln 1 cosh N 1 cosh 2 2 K K 1 π + γ = = π - = β = γ ? ? ? ? ? ? = β ? ? ? ? ? ? ? ? ? ? ? ? ε = α-

微波光子滤波器的研究进展及其在ROF系统中的应用

微波光子滤波器的研究进展及其在ROF系统中的应用 1微波光子滤波器概述 1.1微波光子滤波器的发展及应用 微波光子滤波器是一个利用光学方法处理微波信号并实现滤波功能的光学子系统。传统电子技术的滤波技术是直接将射频信号下变频后在电路中进行处理,相对缺少灵活性,系统易受电磁波的干扰;受到频带及采样频率等电子瓶颈的限制。而微波光子滤波技术是在光域上处理载有的电信号,利用光纤、光学链路、光电子器件等对信号采样、加权、相加等处理。由于微波光子滤波器是用光学的方法处理微波信号,它可以克服传统的电滤波器的“电子”瓶颈。传统的采样频率最高只能达到几千兆赫兹左右,而微波光信号处理则可以达到上千亿赫兹,这将给高速无线通信提供良好的基础。比起传统的电子滤波器,微波光子滤波器用光学的方法处理微波信号,这种方法利用了光纤延迟线损耗小、抗电磁干扰、体积小、重量轻、能提供较宽的工作带宽和高速的取样频率等优势;并且微波光子滤波器更容易实现可调和可重构。这些优点使得微波光子滤波器的应用非常广泛。 微波光子滤波器可以在现代高速光纤无线接入网中得到广泛的应用。既可以应用到地面雷达系统中,也可以应用到从通用移动通信系统(UMTS: universal Mobile Telecommunication system)到固定接入微蜂窝网络中的宽带无线接入网及相关标准中(例如无线局域网(WLAN: Wireless Local Area Network)、全球互操作性微波接入(WIMAx: world Interoperability for Microwave Access) 以及局域多点分布服务(LMDS: Local Multipoint Distribution Service),另外,由于重量轻的特点,微波光子滤波器的在数字卫星通信系统中也有广泛的应用。这些技术都希望通过提高微波频率,减小微波信号的覆盖范围来提高传输的信道容量,而利用ROF 系统技术提高系统的传输容量,它利用宽带光纤无线技术能实现大容量无线射频信号的有线传输和超宽带无线接入。 1.2微波光子滤波器的研究现状 微波光子滤波器的研究兴起于国外,早在1976年,wilter和V ander Heuvel第一次提出了把光纤作为色散介质应用在微波信号处理中,他们最早认识到光纤的低损耗和大带宽的特性使其在宽带延迟线方面有广阔的前景。在20世纪70年代,一些研究人员如C.Chang,H.F.Taylor:等人致力于研究如何用利用多模光纤实现基于离散时间微波信号的光处理。在20世纪80年代,美国斯坦福大学Goodman,Shaw等人进行了大量的理论和实验研究,集中在用单模光纤延迟线实现微波光子处理技术。此后,更多的抽样元件和色散机制被应用于微波滤波器的研究,使其能够在更复杂的时域和频域上进行信号处理。20世纪80年代末,随着光放大器、耦合器、调制器、电光开关等光电器件的发展,微波光子处理的方法更加灵活,但是大多数研究仍然是集中在光纤的延迟线基础上。然而,光纤布拉格光栅(FBG)和阵列波导光栅(A WG)的出现给全光微波信号处理的应用提供了更为广阔的前景,提高了微波光子信号处理的重构性以及可调节性。 此后,D.B Hunte和R.A.Minasian等人第一个提出了单光源的连续可调滤波器,实验中耦合器两个不同输入端分别连接长凋啾光栅,通过调节光源的波长,可以线性控制其在光栅中反射点,从而控制了两个反射波的时间延迟。2001年J.Mora等人研究了基于阵列激光器的多光源微波光子滤波器,它可以快速而独立的重构和调节滤波器,但是成本太高;而将光纤光栅(FBG)应用在基于光源切片的微波光子滤波器的方法不仅可以降低成本,而且使得滤波器具有更多的灵活性;由于微波光子滤波器频率响应的周期性使得它的实际应用受到了一定的限制,2005年,J.Capmany和J.Mora等人研究了单频响应的微波光子滤波器,文章中

第2章 光子晶体及光子晶体滤波器的理论基础

第2章 光子晶体及光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:  =0,- E 2m + 2??? ??ψ????? ????? ????? ???→→t V r r

其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 2.1.2光子能带理论 错误!未找到引用源。 由电子的能带理论知道,当把电子的运动近似地 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2) 禁带 波矢

相关文档
最新文档