MPF微波光子学滤波器详解 PPT课件
滤波器基本知识介绍课件
二维信号滤波器原理
图像处理
二维信号滤波器主要用于图像处 理,以改善图像的质量或提取图
像中的特定信息。
卷积与滤波
二维信号滤波器通过与图像进行卷 积来处理图像,以实现图性, 对图像中的特定方向进行增强或抑 制。此外,它们也可以在空间域内 对图像进行处理。
滤波器的主要功能是提取感兴趣的频率成分,同时抑制不需要的频率成分。它广 泛应用于通信、音频处理、图像处理、电力等领域。
滤波器的分类
根据不同的分类方法,滤波器可以分为 多种类型。常见的分类包括
4. 带阻滤波器(Notch Filter):允许 特定频率范围以外的信号通过,抑制特 定频率范围内的信号。
滤波器的优化设计
最优准则的选择
01
最小均方误差准则( MMSE)
该准则以最小化输出信号的均方误差 为目标,通过优化滤波器参数,使得 输出信号与期望信号之间的误差最小 。
02
最大信噪比准则( MSNR)
该准则以最大化滤波器输出信号的信 噪比为目标,通过优化滤波器参数, 使得输出信号的信噪比最大化。
03
号处理和控制系统等领域。
基于变换域的滤波器
频域
频域滤波器是基于傅里叶变换的,它可以将时域信号转换到频域,从而更容易 地去除噪声和干扰。
小波变换域
小波变换域滤波器是基于小波变换的,它可以将信号分解成不同的频率分量, 并对每个分量进行独立的滤波处理。这种方法在信号处理中得到了广泛应用。
05
CATALOGUE
在保证滤波器稳定性的前提下,尽量减小滤波器 的参数数量。
设计过程的优化算法
梯度下降法
该算法通过计算目标函数对优化变量的梯度,并按照负梯度方向 更新优化变量的值,从而逐渐逼近最优解。
MPF微波光子学滤波器详解 PPT课件
可调谐性
负系数
高Q值
从技术层面上考虑,微波光子学滤波器主要需要关注 的是其可调谐性、负系数与高Q 值的实现这三个方面。可 调谐保证了其灵活性,负系数则是为了实现高通和带通滤 波器,而 Q 值是体现微波光子学滤波器频率选择性的一 项重要指标。
前言 第1章 MPF的分类和性能指标
第2章 高Q、负系数、高阶MPF典型方案分析
直接在光域处理,再转换为电信号后下变频
MPF VS 传统射频滤波器
在传统射频电路中,由射频信号源或天线接收得到射频信号,注入到信 号处理的射频电路,即经下变频到基带信号后通过模数换分辨率 要求很高。该方法所实现的滤波器的最大弊端在于所设计的信号处理电路只 能实现特定频段微波信号的滤波功能,一旦微波信号的频率发生变化,就必须重 新设计新的信号处理电路。同时,在电域内处理信号时,带宽和采样频率将会受 限,且高频电路容易引起电磁干扰,增大损耗。
负系数滤波器的实现
非相干的MPF在探测器端是信号功率的叠加,一般只能实现正的加权系 数,这样滤波器的波形局限在低通,为了实现高通和带通的滤波器,需要 引入负系数。
为了得到负的加权系数,可以利用反相位调制。
基于 SOA 交叉增益调制效应实现负系数的方案
如图,利用了SOA的交叉增益调制效应来实现一个2路的FIR负系数 滤波器,可调谐激光器输出波长为λ1 ,DFB激光器输出波长为λ2 ,由 于SOA的交叉增益调制效应,下路信号光λ1上携带的微波信号转移到 探测光载波λ2上,且与λ1上的信号相位相反。载波λ1上的信号获得正 的加权系数,载波λ2上的信号获得负的加权系数,它们可以由激光器 的输出功率来调节。
高阶滤波器的实现
一般讨论的IIR滤波器都有唯一的单极点,即为一阶滤波器。一阶IIR滤 波器受到传递函数的限制,在实验中很难得到很高的Q值和滤波抑制比。
2024版MPF微波光子学滤波器详解PPT课件
01微波光子学滤波器概述Chapter微波光子学基本概念微波光子学定义01微波光子学应用领域02微波光子学技术031 2 3滤波器定义滤波器在微波系统中的作用滤波器性能指标滤波器在微波系统中的作用MPF技术原理及特点MPF 技术原理MPF技术特点MPF实现方式02 MPFChapter常见MPF结构类型光纤光栅型MPF利用光纤光栅的周期性折射率调制实现滤波功能,具有插入损耗低、带宽可调等优点。
环形谐振腔型MPF通过环形谐振腔的选频作用实现微波信号滤波,具有高Q值、窄带宽等特点。
Mach-Zehnder干涉仪型MPF基于Mach-Zehnder干涉原理,通过调节干涉臂长度实现滤波功能,具有灵活性高、可调谐范围大等优势。
工作原理及性能参数工作原理性能参数优缺点分析优点缺点03 MPFChapter设计方法论述基于传输线理论的设计方法时域有限差分法(FDTD)耦合模理论光电器件性能限制光电器件的带宽、损耗、噪声等性能会直接影响MPF的性能。
解决方案包括采用高性能的光电器件、优化器件结构和工艺等。
温度稳定性问题MPF的性能会随温度的变化而发生变化,影响滤波器的稳定性。
解决方案包括采用温度补偿技术、选择温度稳定性好的材料等。
偏振相关问题MPF对输入光的偏振状态敏感,不同偏振态下滤波器的性能会有所不同。
解决方案包括采用偏振不敏感的光电器件、设计偏振控制器等。
关键技术挑战及解决方案窄带MPF设计案例介绍了一个窄带MPF的设计过程,包括滤波器结构的选择、参数的优化、仿真结果的验证等。
该案例展示了如何根据实际需求设计出满足性能指标的MPF。
介绍了一个宽带MPF在无线通信系统中的应用,包括滤波器的性能指标、应用场景、实际效果等。
该案例展示了MPF在实际应用中的优势和潜力。
介绍了一个具有多种功能的MPF的设计和实现过程,包括多通带滤波、可调谐滤波等功能的实现方法和效果展示。
该案例展示了MPF设计的灵活性和多样性。
宽带MPF应用案例多功能MPF设计案例典型案例分析04 MPFChapter通信系统架构简介发射端包括信源编码、信道编码、调制等模块,用于将信息转换为适合传输的信号。
滤波器基本知识介绍讲解28页PPT
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
28
第二章 滤波器ppt课件
在实际应用中, 外加信号的频率ω与回路谐振频率ω0之
差Δω=ω-ω0表示频率偏离谐振的程度, 称为失谐。
广义失谐 : Q(0)
0
1
Q1>Q2
当ω与ω0很接近时,令:
1/ 2
Q1
0
2
02
(0 )(0 )
Q2
0 0
0
2
0
0
( )2
B
0
0
()
1
1
则:
1Q2( 0 0)2
1Q(2 02
32
高频电子线路
的储能与电阻元件耗能状况的比值。
1 Q
Rs
C LR 0sL0C 1 R s
Rs
特性阻抗 :
L C
0L10C
23
高频电子线路
Ig
L
ZP( j) Rs
C
Ig
IL IC
ZP( j) RP L C
使网络阻抗(ZP(jω))相等进行等效
Q 1
R P(1Q 2)R S Q 2R S
1
Q 1
LP (1Q2)L L
有源滤波器:指在所构成的滤波器中,除无源器件外 还含有放大器等有源电路。
▪RC有源滤波器(含有运算放大器)。
▪开关电容滤波器(SCF)。
按处理的信号形式可分为模拟滤波器,数字滤 波器和抽样数据滤波器等。
10
高频电子线路
滤波器按幅度频率特性可分为:低通,高通,带通
和带阻滤波器
H ( j)
H ( j)
以 = 0 时的输出电压 Vo( j0) 对 Vo( j)
归一化,可得并联谐振回路的相对幅频特性与相频特
性,其值分别如下:
滤波器基础知识简介 ppt课件
ppt课件
3
概要
图1 超外差接收机前段
ppt课件
4
概要
从图1中可以看到,滤波器广泛应用在 接收机中的射频、中频以及基带部分。 虽然对这数字技术的发展,采用数字滤 波器有取代基带部分甚至中频部分的模 拟滤波器,但射频部分的滤波器任然不 可替代。因此,滤波器是射频系统中必 不可少的关键性部件之一。
ppt课件
ppt课件
33
各种滤波器的性能特点
LC滤波器
LC滤波器是采用恰当的电容、电感来构 成的滤波器,实际设计中,LC滤波器通常可 实现低通、带通、高通、带阻滤波器。
LC滤波器的优点是:体积小、成本低、寄生 通带远,但其缺点是相对损耗大,带外选择 性能较差,功率容量小。另外,LC滤波器中 电感采用绕制线圈的方式,因此较难实现高 频滤波的电感。因此LC滤波器通常只用来设 计制作4GHz以下频率的滤波器。
ppt课件
44
各种滤波器的性能特点
交指双工器
ppt课件
45
各种滤波器的性能特点
波导腔滤波器具有高Q、高功率容量等特点, 但是波导腔的滤波器一般体积较大,在对损 耗要求不是太高的情况下,一般都是使用交 指或梳状滤波器来实现。但是对损耗要求较 高的窄带滤波器,并且对体积要求不高的条 件下,波导腔还是较好的选择之一。一般同 等技术指标下,波导腔滤波器的损耗约为交 指或者梳状滤波器的一半。此外,波导腔滤 波器的功率容量大约比交指、梳状滤波器的 功率容量高一个数量级,因此在大功率雷达
界定滤波器性能的电特性指标
带通滤波器ppt仿课件真群时延曲线
29
界定滤波器性能的电特性指标
功率容量:可以输入滤波器的通带信号的最 大功率。 相位一致性:同一指标同一批次不同滤波器 之间的传输信号相位的差值。表征批次滤波 器之间的差别(一致性)。 幅度一致性:同一指标同一批次不同滤波器 之间的传输信号损耗的差值。表征批次滤波 器之间的差别(一致性)。
MPF微波光子学滤波器详解
(6)克服滤波器频率响应曲线的周期性特性 通过不同FSR的滤波器的级联或者采用非均勾的时延是增大MPF的FSR 的常用方法。
可调谐性
负系数
高 Q值
从技术层面上考虑,微波光子学滤波器主要需要关注 的是其可调谐性、负系数与高Q 值的实现这三个方面。可 调谐保证了其灵活性,负系数则是为了实现高通和带通滤 波器,而 Q 值是体现微波光子学滤波器频率选择性的一 项重要指标。
型技术之一。它借助现有的微波光子技术及相应的光学器
件搭建光学系统,允许特定频率微波信号通过的同时,抑制其 它频率的微波信号,进而实现微波信号的滤波处理。
MPF的分类
正抽头 按滤波器的抽头系数 负抽头 复抽头 有限脉冲响应(FIR)滤波器 无限脉冲响应(IIR)滤波器
按滤波器抽头系数的多少
单光源微波光子滤波器 采用的光源的个数 多光源微波光子滤波器
FSR=1/T
FSR和延迟线产生的延迟时间T呈反比,其大小决定了滤波器选择频谱 的中心频率,也就是射频信号所能通过的中心频率。滤波器的延迟线可以 利用各种不同的色散器件构成,如单模光纤,光纤布拉格光栅,光纤环等。 。
2.品质因数(Q 值) 在微波光子学滤波器中,Q值会影响到滤波器通带对射频信号频
谱的选择性。
图 不同载波波长对应的 MZM 的调制曲线
如图 ,为了产生相同的延迟时间T,两组载波应分别进行延时, 因为它们处在不同的光通信窗口,对应的光纤色散参量不同,光纤3 在1550nm 处色散参量为零,用它来补偿两组光波之间的群速度的 差值,以保证第N路信号与第N+1路信号之间的延迟时刚好为T。
图 1-13 基于单个MZM实现负系数的方案
Q值的大小影响到滤波器选择性的好坏。
3.主旁瓣抑制比(MSR) 表示了滤波器主瓣对边带的抑制程度,其大小决定了对边带的抑制 程度,也反映了滤波器对边带噪声抑制性能的好坏。
微波滤波器设计培训教程PPT课件
滤波器的四种形式
• 低通滤波器
低通滤波器电路原型
滤波器的四种形式
• 高通滤波器
滤波器的四种形式
• 带通滤波器
• 带通滤波器电路原型
滤波器的四种形式
• 带阻滤波器
带通滤波器技术指标
• 通带工作频段
• 即滤波器允许通过电磁波的频率范围。通带的理 解在生产过程提供的技术指标规定严格了的,不 需要怎样的去按照上面的定义去具体计算。也可 以这样说,如果我们的差损要求是0.8db,通带 需要10M的带宽,那么我们的通带就可以说成是 0.8db带宽为10M.
新员工培训
------微波滤波器基础知识介绍
微波及其特点
• 所谓微波是一种具有极高频率(通常为300 MHz~300GHz ),波长很短,通常为1m~ 1mm的电磁波。
波长=
光速 频率f
0
• 微波具有似光性和似声性、穿透性、信息 容量大等特点。
滤波器的基本原理
• 滤波器顾名思义就是对电磁波信号进行过 滤,让需要的信号通过,抑制不需要的信 号,主要目的为了解决不同频段、不同形 式的无线通讯系统之间的干扰问题,其特 性可以用通带工作频段、插入损耗、带内 波动、带外抑制、端口驻波比、隔离度、 矩形系数、功率容量、群时延指标来描述。
同轴谐振腔滤波器
• 其结构排列比较灵活,适合于100MHz-40GHz 频段带通滤波器的设计,在当今移动通信频段领 域使用最多的当是同轴腔,它的基本原理是根据 四分之一开路线和二分之一短路线所等效的LCR 谐振电路。在实际的产品研发和生产中,我们使 用了改进的双同轴UIR(均匀阻抗匹配)四分之一波 长谐振结构。这种结构的优点是:结构通用,易 于开发移植,适用移动通信全频段;调节范围大, 对公差要求不高,非常适于初等产品的低成本生 产;功率容量大,采用电耦合输入输出,所以产 品一致性和稳定性很好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本人主要研究高性能微波光子滤波器实现技术。
为什么要用MPF取代传统射频滤波器呢?
对模数转换分辨率要求很高 只能实现特定频段微波信号的滤波功能
图 基于 SOA 交叉增益调制效应实现负系数的方案
为获得多路负系数信号,可以将光滤波器输出的光束经耦合器 分束。 这种方案的缺点在于需要引入SOA这样一个非线性源。
利用MZM实现负系数的方案
MZM的调制曲线如图所示。利用两个MZM分别对两组载波 进行调制,其中一个调制器工作在线性正斜率区,由它调制的得 到的信号对应正的加权系数。另一个工作在线性负斜率区,由它 调制得到的信号对应负的加权系数。
负系数滤波器的实现
非相干的MPF在探测器端是信号功率的叠加,一般只能实现正的加权系 数,这样滤波器的波形局限在低通,为了实现高通和带通的滤波器,需要 引入负系数。
为了得到负的加权系数,可以利用反相位调制。
基于 SOA 交叉增益调制效应实现负系数的方案
如图,利用了SOA的交叉增益调制效应来实现一个2路的FIR负系数 滤波器,可调谐激光器输出波长为λ1 ,DFB激光器输出波长为λ2 ,由 于SOA的交叉增益调制效应,下路信号光λ1上携带的微波信号转移到 探测光载波λ2上,且与λ1上的信号相位相反。载波λ1上的信号获得正 的加权系数,载波λ2上的信号获得负的加权系数,它们可以由激光器 的输出功率来调节。
的常用方法。
可调谐性
负系数
高Q值
从技术层面上考虑,微波光子学滤波器主要需要关注 的是其可调谐性、负系数与高Q 值的实现这三个方面。可 调谐保证了其灵活性,负系数则是为了实现高通和带通滤 波器,而 Q 值是体现微波光子学滤波器频率选择性的一 项重要指标。
前言 第1章 MPF的分类和性能指标
第2章 高Q、负系数、高阶MPF典型方案分析
(5)克服光源的相干性 因为工作在相干状态下的MPF受环境的影响较大,现在提出的MPF方
案大部分是基于非相干MPF。但是相干性差的光源实际的使用范围受限。 为了克服光源相干性对于MPF的影响,有报道中提出了釆用布拉格声光频移 器来构建MPF,很好的实现了刹用相干光源搭建MPF。
(6)克服滤波器频率响应曲线的周期性特性 通过不同FSR的滤波器的级联或者采用非均勾的时延是增大MPF的FSR
一般通过提高FIR滤波器的分路数量,来减小其3dB带宽,从而达到实现 高Q的目的。
FIR滤波器实现高Q
目前已经报道了利用AWG对宽带光源进行谱分割实现40分路的FIR滤波器 的方案,经频谱分割后,得到频率间隔相同的一系列波长的光载波,然后利 用标准单模光纤做延时线。设相邻两个载波的波长间隔为Δλ,光纤长度为L, 色散参量为D,则相邻两载波信号之间的延迟时间为
3.主旁瓣抑制比(MSR) 表示了滤波器主瓣对边带的抑制程度,其大小决定了对边带的抑制
程度,也反映了滤波器对边带噪声抑制性能的好坏。
4. 3dB 带宽(W3dB) 滤波器的 3dB 带宽是滤波器响应功率值下降3dB时的频谱宽度,
其反应了滤波器所能通过的信号频率范围。
5. 抽头数和抽头系数
MPF的抽头数也就是滤波器的采样点数,这是由滤波器的载波信号源 和滤波器的结构决定的,抽头数的多少会影响到滤波器的主旁瓣抑制比 (MSR)。滤波器的抽头系数分为正系数,负系数和复系数,系数的符号直接 影响滤波器的通带特性,正系数的一般只能实现基带附近的低通滤波,而 具有负系数或复系数的滤波器能够实现带通滤波或陷波滤波。
图 不同载波波长对应的 MZM 的调制曲线
如图 ,为了产生相同的延迟时间T,两组载波应分别进行延时, 因为它们处在不同的光通信窗口,对应的光纤色散参量不同,光纤3 在1550nm 处色散参量为零,用它来补偿两组光波之间的群速度的 差值,以保证第N路信号与第N+1路信号之间的延迟时刚好为T。
图 1-13 基于单个MZM实现负系数的方案
MPF的分 类
按滤波器的抽头系数
正抽头 负抽头 复抽头
按滤波器抽头系数的多少
有限脉冲响应(FIR)滤波器 无限脉冲响应(IIR)滤波器
采用的光源的个数
单光源微波光子滤波器 多光源微波光子滤波器
主要提升微波光子学滤波器的什么性能参数呢?
微波光子滤波器研究重点是实现不同传输响应函数,例如带通、陷波、 横向周期等。还注重可调谐、可重构、Q值等特性,以及单源、多源等结构 的研究。
而在光域上用光子滤波器实现起来较简单。射频信号调制到光信号上, 利用基于光纤或集成光子器件的光子滤波器直接在光域处理,再转换为电信 号后下变频。并将完成滤波后的微波信号输出,以实现特定微波频段内的信号 滤波功能。
MPF的优 势
与传统射频电路相比,在光域处理射频或微波信号具有许多独特的优 点:尺寸小,质量轻,带宽宽(高时间带宽积),结构简单,损耗低(光延 迟线的损耗非常低),消除电子瓶颈,抗电磁干扰(EMI),动态范围大,重构 速度快,可调性好等。
影响MPF的主要性能参 数
微波光子学滤波器有着独有的优势,但是要想将它应用在实际当中, 还必须克服一系列潜在的限制,主要表现为以下几个方面:
1.自由频谱范围(FSR) 滤波器的自由频谱范围(FSR)就是传输函数响应的频谱周期,是由滤波
器延迟线模块所产生的延迟时间T来决定的,FSR的可以表示为: FSR=1/T
图 1-10 MZM 的调制曲线
利用两个 MZM 来实现负系数
便于扩展得到多路信号,不过需要利用大量的可调谐激光 器,增加了成本。
图 基于两个MZM实现负系数的方案
利用单个 MZM 的反相位调制实现负系数
基于单个 MZM 的反相位调制也有报道。对不同的载波波长,MZM的调制曲 线错开一定距离。
在同一个偏置电压下,如在Vbias=0.6V处,对1550nm的载波,工作点处在负 斜率区,而对1300nm的载波,工作点处在正斜率区。这样,对波长1550nm附近 的载波,调制得到的信号对应负的加权系数,对波长1300nm附近的载波,调制 得到的信号对应正的加权系数。基于此原理,利用单个调制器就可以同时得到正 加权系数和负加权系数。
用传统的微带或波导射频技术很难获得可重构的带通滤波器。还可以 可以使用WDM技术来实现空间和波长并行传输,因此微波光子学技术可以 广泛的应用于光纤无线传输系统中。
前言
第1章 MPF的分类及其性能参数
第2章 高Q、负系数、高阶MPF典型方案分析
第3章 基于 SOA 级联窄带滤波器的有源环实现 IIR 滤 波器的方案 分析
T = Δλ ⋅LD
图 基于 AWG 的 FIR 方案
如果在AWG之间引入开关阵列和衰减器阵列,就可以实现频率 间隔以及分路加权系数的可调,从而实现延时T的调谐和滤波器的重 构。
IIR滤波器实现高Q
与FIR的单向结构不同,IIR滤波器需要引入递归,一般采用反射腔和 环腔结构来实现。调制后的信号光经过反馈腔,一部分在腔内不断的反馈 实现延时,一部分输出到探测器端,不同分路之间的延时由信号光在反馈 腔行进一周需要的时间决定。目前已报道的利用单个FBG的环腔结构来实 现高Q值IIR滤波器的方案,能实现Q值为200的滤波器。
(2) 可调谐性: 可调谐性是指MPF中心波长的位置可以通过改变光器件控制参数等方
式而改变。实际上就是实现采样周期T的可调,现有方案中主要使用光纤延 时线、高色散光纤和光纤布拉格光栅来解决,而在后两种方案中,可调光源 的使用十分必要。
(3)负抽头的滤波器实现 要得到工作稳定的MPF,目前大多数的MPF研究都集中在非相干MPF。但是
光源工作在非相干状态下的MPF在PD上响应时只能是光强度的叠加,由于光强只 能为正值,对应于各个抽头的权重,只能取正值。
为了能够得到完全意义上的带通滤波器响应,需要在滤波器中引入负抽头。
为了实现负抽头,目前提出的方法有采用差分探测,混合光电方法,利用光电 调制器的方向调制特性,或者采用光学器件中的自相位调制,受激布里渊散射,受 激拉曼散射等非线性效应。
如图 ,这种结构利用了光纤光栅的两个面进行反射,延时为光在环 腔中行进一周时间的两倍。
图 基于单个 FBG 环腔结构的 IIR 方案
IIR和FIR级联实现高 Q
(a)级联前 (b)级联后
图 IIR 和 FIR 级联 实现高Q滤波器
用级联的方式来实现高Q滤波器,其思路是使用两个经过精心挑选的 滤波器,一个具有很强的频率选择性和很窄的3dB带宽,其传递函数设为 H(f)1 ,而另外一个滤波器则有很大的FSR,其传递函数设为H(f)2。这样经 过级联这两个滤波器,得到一个传递函数为H(f)=H(f)1H(f)2的滤波器,这 个滤波器同时具有很窄的3dB带宽和很大的FSR,即能实现很高的Q值。
FSR和延迟线产生的延迟时间T呈反比,其大小决定了滤波器选择频谱 的中心频率,也就是射频信号所能通过的中心频率。滤波器的延迟线可以 利用各种不同的色散器件构成,如单模光纤,光纤布拉格光栅,光纤环等。 。
2.品质因数(Q 值) 在微波光子学滤波器中,Q值会影响到滤波器通带对射频信号频
谱的选择性。
Q值的大小影响到滤波器选择性的好坏。
第3章 基于 SOA 级联窄带滤波器的有源环实现 IIR 滤 波器的方案 分析
高Q滤波器实现
由Q值的定义可以看出,实现高Q即是要同时得到大的FSR和窄的3dB带 宽。目前高Q的方案主要分为FIR、IIR以及级联结构的高Q实现。
对于单个FIR滤波器来说,FSR=1/T,而对于非相干的滤波器,T不可能 无限制的减小,即FSR的大小是受到限制的。
高阶滤波器的实现
一般讨论的IIR滤波器都有唯一的单极点,即为一阶滤波器。一阶IIR滤 波器受到传递函数的限制,在实验中很难得到很高的Q值和滤波抑制比。