汽车行驶控制系统
汽车行驶系统的作用和组成
汽车行驶系统的作用和组成一、引言汽车行驶系统是指汽车的核心部件和系统,包括发动机、传动系统、悬挂系统、制动系统和转向系统等。
它们共同协作,使汽车能够平稳、高效地行驶。
本文将对汽车行驶系统的作用和组成进行详细介绍。
二、发动机发动机是汽车行驶系统的核心,它产生动力驱动车辆前进。
常见的发动机类型包括内燃机和电动机。
内燃机分为汽油发动机和柴油发动机,它们通过燃烧燃料产生的高温高压气体推动活塞,从而驱动曲轴旋转,进而带动车辆前进。
电动机则通过电能转化为机械能,产生驱动力。
三、传动系统传动系统将发动机产生的动力传递到车轮,使车辆能够行驶。
常见的传动系统包括手动变速器和自动变速器。
手动变速器通过操作离合器和换挡杆,手动控制传动比,将发动机的扭矩传递到车轮上。
而自动变速器则通过液力传动或电子控制系统,根据行驶条件自动调整传动比,提供更加便捷和舒适的驾驶体验。
四、悬挂系统悬挂系统起到支撑车身、缓解震动和保持车轮与地面接触的作用。
它由减震器、弹簧和悬挂杆等组成。
减震器通过吸收和减少车身的震动,提高行驶的平稳性和舒适性。
弹簧则起到支撑和缓冲的作用,使车轮能够保持与地面的接触,提供足够的地面附着力。
五、制动系统制动系统用于控制车辆的速度和停车。
它由制动盘、制动片、制动鼓和制动蹄等组成。
当驾驶员踩下制动踏板时,制动系统通过摩擦产生的力矩,将车轮的动能转化为热能,从而减速或停止车辆。
制动系统的安全性和可靠性对驾驶员和行人的生命安全至关重要。
六、转向系统转向系统用于控制车辆的转向方向。
它由转向机构、转向器和转向轮等组成。
驾驶员通过操纵转向盘,转向系统将转向指令传递给车轮,使车辆能够按照驾驶员的意愿转向。
转向系统的灵敏度和可靠性对驾驶员的操控和安全至关重要。
七、其他辅助系统除了以上核心组成部分外,汽车行驶系统还包括一些辅助系统,如冷却系统、供油系统、供电系统和排气系统等。
冷却系统用于保持发动机的正常工作温度,防止过热。
供油系统提供燃油,并保持燃油的适当压力和流量。
汽车行驶系统知识总结归纳
汽车行驶系统知识总结归纳汽车行驶系统是指车辆在道路上行驶时所需要的各种装置和部件的总称,它直接影响着汽车的安全性、稳定性和舒适性。
本文将对汽车行驶系统的主要组成部分进行总结归纳,以帮助读者深入了解汽车行驶系统的原理和功能。
一、发动机系统发动机是汽车行驶系统的核心部分,它通过燃烧燃料提供动力,驱动车辆前进。
发动机系统包括燃油系统、冷却系统、点火系统和排气系统等。
燃油系统负责将燃油供应给发动机,并控制燃油的喷射和混合;冷却系统则通过循环冷却液降低发动机的温度,保证其正常运行;点火系统提供高压电火花使燃料点燃;排气系统将燃烧后的废气排出。
二、传动系统传动系统将发动机产生的动力传输到车辆的驱动轮上,使车辆能够行驶。
传动系统包括离合器(或变速器)、传动轴、差速器和驱动轮等。
离合器负责控制发动机与变速器之间的连接与分离,实现平稳启动和换挡;传动轴将动力由变速器传递到差速器;差速器分配驱动力到两个驱动轮,保证车辆的稳定性和转弯性能。
三、悬挂系统悬挂系统支撑整个车身,并提供舒适的乘坐感受。
悬挂系统包括弹簧、减震器、悬挂横梁和悬挂臂等。
弹簧通过吸收道路不平造成的冲击,减少车身的震动;减震器则通过控制弹簧的弹性,使车辆保持平稳的行驶;悬挂横梁和悬挂臂则连接车轮和车架,支撑车身。
四、制动系统制动系统用于控制车辆的速度和停车。
制动系统包括制动踏板、制动盘(或制动鼓)、制动片(或制动鞋)和制动液等。
当驾驶员踩下制动踏板时,制动液被推至制动盘(或制动鼓),使制动片(或制动鞋)与制动盘(或制动鼓)产生摩擦,从而减速或停车。
五、转向系统转向系统用于控制车辆的方向。
转向系统包括转向柱、转向齿轮和转向机构等。
当驾驶员转动转向盘时,转向柱将转动力传递给转向齿轮,通过转向机构使车辆改变方向。
转向系统还包括转向助力装置,提供额外的力量以减轻驾驶员转动转向盘的力度。
六、电气系统电气系统提供车辆所需的电力供应和电子设备的控制。
电气系统包括蓄电池、发电机、起动机、线路和开关等。
ESP
判断电路 磁铁 测量齿轮
各向异性磁阻 (AMR)集成电路
磁铁
测量齿轮 齿轮
ABS-TCS/ESP液压调节器工作原理
• 液压调节器包括:
四个进口阀6。 四个出口阀7。 两个隔离电磁阀8(常 开)。 两个起动电磁阀9(常 闭)。 两个液压泵2。
电控单元 液压调节器
液压调节器与ABS-TCS/ESP组合式ECU组合为一个总成
横向加速度传感器G200
• 【安装】横向加速度传感器应尽可能 靠近车辆重心,所以安装在转向柱下 方偏右侧前仪表台内。 • 【作用】用以检测车辆沿垂直轴线发 生转动的情况。即测出偏离预定方向 的侧向力及其大小。 • 【失效影响】若无此信号,则系统无 法确定实际状态,ESP将失效。 • 【电路】用3根导线连接J104。
转向角传感器G85工作原理
• 根据光栅原理进行测量
a:光源 b:编码盘
c+d:光学传感器
e:旋转计数器
1:增量模板 2:绝对模板 3:光源 4+5:光传感器
编码盘随转 向盘转动,内 侧的增量环上 的齿槽大小相 等且均匀分布, 产生的电压脉 冲信号均匀; 外侧的绝对环 上的齿槽大小、 分布不均匀, 产生的信号也 不均匀。比较 两组脉冲序列 来可确定当前 的转向盘绝对 转角。
• ESP系统的类型
4通道或4轮系统:能自动地向4个车轮独立施加制动力。 2通道系统:只能对2个前轮独立施加制动力。 3通道系统:能对2个前轮独立施加制动力,而对后轮只能
ESP系统的组成转向角传感器
纵向加速度传感器
车轮转速 传感器
控制单元
制动助力系统
偏转率 传感器
制动压力传感器 横向加速 度传感器
车辆行驶稳定控制系统
汽车行驶系统 PPT
车架B:槽型纵梁、管型横梁,横、纵梁间采用铆接连接,扭转刚度适中。
车架C:槽型纵梁、工字型横梁,横、纵梁间采用铆接连接,扭转刚度最小。 当使用要求车架扭转刚度大时,可采用车架A,但相应要求悬架的弹性元件变形 大,可以考虑使用螺旋弹簧作为弹性元件;对于以拉散装货为主,采用变形能力 较小的钢板弹簧作弹性元件的汽车,应该采用车架C。
三、行驶系的受力情况
ne-发动机输出转速; Me-发动机输出扭矩; nt-驱动轮转速; Mt-驱动轮 扭矩; F0-驱动轮对路面施加的圆周力; Ft-路面对驱动轮的驱动力; r-驱 动力滚动半径; Ft牵引力-由驱动力矩引起的地面对驱动轮的水平反作用力。 Fφ附着力-地面阻碍车轮打滑的最大水平反作用力。Fφ=Gφ×φ 汽车行驶条件:∑F阻≤ Ft ≤Fφ ∑F阻≤ Ft 汽车行驶第一条件(驱动条件或必要条件) Ft ≤Fφ 汽车行驶第二条件(附着条件或充分条件)
§20.1
边梁式车架:
边梁式车架由位于左右两侧的两根纵梁和若干横梁构成,横梁 和纵梁一般由16Mn合金钢板冲压而成,两者之间采用铆接或焊接连 接。
1、边梁式车架的组成
右纵梁
发动机 后悬支架 保险杠 后簧支架横梁
左纵梁 发动机后悬 支架横梁
2、车架纵(横)梁的剖面形状
车架A:箱型纵梁、管型横梁,横、纵梁间采用焊接连接,扭转刚度最大。
§20.2
中梁式车架
采用这种脊骨式车架的优点是: 能使车轮有较大的运动空间,便于采用独立悬架,从而可 提高汽车的越野性; 与同吨位货车相比,其车架较轻,减少了整车质量; 同时重心较低,因此行驶稳定性好; 车架的强度和刚度较大;脊梁还能起封闭传动轴的防尘套 作用。 但这种车架的制造工艺复杂。精度要求高,为保养和修理 造成诸多不便。
汽车行驶系的作用和组成
汽车行驶系的作用和组成汽车行驶系统的作用和组成一、引言汽车作为现代社会交通工具的重要组成部分,其行驶系统起着至关重要的作用。
行驶系统是指使汽车能够正常行驶的各个部件和装置的总称,它们相互协作,保障了汽车的安全、稳定和高效运行。
本文将从行驶系统的作用和组成两个方面进行详细介绍。
二、行驶系统的作用行驶系统是汽车的核心系统之一,它主要起到以下几个作用:1. 传递动力:行驶系统将发动机产生的动力传递给车轮,使汽车能够前进。
其中,传动装置起到了关键作用,它通过齿轮、传动轴和传动带等将发动机转速传递到车轮,实现动力的传递。
2. 控制方向:行驶系统中的转向系统通过转向装置、转向机构和转向轮等部件,控制汽车的左右转向。
驾驶员通过转动方向盘,使转向装置转动,进而改变车轮的转向角度,实现汽车的转向。
3. 控制速度:行驶系统中的制动系统和悬挂系统协同工作,实现对汽车速度的控制。
制动系统通过刹车片和制动盘的摩擦,减缓车轮的转速,从而减速或停车。
悬挂系统则通过悬挂弹簧和减振器,减少路面的冲击,保证乘坐舒适性和行驶稳定性。
4. 保障安全:行驶系统中的安全系统是汽车不可或缺的部分,包括刹车系统、制动辅助系统、安全气囊系统等。
它们通过各自的功能,提供了多重保护措施,确保驾驶员和乘客在行驶过程中的安全。
三、行驶系统的组成行驶系统由多个部件和装置组成,每个部件都承担着特定的功能,共同构成了一个完整的行驶系统。
下面将对行驶系统的组成进行详细介绍:1. 发动机:发动机是汽车的动力源,通常采用燃油发动机或电动机。
它通过燃烧燃料产生动力,并将动力传递给传动装置。
2. 传动装置:传动装置将发动机的动力传递到车轮,主要包括离合器和变速器。
离合器用于连接和断开发动机与变速器的传动,变速器则根据汽车速度和驾驶需求,调节发动机输出功率和车轮转速的比例。
3. 转向系统:转向系统用于控制汽车的左右转向,主要包括转向装置、转向机构和转向轮。
驾驶员通过转动方向盘,使转向装置转动,进而改变车轮的转向角度。
巡航系统
功用及类型
工作原理
信号特征
检测方法
故障诊断
6.4.2 巡航控制系统的基本原理
1.巡航控制系统的基本原理 汽车巡航控制系统是根据汽车行驶阻力的变化,通过调整发 动机转速(控制节气门开度、喷油时间、点火提前角等)及 变换变速箱工作档位(对于装备自动变速箱车辆)实现按设 定车速行驶。
对于装备手动变速箱的 车辆,只能在相应档位 下通过调整发动机转速Байду номын сангаас实现稳定车速。
巡航控制系统的布 置如图6-21所示:
图6-21巡航控制系统的布置
功用及类型 巡 航 控 制 系 统 的 电 路 图 如 图 所 示
工作原理
信号特征
检测方法
故障诊断
图6-22 巡航控制系统电路
6-22
功用及类型
工作原理
信号特征
检测方法
故障诊断
巡航真空式执行器的结构见图6-23所示:
当点火开关在RUN或START位时, 巡航控制主开关通电,当按下ON 按钮时,电源即给巡航控制器和 制动开关供电。巡航控制器接收 来自制动开关、车速传感器 (VSS)、离合器开关(手动变速器) 或A/T档位开关(自动变速器)的 信号,巡航控制系统依次发送信 号给巡航控制执行器来调节节气 门位置以维持所设定的汽车速度。 控制器把汽车的实际速度与所设 定的速度进行比较,从而在必要 时打开或关闭节气门,使提供的 动力与所设定的速度相匹配。 图6-23 真空式执行器的结构
图6-24新型雪铁龙C5轿车CAN网
功用及类型
工作原理
信号特征
检测方法
故障诊断
具体部件名称见表6-5:
表6-5
部件号 1320 1630 BSI1 6606 7306 0004 部件名称 发动机计算机 自动变速器电控单元 智能服务器 定向大灯电控单元 加速踏板位置信号 组合仪表 部件号 VCCF CVOO 7020/7800 2120 7316 7215 部件名称 中央固定式集控式转向盘 转向盘下转换模块 电控平稳行驶系统电控单元 变光开关信号 加速踏板位置信号 多功能显示屏
简述汽车行驶系统的功用与组成。
简述汽车行驶系统的功用与组成。
汽车行驶系统是指控制汽车正常行驶的系统,其主要功用是使汽车能够稳定、安全地行驶。
汽车行驶系统通常由以下几个主要组成部分构成:
1. 发动机:发动机是汽车行驶系统的核心部件,通过燃烧燃料产生动力,驱动车辆前进。
2. 变速器:变速器用于调节发动机输出的动力和扭矩,并将其传递到车辆的驱动轮上,以控制车辆的速度和转向。
3. 驱动系统:驱动系统由传动轴、差速器和驱动轮组成,将发动机的动力传递给车辆的驱动轮,驱动车辆前进。
4. 悬挂系统:悬挂系统由减震器、弹簧和悬挂支架等组成,主要用于减震和支撑车身,保证车辆行驶过程中的稳定性和舒适性。
5. 制动系统:制动系统包括刹车踏板、制动盘、制动鼓、刹车片等组件,用于减速和停止车辆,确保行驶安全。
6. 转向系统:转向系统由转向盘、转向柱、转向齿轮和转向臂等组成,用于控制车辆的转向,使车辆能够按照驾驶员的指令行驶。
7. 车轮和轮胎:车轮和轮胎是汽车的连接物,承载车辆的重量并提供牵引力和操控性。
8. 燃油系统:燃油系统包括燃油箱、燃油泵、喷油器等组件,用于储存和供应燃料,确保发动机正常运转。
总之,汽车行驶系统由发动机、变速器、驱动系统、悬挂系统、制动系统、转向系统、车轮和轮胎以及燃油系统等多个部件组成,协同工作以保证汽车稳定、安全地行驶。
汽车行驶系统概述
的。
断开式转向桥
JL6360型微型客车的 断开式转向桥
转向轮定位参数
转向桥在保证汽车转向 功能的同时,应使转向轮有 自动回正作用,以保证汽车 稳定直线行驶。这种自动回 正作用是由转向轮的定位参 数来保证的,转向轮的定位 参数主要有主销后倾角、主 销内倾角、前轮外倾角和前 轮前束。
1. 主销后倾角 主销后倾角是指在汽车
的纵向平面内,主销上部有
向后有一个倾角γ,即主销
轴线和地面垂直线在汽车纵 向平面内的夹角,它能形成 回正的稳定力矩。
1、主销后倾 主销安装在前轴上,在纵向平
面内,其上端略向后倾斜,这种现 象称为主销后倾。在纵向垂直平面 内,主销轴线与垂线之间的夹角γ 叫主销后倾角 。
轮式组成:主要由车架、车桥、车轮和悬架组成。
轮式行驶系主要由车架、车桥、悬架和车轮等组成,如 图所示。
车架是全车的装配基体,将整个汽车连接成一整体; 车轮安装在车桥上,支承着车桥与汽车;悬架把车架与车 桥连接在一起,减少汽车在行驶中受到的各种冲击与振动。
第二节 车架
作用:用以支撑连接汽车的各零部件,并承受来自车内外的各种载荷。
1MPa),利用气体的可压缩性实现其弹簧作用的。这种弹簧的刚度 是可变的,故它具有比较理想的变刚度特性。
空气弹簧 空气弹簧有囊式 空气弹簧和膜式 空气弹簧两种。
油气弹簧 油气弹簧的形式有单 气室、双气室以及两 级压力式等。
橡胶弹簧
橡胶弹簧是利用 橡胶本身的弹性 来起弹性元件的 作用。它可以承 受压缩载荷 与扭 转载荷。橡胶弹 簧多用作悬架的 副簧和缓冲块。
行驶系统的工作原理
行驶系统的工作原理随着科技的不断进步,汽车的性能也在不断提高。
作为汽车的重要组成部分之一,行驶系统的作用越来越受到人们的重视。
行驶系统是汽车的核心部件之一,它直接关系到汽车的行驶安全和舒适性。
本文将详细介绍行驶系统的工作原理,帮助大家更好地了解汽车的运行原理。
一、行驶系统的组成行驶系统是由轮胎、轮辋、轮轴、悬挂系统、制动系统和转向系统等组成。
其中,轮胎是整个行驶系统的核心部分,它直接与地面接触,承受着整个车辆的重量和行驶的力量。
轮辋和轮轴是轮胎的支撑部分,它们的质量和强度直接影响整个行驶系统的稳定性和安全性。
悬挂系统是连接车身和轮胎的重要部件,它可以减震、保护车身和提高行驶舒适性。
制动系统是保证行驶安全的关键部分,它可以控制车辆的速度和停车。
转向系统是用于控制车辆的行驶方向和转向的部分,它可以让车辆按照驾驶员的意愿行驶。
二、轮胎的工作原理轮胎是整个行驶系统的核心部分,它直接与地面接触,承受着整个车辆的重量和行驶的力量。
轮胎的工作原理可以分为以下几个方面: 1. 轮胎的结构轮胎的结构是由胎体、胎面和胎侧组成。
胎体是轮胎的主体部分,由帘布、钢丝和橡胶等材料组成。
胎面是轮胎与地面接触的部分,它的花纹设计可以影响轮胎的抓地力和排水性能。
胎侧是连接胎体和轮辋的部分。
2. 轮胎的功能轮胎的主要功能是提供支撑和牵引力,同时还需要具备良好的减震和保护车身的能力。
轮胎的抓地力和牵引力可以影响车辆的加速、制动和转向性能,因此轮胎的选择和维护非常重要。
3. 轮胎的磨损和更换轮胎的磨损和更换是车辆维护中非常重要的一部分。
轮胎的磨损会影响行驶安全和车辆性能,因此需要定期检查轮胎的花纹深度和磨损情况。
当轮胎的花纹深度达到法定标准或出现龟裂、鼓包等情况时,需要及时更换轮胎,以保证行驶安全和车辆性能。
三、悬挂系统的工作原理悬挂系统是连接车身和轮胎的重要部件,它可以减震、保护车身和提高行驶舒适性。
悬挂系统的工作原理可以分为以下几个方面:1. 悬挂系统的结构悬挂系统主要由弹簧、避震器和悬挂臂等部件组成。
汽车行驶系统故障的快速诊断与排除
汽车行驶系统故障的快速诊断与排除1. 引言1.1 汽车行驶系统故障的重要性汽车行驶系统是汽车的核心部件之一,直接关系到车辆的驾驶性能和安全性。
汽车行驶系统故障的重要性不言而喻,一旦出现故障将会对驾驶员和乘客的人身安全造成严重威胁。
当发动机系统发生故障时,车辆可能会熄火导致失去动力,影响行驶安全;当制动系统故障时,可能导致制动失效,造成交通事故。
及时发现并排除汽车行驶系统故障至关重要。
除了关系到行车安全外,汽车行驶系统故障还会影响车辆的性能和燃油经济性。
如果汽车的发动机系统出现故障,可能导致车辆动力不足、耗油量增加等问题,进而影响到车辆的性能表现和燃油经济性。
对汽车行驶系统故障进行快速诊断与排除,不仅能够保障行车安全,还能够保证车辆的性能稳定和经济性。
汽车行驶系统故障的重要性在于它直接关系到车辆的安全性、性能和经济性。
对于汽车行驶系统故障的及时发现和处理是每位驾驶员都应该重视的问题。
【字数:218】1.2 快速诊断与排除的必要性快速诊断与排除汽车行驶系统故障的必要性在于提高行车安全性和保障车辆性能。
随着汽车技术的不断发展,现代汽车的行驶系统变得更加复杂和精密,一旦出现故障可能会对车辆造成严重影响。
快速诊断可以帮助准确找出问题的根源,避免延误或错诊,节省时间和金钱成本。
及时排除故障可以避免故障进一步扩大,确保车辆正常行驶,保证驾驶人员的生命安全和交通的畅通。
通过快速诊断与排除,可以保证车辆在最佳状态下运行,延长车辆的寿命,减少维修次数和费用。
及时检修和更换故障零部件,能够避免因故障导致其他零部件受损,减少维修成本和时间消耗。
重视汽车行驶系统故障的快速诊断与排除是保障行车安全、维护车辆性能的必要手段。
只有及时发现并处理故障,才能确保车辆的正常运行,为驾驶者提供安全、愉快的行车体验。
2. 正文2.1 常见的汽车行驶系统故障1. 发动机故障:发动机在行驶过程中出现异响、抖动等现象,可能是由于火花塞、点火线圈、燃油喷射器等部件故障导致的。
车辆行驶系统组成
车辆行驶系统组成1. 概述车辆行驶系统是指车辆上用于控制、监测和辅助驾驶的各种设备和系统的集合。
它是现代汽车的重要组成部分,为驾驶员提供安全、舒适和便利的驾驶体验。
车辆行驶系统包括了多个子系统,如动力系统、悬挂系统、制动系统、转向系统等。
2. 动力系统动力系统是车辆行驶的核心部分,负责提供动力以推动车辆前进。
主要组成部分包括发动机、传动装置和传动轴。
发动机通过燃烧汽油或柴油产生的能量,将其转化为机械能,并传递到传动装置上。
传动装置则负责将发动机产生的转速和扭矩传递到传动轴上,再由传动轴将能量输送到车轮上。
3. 悬挂系统悬挂系统是保证车辆平稳行驶和乘坐舒适性的重要组成部分。
它由减震器、弹簧、悬挂杆等部件组成。
悬挂系统通过减震器和弹簧的作用,吸收路面不平的冲击力,保持车身稳定。
同时,悬挂系统还能够调整车身的高度和硬度,以适应不同的驾驶条件和乘坐需求。
4. 制动系统制动系统是保证车辆行驶安全的关键部分。
它主要由制动盘、制动片、制动液等组成。
当驾驶员踩下刹车踏板时,制动液会通过管道传递到制动盘和制动片之间,产生摩擦力来减速或停止车辆。
同时,制动系统还包括防抱死系统(ABS)和电子刹车力分配系统(EBD),能够提供更稳定和可靠的制动效果。
5. 转向系统转向系统是控制车辆转向方向的重要组成部分。
它由转向机构、转向柱、转向齿轮等组件组成。
当驾驶员转动方向盘时,转向柱会将转动力传递到转向机构上,再通过转向齿轮将力量传递到前轮上,从而改变车辆的行进方向。
6. 辅助驾驶系统随着科技的发展,现代车辆行驶系统还加入了许多辅助驾驶系统,提供更安全和便利的驾驶体验。
这些系统包括自适应巡航控制(ACC)、车道保持辅助(LKA)、盲点监测(BSM)等。
自适应巡航控制可以根据前方车辆的速度和距离,自动调整车速以保持安全距离。
车道保持辅助系统能够识别车道线,并通过调整转向力来帮助驾驶员保持在车道内行驶。
盲点监测系统则通过传感器监测侧后方的盲点区域,提醒驾驶员注意。
汽车行驶系统的作用和组成
汽车行驶系统的作用和组成一、引言汽车行驶系统是指汽车的核心部分,它包括了使汽车能够正常行驶的各个组成部分。
汽车行驶系统的作用是保证汽车能够安全、稳定地行驶,同时提供乘坐舒适性。
本文将详细介绍汽车行驶系统的作用和组成。
二、作用汽车行驶系统的作用主要有以下几个方面:1. 提供动力:汽车行驶系统通过发动机将燃油燃烧产生的能量转化为机械动力,驱动车辆前进。
2. 控制行驶方向:汽车行驶系统通过转向系统控制车辆的行驶方向,使车辆能够按照驾驶员的意愿前进、后退、转弯等。
3. 控制行驶速度:汽车行驶系统通过变速器控制车辆的行驶速度,使车辆能够根据道路条件和驾驶员的需求进行加速、减速等操作。
4. 保证行驶稳定性:汽车行驶系统通过悬挂系统、悬挂系统等,保证车辆在行驶过程中的稳定性,提供乘坐舒适性。
5. 提供制动力:汽车行驶系统通过制动系统提供制动力,使车辆能够在需要时安全停车或减速。
三、组成汽车行驶系统包括以下几个主要组成部分:1. 发动机系统:发动机是汽车行驶系统的核心部分,它将燃油燃烧转化为机械动力,驱动车辆前进。
发动机系统还包括供油系统、点火系统和排气系统等。
2. 变速器系统:变速器系统通过控制传动比,使发动机的转速和车轮的转速匹配,从而控制车辆的行驶速度。
常见的变速器系统包括手动变速器和自动变速器。
3. 转向系统:转向系统用于控制车辆的行驶方向。
它包括转向机构、转向器、转向柱和转向机构等。
驾驶员通过转动方向盘,使车辆能够前进、后退、转弯等。
4. 悬挂系统:悬挂系统用于保持车身稳定,提供乘坐舒适性。
它包括悬挂弹簧、减震器和悬挂臂等。
悬挂系统能够减少车辆在行驶过程中的颠簸感,提供平稳的乘坐感受。
5. 制动系统:制动系统用于控制车辆的制动力,使车辆能够在需要时安全停车或减速。
它包括制动盘、制动片、制动钳和制动油管等。
6. 轮胎系统:轮胎是车辆与道路之间的唯一接触点,它对车辆的行驶稳定性和操控性起着至关重要的作用。
简述汽车行驶系统的原理
简述汽车行驶系统的原理汽车行驶系统是指控制汽车正常行驶的系统,它包括发动机系统、传动系统、悬挂系统、转向系统和制动系统等。
整个系统的原理是通过各个子系统的协同工作,达到控制汽车行驶的目的。
首先,发动机系统是汽车行驶的动力源。
汽车发动机利用内燃机的工作原理,将燃料与空气混合后进行爆燃,产生燃烧气体的高温高压,通过活塞的上下运动将燃烧气体转化为机械能,从而带动曲轴输出动力。
发动机的工作原理是燃油系统、点火系统和润滑系统的协同工作,通过控制燃料的供给、点火的时机以及提供足够的润滑,保证发动机能够正常工作,提供足够的动力。
传动系统则将发动机的动力传递给车轮,使汽车能够行驶。
传动系统的主要组成部分是离合器、变速器和传动轴。
离合器通过踏板的控制来实现发动机与变速器的连接和分离。
变速器则通过一系列的齿轮组合和离合器的作用,将发动机的转速变换为合适的转矩和转速输出给车轮。
传动轴则将变速器输出的动力传递给车轮。
悬挂系统主要用于保证车辆在行驶过程中对路面的适应性和行驶稳定性。
它通过悬架系统的弹性元件,如弹簧、减振器等,来吸收道路的不平和震动,提供舒适的乘坐环境。
悬挂系统的原理是通过车轮与车身之间的悬架系统连接,使车轮能够相对于车身的运动,从而保证汽车在行驶过程中能够保持稳定。
转向系统用于改变汽车行驶方向。
转向系统的主要组成部分是转向机构和转向器。
转向机构包括转向齿轮、传动齿条和连杆,通过人为的操作,将方向盘的转动转化为前轮的偏转,从而改变汽车的行驶方向。
转向器则是将驾驶员对方向盘的操作转化为操控转向机构的力。
制动系统用于控制汽车的速度和停车。
制动系统的主要组成部分是制动器、制动液和制动传动装置。
制动器通过对车轮施加制动力,利用摩擦力将车轮停下来从而控制汽车行驶速度。
制动液则传递驾驶员对制动踏板的操作力到制动器。
制动传动装置则将驾驶员对制动踏板的操作力转化为作用在制动器上的力。
综上所述,汽车行驶系统的原理是通过各个子系统的协同工作,实现汽车的正常行驶。
汽车电控技术 第4章 汽车行驶安全性控制系统
第4章汽车行驶安全性控制系统一.填空题1.评价制动效能的主要评价指标有、、。
2.电控ABS由、和组成。
3.车速传感器主要由和组成。
4.传感器头从外形上可分为、和等。
5.根据用于不同制动系统的ABS,制动压力调节器主要有、和。
6.液压制动压力调节器主要由、和等组成。
7.可变容积式调节器的基本结构,主要由、、和组成。
8.按ECU所依据的控制参数不同分类,ABS可分为和。
9.ABS按制动压力调节器结构不同分类:和。
10.ABS 按功能和布置形式不同分类:和。
11.ABS按控制通道数目分类:、、、。
12.循环式制动压力调节器在汽车制动过程中,ECU 控制流经制动压力调节器电磁线圈的电流大小,使ABS出于、、减压三种状态。
13.丰田凌志LS400ABS制动压力调节器中的3/3电磁阀主要由、和单向阀等组成。
14.本田车系ABS采用控制方式,每个车轮上有一个制动压力调节器调节制动压力。
15.本田车系ABS的制动压力调节器由、、油泵、储能器、压力开关等组成。
16.ABS系统是防止制动时车轮抱死而,ASR是防止驱动轮原地不动而不停的。
17.ASR的基本组成有、、等。
18.汽车防滑差速器大致上可以分为和两大类。
19.防滑差速器的差动限制控制特性,主要是根据、和,又ECU控制并改变差动限制离合器的压紧力。
20.ASR的传感器主要是和。
21.ASR 制动压力调节器的结构形式有和两种。
.22.ASR 不起作用时,辅助节气门处于位置,当需要减少发动机驱动力来控制车轮滑转时,ASR控制器输出信号使辅助节气门驱动机构工作,改变开度。
23.节气门驱动装置由和组成。
步进电机根据ASR控制器输出的控制脉冲转动规定的转角,通过传动机构带动转动。
24.ASR 控制系统通过改变来控制发动机的输出功率。
25.TRC液压制动执行器中的泵总成由和两部分组成。
26.TRC 液压制动执行器中的制动执行器由切断电磁阀、制动总泵切断电磁阀、()切断电磁阀和压力开关或压力传感器四部分组成。
汽车电控技术 第4章 汽车行驶安全性控制系统 答案
五.简答题
1.按不同的分类方式,可将ABS分为哪些种类?
答:(1)按ECU所依据的控制参数不同分为:以车轮滑移率S为控制参数的ABS和以车轮角加速度为控制参数的ABS。
(2)按制动压力调节器的结构不同分类:机械柱塞式ABS和电磁阀式ABS。
35.差速限制机构的功用为当前后车轮间发生转速差时,按照转速差控制油压多板离合器的接合力,从而控制前后轮的转矩分配。(√)
36.滑转率是车轮瞬时速度与车身圆周速度的速度差占车轮圆周速度的百分比。(×)
改:滑转率是车轮圆周速度与车身瞬时速度的速度差占车轮圆周速度的百分比。
37.SRS电热丝电路处于正常工作时短路片与连接器端子接通(×)
3.循环式调节器:电磁阀直接控制轮缸制动压力的制动压力调节器。
4.可变容积式调节器:电磁阀间接控制制动压力的制动压力调节器。
5.吸温沸点:制动液在吸湿率为3.5%时的沸点。
6.EBD:是电子制动力分配,采用电子技术代替传统的比例阀,根据汽车制动时产生轴荷转移的不同,自动调节前后桥的制动力分配比例。
7.BA:是辅助制动系统,当驾驶员在紧急状况下迅速踩制动踏板,但制动踏板力不足时,此系统会在不足1s内的时间把制动力增至最大,缩短紧急制动情况下的制动距离。
31.丰田车系防抱死制动与驱动防滑(ABS/TRC)工作时,当需要当无需对驱动
轮施加制动力矩时:各个电磁阀都通电且ECU控制步进电机转动使副节气门保持
开启。(×)
改:丰田车系防抱死制动与驱动防滑(ABS/TRC)工作时,当需要当无需对驱动轮施加制动力矩时:各个电磁阀都不通电且ECU控制步进电机转动使副节气门保持开启。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车行驶控制系统是应用很广的控制系统之一,控制的目的是对汽车速度进行合理的控制,它是一个典型的反馈控制系统统,其工作原理如下:
使用汽车速度操纵机机构的位置变化设置汽车的指定速度,这是因为操纵机构的不同位置对应着不同的速度:测量汽车的当前速度,求取它与指定速度的差值:由差值信号产生控制信号驱动汽车产生相应的牵引力以改变并控制汽车速度值达到指定速度。
在对这个系统进行建模仿真前,需要先对此系统做简单的介绍。
汽车行驶控制系统包含三部分机构。
第一部分,速度操纵机构的位置变换器」
位置变换器是汽车行驶控制系统的输入,其作用是将速度操纵机构的位置转换为相应的速度,速度操纵机构的位置和设定速度间的关系为:
V=50x+45,x∈[0,1]
第二部分,离散PID 控制器
离散PID 控制器是汽车行驶控制系统的核心部分。
其作用在于根据汽车当前速度与设定速度的差值,产生相应的牵引力。
其数学模型为:
积分环节:x(n) = x(n−1) + u(n)
微分环节:d(n) = u(n)−u(n−1)
系统输出:y(n) = Pu(n) + Ix(n) + Dd(n)
其中u(n)是控制器输入,是汽车当前速度与设定速度的差值。
y(n)是控制器输出,即汽车的牵引力,x(n)是控制器中的状态量。
P, I 和D分别是PID控制器的比例、积分和微分控制参数,在本例中取值分别为
P =1, I = 0.01和D = 0。
第三部分,汽车动力机构
汽车动力机构是行驶控制系统的执行机构。
其功能是在牵引力的作用下改变汽车速度,使其达到设定的速度。
牵引力与速度之间的关系为
F = mv(求导)+ bv
其中v是汽车速度,F 是汽车的牵引力,m =1000kg 是汽车质量,b = 20是阻力因子。
解:
一、系统模型创建
按照前面给出的汽车行驶控制系统的数学模型,构建系统的Simulink 仿真模型,见图8.34(a)。
此仿真模型需要的系统模块有:
Math 模块库中的Gain 和Slider Gain 滑动增益模块:Slider Gain 滑动增益模块用来调节位置变换器的输入信号x 的取值;
Discrete 模型库中的Unit Delay 单位延迟模块:产生信号的一步延迟,以实现PID 控制算法;
Continuous 模型库中的Integrator 积分器模块;
Math Operation 模型库中的Sum 模块;
二、系统模块参数及仿真参数设置
1、系统模块参数设置
Slider Gain 模块:最小值Low 为0,最大值High 是1,可取0~1 之间的任意值;
Unit Delay 模块:初始状态为0,采样时间为0.02s;
Intergrator 模块:初始状态为0;
其余模块的参数设置参见系统仿真模型图8.34(a)或使用默认取值。
2、系统仿真参数设置
仿真时间范围:0~800;
求解器:使用变步长连续求解器。
三、系统仿真与分析
将系统模块参数与系统仿真参数设置之后,对系统进行仿真,系统的仿真结果见图8.34(b)
(a)汽车行驶控制系统仿真模型
(b)汽车行驶控制系统仿真结果
图8.34 例8.4 汽车行驶控制系统仿真模型及其仿真结果。