Verilog程序代码集
八位移位寄存器verilog代码

一、引言在数字电路设计中,移位寄存器是十分常见的电路元件。
它能够对输入的数据按照特定的规则进行位移操作,常见的有左移、右移、循环移位等。
在Verilog语言中,我们可以通过编写代码来实现八位移位寄存器。
本文将从深度和广度方面展开对八位移位寄存器的Verilog代码进行全面评估,并撰写有价值的文章。
二、基本概念在开始编写八位移位寄存器的Verilog代码之前,我们首先要明确其基本概念。
移位寄存器是一种能够在时钟信号的控制下,对输入数据进行位移操作的寄存器。
而八位移位寄存器则是指这个寄存器能够对八位二进制数据进行位移。
这意味着在Verilog代码中,我们需要定义一个八位的寄存器,并编写移位操作的逻辑。
我们还需要考虑如何控制时钟信号和输入数据,以使得移位操作能够按照我们的期望进行。
三、Verilog代码实现```verilogmodule shift_register(input wire clk, // 时钟信号input wire rst, // 复位信号input wire [7:0] data_in, // 输入数据output reg [7:0] data_out // 输出数据);// 初始化寄存器always @(posedge clk or posedge rst)beginif (rst)data_out <= 8'b00000000; // 复位时,将寄存器清零elsedata_out <= data_in; // 否则将输入数据写入寄存器end// 左移操作always @(*)begindata_out = {data_out[6:0], 1'b0}; // 将寄存器中的数据向左移动一位end// 右移操作always @(*)begindata_out = {1'b0, data_out[7:1]}; // 将寄存器中的数据向右移动一位endendmodule```以上是一个简单的八位移位寄存器的Verilog代码实现。
数码管显示的Verilog代码

2'b01: AN<=4'b1011;
2'b10: AN<=4'b1101;
2'b11: AN<=4'b1110;
default:AN<=4'b1111;
endcase
end
always @(*)
begin
case (Data[3:0])
0:seg[7:0]<=8'b00000011;
begin
case(BIT_SEL)
0: Data_4[3:0] <= Data[15:12];
1: Data_4[3:0] <= Data[11:8];
2: Data_4[3:0] <= Data[7:4];
3: Data_4[3:0] <= Data[3:0];
default:Data_4[3:0] <= Data[3:0];
output [7:0] SEG
);
reg[3:0] Data_4;
reg[1:0] BIT_SEL;
reg[15:0] cnt;
SMG_1 SMG_i(SEG,AN,BIT_SEL,Data_4);
always @(posedge CLK or posedge CLR)
if(CLR)
begin
cnt<=16'b0;
控制每个数码管显示对应位的数字begincase
数码管显示的Verilog代码
//用4个数码管显示一个16位二进制数据Data,每个数码管显示各自的数据0.2ms
module SMG_4(
i2cverilog代码

4'd5: sda_r <= db_r[2]; 4'd6: sda_r <= db_r[1]; 4'd7: sda_r <= db_r[0]; default:endcase//sda_r <= db_r[4'd7-num]; //送EEPROM地址(高bit开始)cstate <= ADD2;endend//else if(`SCL_POS) db_r <= {db_r[6:0],1'b0}; //器件地址左移1bitelsecstate <= ADD2;endACK2:beginif(/*!sda*/`SCL_NEG) begin//从机响应信号if(!sw1_r) begincstate <= DATA;//写操作db_r <= `WRITE_DATA; //写入的数据endelse if(!sw2_r) begindb_r <= `DEVICE_READ; //送器件地址(读操作)地址读需要执行该步骤以下操作cstate <= START2;//读操作endendelse cstate <= ACK2;//等待从机响应START2: begin //读操作起始位if(`SCL_LOW) beginsda_link <= 1'b1; //sda作为outputsda_r <= 1'b1;//拉高数据线sdacstate <= START2;endelse if(`SCL_HIG) begin //scl为高电平中间sda_r <= 1'b0;//拉低数据线sda,产生起始位信号cstate <= ADD3;endelse cstate <= START2; endADD3:begin//送读操作地址if(`SCL_LOW) beginif(num==4'd8) beginnum <= 4'd0;//num计数清零sda_r <= 1'b1;sda_link <= 1'b0;//sda置为高阻态(input)cstate <= ACK3; endelse beginnum <= num+1'b1; case (num)4'd0: sda_r <= db_r[7];4'd1: sda_r <= db_r[6]; 4'd2: sda_r <= db_r[5]; 4'd3: sda_r <= db_r[4]; 4'd4: sda_r <= db_r[3];4'd5: sda_r <= db_r[2]; 4'd6: sda_r <= db_r[1]; 4'd7: sda_r <= db_r[0]; default:endcase//sda_r <= db_r[4'd7-num]; //送EEPROM地址(高bit开始)cstate <= ADD3;endend//else if(`SCL_POS) db_r <= {db_r[6:0],1'b0}; //器件地址左移1bitelse cstate <= ADD3;endACK3:beginif(/*!sda*/`SCL_NEG) begincstate <= DATA;//从机响应信号sda_link <= 1'b0;endelse cstate <= ACK3;//等待从机响应endDATA:beginif(!sw2_r) begin//读操作if(num<=4'd7) begin cstate <= DATA;if(`SCL_HIG) beginnum <= num+1'b1; case (num)4'd0: read_data[7] <= sda;4'd1: read_data[6] <= sda; 4'd2: read_data[5] <= sda; 4'd3: read_data[4] <= sda; 4'd4: read_data[3] <= sda;4'd5: read_data[2] <= sda; 4'd6: read_data[1] <= sda; 4'd7: read_data[0] <= sda;default:endcase//read_data[4'd7-num] <= sda; // 读数据(高开始)end//elseif(`SCL_NEG)read_data<={read_data[6:0],read_data[7]}; //数据循环右移endelse if((`SCL_LOW) && (num==4'd8)) beginnum <= 4'd0;//num计数清零cstate <= ACK4;endelse cstate <= DATA;endelse if(!sw1_r) begin //写操作sda_link <= 1'b1;if(num<=4'd7) begin cstate <= DATA;if(`SCL_LOW) beginsda_link <= 1'b1;//数据线sda作为outputnum <= num+1'b1; case (num)4'd0: sda_r <= db_r[7]; 4'd1: sda_r <= db_r[6]; 4'd2: sda_r <= db_r[5]; 4'd3: sda_r <= db_r[4];4'd4: sda_r <= db_r[3]; 4'd5: sda_r <= db_r[2]; 4'd6: sda_r <= db_r[1]; 4'd7: sda_r <= db_r[0];default:endcase//sda_r <= db_r[4'd7-num]; //写入数据(高bit开始)end//else if(`SCL_POS) db_r <= {db_r[6:0],1'b0}; //写入数据左移1bitendelse if((`SCL_LOW) && (num==4'd8)) beginnum <= 4'd0;sda_r <= 1'b1;sda_link <= 1'b0;//sda置为高阻态cstate <= ACK4;endelse cstate <= DATA;endendACK4: beginif(/*!sda*/`SCL_NEG) begin //sda_r <= 1'b1; cstate <= STOP1; endelse cstate <= ACK4; endSTOP1:beginif(`SCL_LOW) beginsda_link <= 1'b1;sda_r <= 1'b0;cstate <= STOP1;endelse if(`SCL_HIG) begin sda_r <= 1'b1; //scl为高时,sda产生上升沿(结束信号)cstate <= STOP2;endelse cstate <= STOP1;endSTOP2:beginif(`SCL_LOW) sda_r <= 1'b1;else if(cnt_20ms==20'hffff0) cstate <= IDLE;else cstate <= STOP2;enddefault: cstate <= IDLE;endcaseendassign sda = sda_link ? sda_r:1'bz;assign dis_data = read_data;//---------------------------------------------endmodule写寄存器的标准流程为:1. Master发起START2. Master发送I2C addr(7bit)和w操作0(1bit),等待ACK3. Slave发送ACK4. Master发送reg addr(8bit),等待ACK5. Slave发送ACK6. Master发送data(8bit),即要写入寄存器中的数据,等待ACK7. Slave发送ACK8. 第6步和第7步可以重复多次,即顺序写多个寄存器9. Master发起STOP读寄存器的标准流程为:1. Master发送I2C addr(7bit)和w操作1(1bit),等待ACK2. Slave发送ACK3. Master发送reg addr(8bit),等待ACK4. Slave发送ACK5. Master发起START6. Master发送I2C addr(7bit)和r操作1(1bit),等待ACK7. Slave发送ACK8. Slave发送data(8bit),即寄存器里的值9. Master发送ACK10. 第8步和第9步可以重复多次,即顺序读多个寄存器原理整理清楚编程思路就有了,首先要有开始工作的信号,分读和写来驱动I2C,本设计用M2408这款芯片进行工作,主要是了解到datasheet中时序的要求来进行编写。
Verilog实例代码

【例3.1】4位全加器module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值endinitialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial//定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum);#160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out); endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A,B,C,D,F) input A,B,C,D; //模块的输入端口为A,B,C,Doutput F; //模块的输出端口为Fwire A,B,C,D,F; //定义信号的数据类型assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0,低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时,输出任意态endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值`timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形`timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbeginwave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值,如果sel为0,则out=a ;否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel);input a,b,sel;output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk);output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数if (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9,是则beginqout[3:0]<=0; //回0,并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5,则加1endelse//低位不为9,则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;alwaysbegincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend【例5.13】用casez描述的数据选择器module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d) begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成,则pass=1else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句,size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1,就执行下面的加法outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器`include "adder.v"module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为add assign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;always @(posedge clk) //进程1,always过程块beginif (!reset) qout= 4'h00; //同步清0,低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2,用持续赋值产生进位信号endmodule【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task//任务定义,注意无端口列表input//a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 调用任务my_and,需注意端口列表的顺序应与任务定义中的一致,这里的a,b,c 分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseendendmodule【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c); endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器(不含优先顺序)module code_83(din,dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入,输出为函数名本身casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义(注意无端口列表)input[3:0] opa; //函数只能定义输入端,输出端口为函数名本身reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过,opa应赋具体的数值factorial = i* factorial; //阶乘运算endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial//定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset));//调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2module serial2(q,a,clk);input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1 module paral1(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2 module paral2(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodulemodule mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not(notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2) case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2); endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1); endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and(a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);input a,b,sel;assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and(cout,a,b);xor(sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and (m1,a,b),(m2,b,cin),(m3,a,cin);xor(s1,a,b),(sum,s1,cin);or(cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a); endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器 module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器 `include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 -full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time - 22 -endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 -0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0,则进位输出肯定为00 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1,则进位输出肯定为11 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“?”表述的1位全加器进位输出UDP元件primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0,则进位输出肯定为00 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1,则进位输出肯定为11 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时,Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时,Y=in1- 24 -? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1?时,Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1,则不管其他端口为什么值,输出都为00 0 0 : ? : 0 ; //clk=0,锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1,锁存器的输出保持原值,用符号“-”表示endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来,输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来,输出Q保持原值? (??) : ? : - ; //时钟不变,输出也不变- 25 -endprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr s et : state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -endmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin//激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号,低电平有效- 27 -reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial//定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -endmodule【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin//激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM); endmodulemodule add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 -MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; s el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out);endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励波形定义clk =0; reset=0;- 30 -#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout); endmodulemodule counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法(1)门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule(2)数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule(3)行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 -reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1,则out=in;若en=0,则out为高阻态endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h);output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 -else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口,输出为函数名本身if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -4'd6: {a,b,c,d,e,f,g}=7'b1011111;4'd7: {a,b,c,d,e,f,g}=7'b1110000;4'd8: {a,b,c,d,e,f,g}=7'b1111111;4'd9: {a,b,c,d,e,f,g}=7'b1111011;default: {a,b,c,d,e,f,g}=7'bx;endcaseendendmodule【例9.10】奇偶校验位产生器module parity(even_bit,odd_bit,input_bus);output even_bit,odd_bit;input[7:0] input_bus;assign odd_bit = ^ input_bus; //产生奇校验位assign even_bit = ~odd_bit; //产生偶校验位endmodule【例9.11】用if-else语句描述的4选1 MUXmodule mux_if(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)beginif(sel==2'b00) out=in0;else if(sel==2'b01) out=in1;else if(sel==2'b10) out=in2;else out=in3;endendmodule【例9.12】用case语句描述的4选1 MUXmodule mux_case(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)begin- 35 -。
音乐播放器的Verilog代码

音乐播放器的Verilog代码module song( audio , clk , clr1);output audio;input clk; //我的开发板时钟频率为33.8688Mhzinput clr1;wire clr;assign clr=~clr1; //clr信号为高电平有效,但由于我按键复位是低电平有效,在这里我声明了一个反相器reg[1:0] n1;reg[23:0] n2;reg [13:0] count,origin;reg audiof;reg clk_6MHz,clk_4Hz;reg [4:0] j;reg [5:0] len;assign audio=audiof ; //控制开关always@(posedge clk or posedge clr)begin //6MHz分频if(clr) beginclk_6MHz<=0;n1<=0;endelse if(n1==6/2-1) begin//这个语句的分频频率为33.8688Mhz/6≈5.6MHz≈6MHzclk_6MHz<=~clk_6MHz;n1<=0;endelse n1<=n1+1;endalways@(posedge clk or posedge clr)begin //4Hz分频if(clr) beginclk_4Hz<=0;n2<=0;endelse if(n2==8467200/2-1) beginclk_4Hz<=~clk_4Hz;n2<=0;endelse n2<=n2+1;endalways @(posedge clk_6MHz or posedge clr) beginif(clr) begincount<=0;audiof<=0;endelse if(count==16383)begincount<=origin;audiof<=~audiof;endelsecount<=count+1;endalways @(posedge clk_4Hz or posedge clr ) beginif(clr) origin<=0;else begincase(j)5'd1:origin<=14'd4916; //low5'd2:origin<=14'd6168;5'd3:origin<=14'd7281;5'd4:origin<=14'd7791;5'd5:origin<=14'd8730;5'd6:origin<=14'd9565;5'd7:origin<=14'd10310;5'd8:origin<=14'd10647; //middle5'd9:origin<=14'd11272;5'd10:origin<=14'd11831;5'd11:origin<=14'd12087;5'd12:origin<=14'd12556;5'd13:origin<=14'd12974;5'd14:origin<=14'd13346;5'd15:origin<=14'd13516; //high5'd16:origin<=14'd13829;5'd17:origin<=14'd14108;5'd18:origin<=14'd14235;5'd19:origin<=14'd14470;5'd20:origin<=14'd14678;5'd21:origin<=14'd14864;default:origin<=14'd011111;endcaseendendalways@(posedge clk_4Hz or posedge clr) //乐谱beginif(clr) beginlen<=0;j<=0;endelse if(len==63)len<=0;else beginlen<=len+1;case(len)6'd0:j<=3;6'd1:j<=3;6'd2:j<=3;6'd3:j<=3;6'd4:j<=5;6'd5:j<=5;6'd6:j<=5;6'd7:j<=6;6'd8:j<=8;6'd9:j<=8;6'd10:j<=8;6'd11:j<=6;6'd12:j<=6;6'd13:j<=6;6'd14:j<=6;6'd15:j<=12;6'd16:j<=12;6'd17:j<=12;6'd18:j<=15;6'd19:j<=15;6'd20:j<=15;6'd21:j<=15;6'd22:j<=15;6'd23:j<=9;6'd24:j<=9;6'd25:j<=9;6'd26:j<=9;6'd27:j<=9;6'd28:j<=9;6'd29:j<=9;6'd30:j<=9;6'd31:j<=9;6'd32:j<=9;6'd33:j<=9;6'd34:j<=10;6'd35:j<=7;6'd36:j<=7;6'd37:j<=6;6'd38:j<=6;6'd39:j<=5;6'd40:j<=5;6'd41:j<=5;6'd42:j<=6;6'd43:j<=8;6'd44:j<=8;6'd45:j<=9;6'd46:j<=9;6'd47:j<=3;6'd48:j<=3;6'd49:j<=8;6'd50:j<=8;6'd51:j<=8;6'd52:j<=5;6'd53:j<=5;6'd54:j<=8;6'd55:j<=5;6'd56:j<=5;6'd57:j<=5;6'd58:j<=5;6'd59:j<=5;6'd60:j<=5;6'd61:j<=5;6'd62:j<=5;6'd63:j<=5;default:j<=1; endcaseendendendmodule。
CRC编码译码Verilog实现程序代码

程序代码:module crc(data_send,ready_s,data_out,resend,data_in,reset,data_receive,ready_r,clk,err);parameter width=1,amount=12;//width表示输入数据的位宽,amount表示码组中的信息位部分含有输入数据的个数output [width*amount+4:0] data_send; //data_send编码后的CRC循环码组输出,位宽为17output ready_s; //ready_s编码模块的准备就绪信号输出高电平有效output [width-1:0] data_out;//data_out——译码模块译码后信息数据的输出,位宽为widthoutput resend; //resend——重发信号输出高电平有效input [width-1:0]data_in;//data_in——编码模块信息数据输入,位宽为width.input reset;//reset编码模块计数器预置信号输入上升沿有效input [width*amount+4:0] data_receive;//data_receive译码模块接收CRC循环码组的输入input ready_r,clk,err; //ready_r译码模块准备就绪信号输入高电平有效; err迫使接收端接收数据出错信号输入高电平有效crc_send send1(data_send,ready_s,data_in,reset,clk);crc_receive receive1(data_out,resend,data_send,ready_r,clk,err);endmodule//编码模块module crc_send(data_send,ready_s,data_in,reset,clk);parameter width=1,amount=12;output [width*amount+4:0] data_send;output ready_s;input [width-1:0] data_in;input reset,clk;reg [width*amount+4:0] data_send;reg ready_s;reg [width*amount:0] buf_in;reg [width*amount+4:0] buf_data_s;integer n,i;always @(posedge reset or posedge clk)beginif(reset)n=0;elseif(n<amount-1)beginready_s<=0; //编码模块的准备就绪信清零buf_in=buf_in<<width;//buf_in输入缓冲器buf_in[width-1:0]=data_in;n=n+1;endelsebeginbuf_in=buf_in<<width;buf_in[width-1:0]=data_in;buf_data_s[width*amount+4:5]=buf_in;if(buf_in[11])buf_in[11:6]=buf_in[11:6]^6'b110101;if(buf_in[10])buf_in[10:5]=buf_in[10:5]^6'b110101;if(buf_in[9])buf_in[9:4]=buf_in[9:4]^6'b110101;if(buf_in[8])buf_in[8:3]=buf_in[8:3]^6'b110101;if(buf_in[7])buf_in[7:2]=buf_in[7:2]^6'b110101;if(buf_in[6])buf_in[6:1]=buf_in[6:1]^6'b110101;if(buf_in[5])buf_in[5:0]=buf_in[5:0]^6'b110101;buf_data_s[4:0]=buf_in[4:0];data_send[width*amount+4:0]=buf_data_s[width*amount+4:0];n=0;ready_s<=1;endendendmodule//解码模块module crc_receive(data_out,resend,data_receive,ready_r,clk,err);parameter width=1,amount=12;output [width-1:0] data_out;output resend;input [width*amount+4:0] data_receive;input ready_r,clk,err;reg [width-1:0] data_out;reg resend;reg [width*amount+4:0] buf_receive;reg [width*amount:0] buf_data_r;reg right;integer m;always @(posedge clk)beginif(ready_r)beginbuf_receive=data_receive;if(err)buf_receive[16]=~buf_receive[16];buf_data_r[width*amount:0]=buf_receive[width*amount+4:5];if(buf_data_r[11])buf_data_r[11:6]=buf_data_r[11:6]^6'b110101;if(buf_data_r[10])buf_data_r[10:5]=buf_data_r[10:5]^6'b110101;if(buf_data_r[9])buf_data_r[9:4]=buf_data_r[9:4]^6'b110101;if(buf_data_r[8])buf_data_r[8:3]=buf_data_r[8:3]^6'b110101;if(buf_data_r[7])buf_data_r[7:2]=buf_data_r[7:2]^6'b110101;if(buf_data_r[6])buf_data_r[6:1]=buf_data_r[6:1]^6'b110101;if(buf_data_r[5])buf_data_r[5:0]=buf_data_r[5:0]^6'b110101;if(!(buf_data_r[4:0]^buf_receive[4:0]))beginright=1;resend=0;data_out=buf_receive[16];buf_receive=buf_receive<<width;m=1;endelsebeginright=0;resend=1;data_out='bz;endendelse if(right)beginif(m<amount)begindata_out=buf_receive[width*amount+4:width*amount+5-width];buf_receive=buf_receive<<width;m=m+1;endendendEndmodule测试代码:module crc_test;reg data_in,reset,clk,err;reg [15:0] shift;wire [16:0] data_send;wire ready;always #50 clk=~clk;initialbeginclk=0;err=0;shift=16'h8000;reset=0;#10 reset=1;#20 reset=0;#9600 err=1;#100 err=0;#500000 $finish;endalways @(posedge clk)begindata_in=shift[0];shift=shift>>1;shift[15]=shift[14]^shift[11];if(!shift[15:12]) shift[15:12]=4'b1000;endcrc_send send(data_send,ready,data_in,reset,clk);crc_receive receive(data_out,resend,data_send,ready,clk,err); endmodule。
FIFO的verilog语言代码(含测试代码)

fullp <= 1'b0;
end
endmodule
/*******************************************************************************************/
测试程序:
module test_fifo;
count <= count - 1; //为读状态计数器进行减法计数
2'b11:
count <= count;
endcase
end
end
always @(count) begin
if (count == 2'b00)
tail <= 2‘b00; //复位
end
else begin
if (readp == 1'b1 && emptyp == 1'b0) begin
tail <= tail + 1;
end
end
FIFO存储器的设计(后面是测试程序的部分)
module fifo (clk, rstp, din, writep, readp, dout, emptyp, fullp);
input clk;
input rstp; //复位信号
input [15:0] din;
input readp; //读信号
read_word;
end
#50;
end
end
join
end
endtask
endmodule
end
Verilog的135个经典设计实例

王金明《Verilog HDL程序设计教程》【例3.1】4位全加器module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值end- 1 - 程序文本initialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial //定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum); #160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin //激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out);endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A B C D F)input A,B,C,D; //模块的输入端口为A B C Doutput F; //模块的输出端口为F- 2 -王金明《Verilog HDL程序设计教程》wire A,B,C,D,F; //定义信号的数据类型 assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表 case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4- 3 - 程序文本module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块 begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时输出任意态 endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值 `timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形 `timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbegin- 4 -王金明《Verilog HDL程序设计教程》wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值如果sel为0则out=a 否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel); input a,b,sel;- 5 - 程序文本output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值 else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk); output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数- 6 -王金明《Verilog HDL程序设计教程》beginif (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9是则beginqout[3:0]<=0; //回0并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5则加1endelse //低位不为9则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;always @(indec)begincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend- 7 - 程序文本endmodule【例5.13】用casez描述的数据选择器 module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d)begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;- 8 -王金明《Verilog HDL程序设计教程》for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成则pass=1 else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1就执行下面的加法 outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位- 9 - 程序文本temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式 module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器- 10 -王金明《Verilog HDL程序设计教程》`include "adder.v" module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为addassign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;- 11 - 程序文本always @(posedge clk) //进程1always过程块beginif (!reset) qout= 4'h00; //同步清0低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2用持续赋值产生进位信号【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task my_and; //任务定义注意无端口列表input[3:0] a,b; //a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 用任务my_and需注意端口列表的顺序应与任务定义中的一致这里的a,b,c分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseend- 12 -王金明《Verilog HDL程序设计教程》【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c); endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器不含优先顺序module code_83(din,dout);input[7:0] din;output[2:0] dout;- 13 - 程序文本function[2:0] code; //函数定义input[7:0] din; //函数只有输入输出为函数名本身 casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义注意无端口列表input[3:0] opa; //函数只能定义输入端输出端口为函数名本身 reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过opa应赋具体的数值 factorial = i* factorial; //阶乘运算end- 14 -王金明《Verilog HDL程序设计教程》endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial //定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset)); //调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2 module serial2(q,a,clk); output q,a;- 15 - 程序文本input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1 module paral1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2module paral2(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodule【例7.1】调用门元件实现的4选1 MUX- 16 -王金明《Verilog HDL程序设计教程》module mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2) case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule- 17 - 程序文本【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2);endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1);endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);output out;- 18 -王金明《Verilog HDL程序设计教程》input a,b,sel; assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and cout,a,b);xor sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述 2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;output sum,cout;- 19 - 程序文本reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器 module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and m1,a,b),(m2,b,cin),(m3,a,cin);xor s1,a,b),(sum,s1,cin);or (cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a); endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;output sum,cout;- 20 -王金明《Verilog HDL程序设计教程》reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器`include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 - 程序文本full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time- 22 -王金明《Verilog HDL程序设计教程》endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数 endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 - 程序文本0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0则进位输出肯定为0 0 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1则进位输出肯定为1 1 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“”表述的1位全加器进位输出UDP元件 primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0则进位输出肯定为0 0 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1则进位输出肯定为1 1 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时Y=in1- 24 -王金明《Verilog HDL程序设计教程》? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1时Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1则不管其他端口为什么值输出都为0 0 0 0 : ? : 0 ; //clk=0锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1锁存器的输出保持原值用符号“-”表示 endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来输出Q保持原值? (??) : ? : - ; //时钟不变输出也不变- 25 - 程序文本endtableendprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件 primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr et state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -王金明《Verilog HDL程序设计教程》 endspecifyendmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin //激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号低电平有效- 27 - 程序文本reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据 endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial //定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -王金明《Verilog HDL程序设计教程》endmodule 【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin //激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM);endmodule module add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 - 程序文本MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; el=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out); endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin //激励波形定义clk =0; reset=0;- 30 -王金明《Verilog HDL程序设计教程》#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout);endmodule module counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法1门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule2数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule3行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 - 程序文本reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1则out=in若en=0则out为高阻态 endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -王金明《Verilog HDL程序设计教程》if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h); output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 - 程序文本else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口输出为函数名本身 if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码 4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -王金明《Verilog HDL程序设计教程》4'd6: {a,b,c,d,e,f,g}=7'b1011111;4'd7: {a,b,c,d,e,f,g}=7'b1110000;4'd8: {a,b,c,d,e,f,g}=7'b1111111;。
ahb协议verilog代码

ahb协议verilog代码摘要:1.AHB 协议简介2.Verilog 代码概述3.AHB 协议Verilog 代码实现4.总结正文:1.AHB 协议简介AHB(Advanced High-performance Bus)协议是一种先进的高性能总线协议,主要用于高级数字信号处理器(DSP)和嵌入式系统中的数据传输。
AHB 协议具有高带宽、低延迟和可扩展性等特点,广泛应用于各种高性能计算平台。
2.Verilog 代码概述Verilog 是一种硬件描述语言(HDL),用于数字系统建模和验证。
它主要用于设计和验证数字集成电路,如处理器、存储器和接口等。
Verilog 具有简洁、直观和易于理解的语法,使其成为硬件工程师和研究人员的首选工具。
3.AHB 协议Verilog 代码实现要实现AHB 协议的Verilog 代码,需要先了解AHB 协议的基本组成和功能。
AHB 协议主要包括以下几个部分:- 总线请求(Bus Request):用于请求使用总线。
- 总线授权(Bus Grant):用于授权某个设备使用总线。
- 总线传输(Bus Transaction):用于实现数据在总线上的传输。
- 总线仲裁(Bus Arbitration):用于解决多个设备同时请求使用总线的问题。
根据以上功能,我们可以编写AHB 协议的Verilog 代码。
以下是一个简化的AHB 协议Verilog 代码示例:```verilogmodule ahb_protocol (input wire clk,input wire rst_n,input wire [31:0] address,input wire rw,input wire [31:0] data_in,output reg [31:0] data_out,output wire bus_request,output wire bus_grant,output reg [1:0] bus_transaction);// 时序逻辑reg [31:0] data_out_temp;reg [1:0] bus_transaction_temp;wire clk_en;always @(posedge clk or negedge rst_n) beginif (!rst_n) begindata_out <= 32"b0;bus_transaction <= 2"b0;end else beginif (clk_en && (address!= 32"b0)) begin// 读操作if (rw == 1"b0) begindata_out <= data_in;end else begin// 写操作data_out <= 32"b0;endendif (clk_en && (address == 32"b0)) begin// 传输结束bus_transaction <= 2"b1;endendend// 总线请求和授权逻辑always @(posedge clk or negedge rst_n) begin if (!rst_n) beginbus_request <= 1"b0;bus_grant <= 1"b0;end else if (clk_en) beginif (address!= 32"b0) begin// 总线请求bus_request <= 1"b1;endif (bus_transaction == 2"b1) begin// 总线授权bus_grant <= 1"b1;endendend// 总线传输逻辑always @(posedge clk or negedge rst_n) begin if (!rst_n) beginbus_transaction <= 2"b0;end else if (clk_en) beginif (bus_grant == 1"b1) begin// 数据传输data_out <= data_in;bus_transaction <= 2"b1;endendendendmodule```以上代码只是一个简化的示例,实际应用中需要根据具体需求进行扩展和优化。
FPGA的verilog一些程序代码

设计一台电动机提速控制器。
当按钮S1按下1次后,电动机以速度1启动;再按下一次提高到转速2;再按下一次,提高到转速3,随后经过5s,自动提高到,转速4;当按钮s2按下时,从转速4退到转速3,再按下一次按钮s2,从转速3退到转速2,随后经过8s,退到转速1,再经过12s,停止电动机运转。
状态机源程序:module state ( v1,v2,v3,v4,d,m, t, td, k1, k2,clk); //output t,m, d,v1,v2,v3,v4;input clk, k1,k2,td;reg[7:0] d;reg t,v1,v2,v3,v4,m;reg [3:0] state, next;parameter s0=0, s1=1, s2=2, s3=3, s4=4, s5=5,s6=6,s7=7,s8=8; //采用十进制数字描述状态编码always @(posedge clk) //状态寄存器描述beginstate<=next;endalways @(state or s1 or td or s2)begincase (state )s0: begin t <= 1'b0; d<=5;m<=0; v1<=0;v2<=0;v3<=0;v4<=0;if (!k1) next <= s1; else next <= s0;ends1: begin t <= 1'b0; d<=5;m<=1; v1<=1;v2<=0;v3<=0;v4<=0;if (!k1) next <= s2; else next <= s1;ends2: begin t <= 1'b0; d<=5;m<=1; v1<=0;v2<=1;v3<=0;v4<=0;if (!k1) next <= s3; else next <= s2;ends3: begin t <= 1'b1; d<=5;m<=1; v1<=0;v2<=0;v3<=1;v4<=0;if(td) next <= s4; else next <= s3;ends4: begin t <= 1'b0; d<=8;m<=1; v1<=0;v2<=0;v3<=0;v4<=1;if(!k2) next <= s5; else next <= s4;ends5: begin t <= 1'b0; d<=8;m<=1; v1<=0;v2<=0;v3<=1;v4<=0;if(!k2) next <= s6; else next <= s5;ends6: begin t <= 1'b1; d<=8;m<=1; v1<=0;v2<=1;v3<=0;v4<=0;if(td) next <= s7; else next <= s6;ends7: begin t <= 1'b0; d<=12;m<=1; v1<=1;v2<=0;v3<=0;v4<=0;next <= s8;s8: begin t <= 1'b1; d<=12;m<=1; v1<=1;v2<=0;v3<=0;v4<=0;if(td) next <= s0; else next <= s8;enddefault : next <= s0;endcaseendendmodule计数器源程序:module jishu(clk,t,td,qq1,qq2,data); //clk时钟,t控制置数与计数,td是输出信号,data是计数初值input t,clk,data; //qq1是低4位,qq2是高4位output td;output [3:0] qq1,qq2;wire [3:0] qq1,qq2;wire[7:0] data;reg td;reg [7:0] qq;assign{qq2,qq1}=qq; //将两个4位数连接成8位数always @ (posedge clk or negedge t) //t可以异步控制置数或是计数beginif (t==0) begin qq<=data; td<=0; end //如果t=0,则定时器预置初值qq=dataelse if ((t==1) && (qq >=1)) begin qq <=qq-1; td<=0; end//如果t=1,且计数器数值大于等于1,则减法计数else td <=1; //否则td=0endendmodule译码器源程序:module yima(s,bcd); //s是译码器输出,bcd是译码器输出output[6:0] s;input[3:0] bcd; //输入BCD码reg [6:0] s;always @(bcd)begincase(bcd)4'd0: s=7'b0000001; //显示数字04'd1: s=7'b1001111; //显示数字14'd2: s=7'b0010010; //显示数字24'd3: s=7'b0000110; //显示数字34'd4: s=7'b1001100; //显示数字44'd5: s=7'b0100100;4'd6: s=7'b0100000;4'd7: s=7'b0001111;4'd8: s=7'b0000000;4'd9: s=7'b0000100; //显示数字94'd10: s=7'b0001000; //显示数字A4'd11: s=7'b1100000;4'd12: s=7'b0110001;4'd13: s=7'b1000010;4'd14: s=7'b0110000;4'd15: s=7'b0111000; //显示数字Fendcaseendendmodule顶层模块电路图:。
foc控制的verilog代码

FOC控制的Verilog代码介绍FOC(Field Oriented Control)是一种用于电机控制的技术,它通过将电机的磁场分解为两个正交的磁场来提高电机的控制性能。
Verilog是一种硬件描述语言,可以用于编写数字逻辑电路的描述和仿真。
本文将介绍如何使用Verilog编写FOC控制算法的代码,并提供一个示例代码来说明其实现方法。
FOC控制原理FOC控制通过将三相交流电机转换为两个正交轴上的直流电机来实现。
这两个轴分别是d轴(直通磁场)和q轴(垂直磁场)。
通过控制d轴和q轴上的电流,可以精确地控制电机的转速和转矩。
FOC算法主要包括以下几个步骤:1.Park变换:将三相交流信号转换为d轴和q轴上的信号。
这可以通过使用Park变换公式来实现。
2.逆Park变换:将d轴和q轴上的信号转换回三相交流信号。
这可以通过使用逆Park变换公式来实现。
3.PI调节器:用于计算校正项以调整d轴和q轴上的电流。
PI调节器根据电流误差和积分误差来计算输出。
4.空间矢量调制:将校正后的d轴和q轴上的电流转换为PWM信号,用于驱动电机。
Verilog代码实现下面是一个使用Verilog编写FOC控制算法的示例代码:module foc_control (input clk,input rst,input [7:0] current_d,input [7:0] current_q,output reg [7:0] pwm_a,output reg [7:0] pwm_b,output reg [7:0] pwm_c);reg [15:0] theta;reg [15:0] sin_theta;reg [15:0] cos_theta;always @(posedge clk) beginif (rst) begintheta <= 16'd0;sin_theta <= 16'd0;cos_theta <= 16'd1;pwm_a <= 8'd0;pwm_b <= 8'd0;pwm_c <= 8'd0;end else begintheta <= theta + 16'h100; // 每个时钟周期增加一个步长,用于控制转速 sin_theta <= sin(theta);cos_theta <= cos(theta);// 计算d轴和q轴上的电流误差,并通过PI调节器计算输出reg [7:0] error_d = target_current_d - current_d;reg [7:0] error_q = target_current_q - current_q;reg [7:0] output_d = pi_controller(error_d);reg [7:0] output_q = pi_controller(error_q);// 将校正后的电流转换为PWM信号pwm_a <= sin_theta * output_d + cos_theta * output_q;pwm_b <= -sin_theta * output_d + cos_theta * output_q;pwm_c <= -output_q;endend// PI调节器模块reg [15:0] integral_error_d;reg [15:0] integral_error_q;function [7:0] pi_controller;input [7:0] error;reg [15:0] integral_error;reg [7:0] output;// 参数设置localparam Kp = 1.0; // 比例系数localparam Ki = 0.1; // 积分系数beginintegral_error <= integral_error + error; // 更新积分误差output = Kp * error + Ki * integral_error; // 计算输出if (output > 255) beginoutput = 255; // 输出限幅,防止过饱和现象发生end else if (output < -255) beginoutput = -255; // 输出限幅,防止过饱和现象发生endreturn output;endendfunctionendmodule示例代码说明上述Verilog代码是一个简化的FOC控制模块。
38译码器verilog代码_Verilog设计实例(2)一步一步实现一个多功能通用计数器

38译码器verilog代码_Verilog设计实例(2)⼀步⼀步实现⼀个多功能通⽤计数器写在前⾯博客⾸页 注:学习交流使⽤!相关博⽂相关博⽂ 博客⾸页正⽂多功能计数器,英⽂名为:多功能计数器;所谓多功能,这⾥包括⼆进制计数,格雷码计数以及线性反馈移位寄存器(LFSR)三种,本⽂Verilog设通过从普通的计数器开始,也就是单个功能的计数器开始,⼀步⼀步过渡到多功能计数器。
作为对以下相关博⽂的延伸练习: Verilog设FPGA设计⼼得(8)Verilog中的编译预处理语句计实例(1)线性反馈移位寄存器(LFSR) FPGA设计⼼得(8)Verilog中的编译预处理语句计实例(1)线性反馈移位寄存器(LFSR)普通的⼆进制计数器这个作为开头,不必多说,计数就完事了。
电路设计设计⽂件:`timescale 1ns/1ps//// Engineer: Reborn Lee// Module Name: binary counter// Additional Comments:////module binary_counter#(parameter N_BITS = 4)(input i_clk,input i_rst,output [N_BITS - 1 : 0] o_cnt,output o_cnt_done);reg [N_BITS - 1 : 0] bin_cnt = 0;always@(posedge i_clk) beginif(i_rst) beginbin_cnt <= 0;endelse beginbin_cnt <= bin_cnt + 1;endendassign o_cnt_done = (bin_cnt == 0)? 1:0;assign o_cnt = bin_cnt;endmodule⾏为仿真tb⽂件:`timescale 1ns/1psmodule bin_cnt_tb;parameter N_BITS = 4;reg i_clk;reg i_rst;wire [N_BITS - 1 : 0] o_cnt;wire o_cnt_done;initial begini_clk = 0;forever begin# 2 i_clk = ~ i_clk;endendinitial begini_rst = 1;# 8i_rst = 0;endbinary_counter #(.N_BITS(N_BITS))inst_bin_cnt(.i_rst(i_rst),.i_clk(i_clk),.o_cnt(o_cnt),.o_cnt_done(o_cnt_done));endmodule仿真图:普通的格雷码计数器任意位宽的格雷码计数器,实现的⽅式通常是设计⼀个普通的⼆进制计数器,同时将计数结果转化为格雷码。
prbs的并行verilog代码

prbs的并行verilog代码
本文将介绍PRBS生成器的并行Verilog代码实现。
PRBS(伪随机二进制序列)是一种在通信系统和数据存储系统中广泛使用的序列生
成器。
它可以生成伪随机序列,这些序列在统计学上类似于随机序列,但可以通过特定算法重复生成。
在本文中,我们将使用Verilog编程语言实现一个并行PRBS生
成器。
这个生成器将生成32位的伪随机序列。
为了实现这个生成器,我们将使用一个LFSR(线性反馈移位寄存器),并通过XOR门将其输
出与特定的LFSR位相加。
这将产生一个伪随机序列。
我们首先声明一个32位的寄存器,用于存储LFSR的当前状态。
然后,我们在代码中定义一个16位的多项式,用于执行LFSR操作。
在每个时钟周期中,我们使用该多项式对寄存器的当前状态进行操作,以生成一个新的状态。
然后,我们使用XOR门将该状态与LFSR的特
定位相加,以生成伪随机序列的输出。
在实现过程中,我们需要使用Verilog中的几个重要模块,例如always块、initial块、reg声明、wire声明和assign语句。
我们
还需要使用generate语句来创建多个相同的模块。
通过这些模块,
我们可以实现一个高效、可靠的并行PRBS生成器。
总之,本文介绍了PRBS生成器的并行Verilog代码实现。
这个
生成器可以生成高质量的伪随机序列,适用于通信系统和数据存储系统中的各种应用。
- 1 -。
串行器verilog代码

串行器verilog代码串行器(Serializer)是一种电子设备,用于将并行数据转换为串行数据,以便在单个通道上进行传输。
以下是一个简单的串行器的 Verilog 代码示例:verilogmodule Serializer (input wire clk, // 时钟信号input wire reset, // 复位信号input wire [7:0] parallel_data, // 并行数据输入output reg serial_data // 串行数据输出);reg [2:0] shift_reg; // 移位寄存器,用于存储并行数据的位reg [2:0] count; // 计数器,用于控制移位寄存器的移位次数always @(posedge clk or posedge reset) beginif (reset) begin// 当复位信号为高电平时,将计数器和移位寄存器清零count <= 0;shift_reg <= 0;serial_data <= 0;end else beginif (count == 3'd7) begin// 当计数器达到最大值时,将并行数据的最低位存入移位寄存器,并将计数器清零shift_reg <= {parallel_data[0], shift_reg[2:1]};count <= 0;end else begin// 否则,将移位寄存器向左移动一位,并将计数器加1shift_reg <= {shift_reg[1:0], serial_data};count <= count + 1;end// 将移位寄存器的最低位作为串行数据输出serial_data <= shift_reg[0];endendendmodule需要注意的是,上述代码中的计数器 count 用于控制移位寄存器的移位次数,当计数器达到最大值时,将并行数据的最低位存入移位寄存器,并将计数器清零。
verilog 16QAM代码

QAM调制中,数据信号由相互正交的两个载波的幅度变化表示。
QAM 是一种矢量调制,将输入比特先映射到一个复平面(星座图),形成复数调制符号,然后将该符号的I、Q分量,采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波cos 和sin 上。
数学公式:16QAM信号在星座图上具有16个样点,每个样点表示一种矢量状态,16QAM 有16 态,每4 位二进制数规定了16态中的一个状态,16QAM每个符号时间传送4比特映射。
根据IEEE 802.11a 规定,16QAM 编码表如下所示。
经过表中映射后的I/Q数据再乘上1/√10进行归一化,即得到调制后的I/Q值。
实现代码重要部分:因为是串行输入,得先缓存为4bit,然后每4比特映射一个矢量状态。
经过扰码,卷积编码,交织后的DATA数据,一个符号有192比特,然后经过16QAM ,被调制成48 个复数,作为下一级插入导频模块的输入。
代码:moduleDATA_16QAM_mapper(DM_DIN,DM_ND,DM_RST,DM_CLK,DM_RE,DM_IM,DM_INDEX ,DM_RDY);input DM_DIN; //输入信号input DM_CLK; //脉冲input DM_ND; //来自上一模块的信号提示input DM_RST; //复位信号output[7:0] DM_RE; //输出16QAM调制的实部,八位,一位符号位,一位整数位,六位小数位output[7:0] DM_IM; //输出16QAM调制的虚部output[5:0] DM_INDEX;//输出标号output DM_RDY; //输出信号提示reg[7:0] DM_RE;reg[7:0] DM_IM;reg DM_RDY;reg[7:0] RE_TEMP; //输出实部暂存reg[7:0] IM_TEMP; //输出虚部暂存reg[3:0] STOR; //由于四个输入信号对应一个星座点,因此需要四位的存储器存放reg MAPEN;reg[5:0] DM_COUNT;reg[5:0] DM_INDEX;reg OUTEN; //使Q_RDY比输入四个信号中最后一个晚一个脉冲的过渡,保证转换完成reg[1:0] counter; //四个输入信号的计数reg[1:0] OUT_COUNT;always @(negedge DM_RST or posedge DM_CLK) //Q_RST高电平异步清零if(!DM_RST)beginMAPEN<=1'b0;DM_RE[7:0]<=8'b00000000;DM_IM[7:0]<=8'b00000000;DM_COUNT[5:0]<=6'b000000;DM_INDEX[5:0]<=6'b000000;DM_RDY<=0;RE_TEMP[7:0]<=8'b00000000;IM_TEMP[7:0]<=8'b00000000;STOR[3:0]<=4'b0000;OUTEN<=0;counter[1:0]<=2'b00;OUT_COUNT<=2'b00;endelsebeginif(DM_ND) //16QAM encodingbegincounter<=counter+1;case(counter)2'b00:STOR[0]<=DM_DIN;2'b01:STOR[1]<=DM_DIN; //存入输入数值2'b10:STOR[2]<=DM_DIN;2'b11:STOR[3]<=DM_DIN;endcaseendelsebegincounter[1:0]<=2'b00;STOR[3:0]<=4'b0000;endif (counter==2'b11) // MAPEN 标记四个信号是否已经存入MAPEN<=1'b1;elseMAPEN<=1'b0;if(MAPEN)begincase(STOR[1:0])2'b00:RE_TEMP[7:0]<=8'b11000011;2'b10:RE_TEMP[7:0]<=8'b11101100;2'b01:RE_TEMP[7:0]<=8'b00111101;2'b11:RE_TEMP[7:0]<=8'b00010100;endcasecase(STOR[3:2])2'b00:IM_TEMP[7:0]<=8'b11000011;2'b10:IM_TEMP[7:0]<=8'b11101100;2'b01:IM_TEMP[7:0]<=8'b00111101;2'b11:IM_TEMP[7:0]<=8'b00010100;endcaseOUTEN<=1;endelsebeginOUTEN<=0;RE_TEMP[7:0]<=8'b00000000;IM_TEMP[7:0]<=8'b00000000;endif(OUTEN) // 输出beginDM_RE<=RE_TEMP;DM_IM<=IM_TEMP;DM_COUNT<=DM_COUNT+1;DM_INDEX<=DM_COUNT;DM_RDY<=1'b1;endif (DM_INDEX==47)OUT_COUNT<=OUT_COUNT+1;elseOUT_COUNT<=0;if (OUT_COUNT==2'b11)beginDM_RE[7:0]<=8'b00000000;DM_IM[7:0]<=8'b00000000;DM_INDEX[5:0]<=6'b000000;DM_COUNT[5:0]<=6'b000000;DM_RDY<=0;endendendmodule。
售货机Verilog程序代码

module autoseller(clk,g,m,yes,read,zero,led_dig,led_seg,led_c,led_r,led); input clk,yes,read,zero;//确定键,商家读取键,清零键input [3:0] g , m; //货品及投币选择键output led_dig,led_seg,led_c,led_r,led;//数码管输出及点阵输出reg f_100;//分频时钟reg f_1;reg [3:0] goods,money,led,change,g_c;integer r,a,b, a_tmp2,a_tmp1;integer ret=0;//用于控制各状态间的转换reg [9:0]count;reg [7:0] led_c,led_r,led_dig,led_seg;reg [1:0]state;integer i;reg x;always @ (posedge clk) //分频模块beginif(a_tmp2==999)beginf_100=~f_100;a_tmp2<=0;endelsea_tmp2<=a_tmp2+1;endalways @ (posedge clk)beginif(a_tmp1==9999999)beginf_1=~f_1;a_tmp1<=0;endelsea_tmp1<=a_tmp1+1;endalways @ (posedge f_1)beginif(ret!=0) //用于按确认键后的计时begina=a+1;endelsebegina=0;endendalways @ (posedge f_100)beginif(zero==0) //清零begincount=0;endif(read!=0) //非商家读取模式(普通读写模式)begin // 识别模块case(g) //表每种货品的拨码开关信号转变为编码4'b0001:begin goods=1;end4'b0010:begin goods=2;end4'b0100:begin goods=5;end4'b1000:begin goods=10;enddefault:begin goods=0;endendcasecase(m) //表每种硬币的拨码开关信号转变为编码4'b0001:begin money=1;end4'b0010:begin money=2;end4'b0100:begin money=5;end4'b1000:begin money=10;enddefault:begin money=0;endendcaseif(a==3) //初始化beginret=0;led=4'b0000;led_c=8'b0000_0000;led_r=8'b1111_1111;x=0;endif(yes==0) //按确定键beginif(money<goods) //金钱不足beginchange=0;ret=1;endelsebegin//金钱足够change=money-goods;ret=2;if(x==0) //交易成功销售总额增加begincount=count+goods;x=1;endendendg_c=goods;//显示模块if(ret==1) //金额不足,数码管报警beginled_c=8'b1111_1111;led_r=8'b0000_0000;endif(ret==2)//交易成功begincase(goods) //LED灯显示货物1:begin led=4'b0001;end2:begin led=4'b0010;end5:begin led=4'b0100;end10:begin led=4'b1000;endendcaseg_c=change;endcase(state)//显示选择的货物0:beginr=g_c % 10;led_dig=8'b1111_1011;case(r)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseend1:beginr=g_c / 10;led_dig=8'b0111_1111;case(r)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseend//显示投入的钱数及余额2:beginr=money % 10;led_dig=8'b1110_1111;case(r)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseend3:beginr=money / 10;led_dig=8'b1111_0111;case(r)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseendcasestate=state+1;endif(read==0)//商家读取模式begincase(i) //显示销售总额0:beginb=count/10;led_dig=8'b1111_1110;case(b)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseend1:beginb=count%10;led_dig=8'b1111_1101;case(b)0:begin led_seg=8'b1111_1100;end1:begin led_seg=8'b0110_0000;end2:begin led_seg=8'b1101_1010;end3:begin led_seg=8'b1111_0010;end4:begin led_seg=8'b0110_0110;end5:begin led_seg=8'b1011_0110;end6:begin led_seg=8'b1011_1110;end7:begin led_seg=8'b1110_0000;end8:begin led_seg=8'b1111_1110;end9:begin led_seg=8'b1111_0110;endendcaseendendcasei=i+1;if(i==2)begini=0;endendendmoduleBCD-LED七段数码显示译码器decode47:module decode47( in, out );input[3:0] in;output[6:0] out;reg[6:0] out;always @( in )begincase(in)4'b0000:out = 7'b1000000;4'b0001:out = 7'b1111001;4'b0010:out = 7'b0100100;4'b0011:out = 7'b0110000;4'b0100:out = 7'b0011001;4'b0101:out = 7'b0010010;4'b0110:out = 7'b0000010;4'b0111:out = 7'b1111000;4'b1000:out = 7'b0000000;4'b1001:out = 7'b0010000;4'b1010:out = 7'b0001000;4'b1011:out = 7'b0000011;4'b1100:out = 7'b1000110;4'b1101:out = 7'b0100001;4'b1110:out = 7'b0000110;4'b1111:out = 7'b0001110;default: out = 7'b0000000;endcaseendendmodule投币输入处理程序key:module key(in,out,clk);input in,clk;output out;reg a,b,out;always @(posedge clk)beginb<=a; //有上升沿来临,输出高电平a<=in;if((a&&(~b))==1)out<=1; else out<=0; end endmodule。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.全加器Sum=A⊕B⊕CinCount=AB+Cin(A+B)①数据流module adder(a,b,Cin,Sum,Count); input [2:0]a,b;input Cin;output [2:0] Sum;output Count;assign {Count,Sum}=a+b+Cin; endmodule②行为描述always语句module adder(a,b,c,Cin,Sum,Count); input [4:0] a,b;input Cin;output reg [4:0] Sum;output reg Count;reg T1,T2,T3;always@(a or b or Cin)beginSum=a^b^Cin;T1=A&B;T2=Cin&A;T3=Cin&B;Count=T1|T2|T3;endendmodule③结构体module adder (a,b,Cin,Sum,Count);input a,b,Cin;output Sum,Count;Xor a1(s1,a1,b);Xor a2(Sum,s1,Cin);and a3(T1,a,b);or a4(T2,a,b);and a5(T3,Cin,T2);or a6(Count,T1,T3);Endmodule2.数值比较器①判断两值是否相等module compare(a,b,equal);input [7:0] a,b;output equal;assign equal=(a==b)?|0; ②谁大谁输出module compare(a,b,out);input [7:0] a,b;output reg[7:0] out;always@(a or b)beginif (a>b) out<=a;else if (a==b) out<=a;else out<=b;endendmodule③输出参数module compare(a.b.xgy,xsy,xey);input [7:0] x,y;output reg xgy,xsy,xey;always@(x or y)beginif (x==y) xey=1;else xey=0;if (x>y) begin xgy=1;xsy=0;endelse if (x<y) begin xgy=0;xsy=1;end endendmodule3.编码器(4-2 8-3 16-4编码)①case语句8-3编码(优先)module code (in ,out);input [7:0] in;output reg [2:0] out;always@(in)case x(in)begin f=1;8‟b1xxxxxxx:out=3‟b111;end begin f=1;8‟b01xxxxxx:out=3‟b110;end begin f=1;8‟b001xxxxx:out=3‟b101;end begin f=1;8‟b0001xxxx:out=3‟b100;end begin f=1;8‟b00001xxx:out=3‟b011;end begin f=1;8‟b000001xx:out=3‟b010;end begin f=1;8‟b0000001x:out=3‟b001;end begin f=1;8‟b00000001:out=3‟b000;end default:begin f=0:out=3‟b000;end endcaseendmodule②if-else语句(4-2优先编码)module code(in,out);input[3:0] in;output reg [1:0] out;always@(in)if (in[3]==1):begin f=1;out=2‟b11;end else if (in[2]==1):begin f=1;out=2‟b10;end else if (in[1]==1):begin f=1;out=2‟b01;end else if (in[0]==1):begin f=1;out=2‟b00;end else begin f=0;out=2‟b00;end endmodule4.多路选择器①行为描述(4选1)module choice(A,B,C,D,ncs addr out);input [7:0]A,B,C,D;input ncs;input [1:0] addr ;output reg[7:0] out;always@(A or B or C or D or ncs or addr) beginif (!ncs)case(addr)2‟b00:out=A;2‟b01:out=B;2‟b10:out=C;2‟b11:out=D;endcaseelse out=0;endendmodule5.设计一个4位双向移位寄存器。
module shift(sout,out,clk,in,sin,d,load); input clk,sin,d,load;input[3:0]in;output sout;output[3:0]out;reg[3:0]out;always @(posedge clk)if(load) out<=in;elseif(d==0)beginout<=out>>1;out[3]<=sin;sout<=out[0];end elsebeginout<=out<<1;out[0]<=sin;sout<=out[3];end 6.11111010000序列检测器module shift(q,s,d,clk);output[11:0] q;output s;input d;input clk;reg[11:0] q;reg s;always @(posedge clk)beginq<=q<<1;q[0]<=d;endalways @(posedge clk )if(q==12'b 11111010000)s<=1;elses<=0;Endmodule7.计数器①计数分频器8分频占空比1:1module div(clk8,clk,rst);input clk,rst;output reg clk8;reg [2:0] count;always@(posedge clk)beginif (rst) beginclk8<=0;count<=0;end else beginif (count==7) count<=0;else count<=count+1;if (count<=3) clk_8<=0;else clk_8<=1;endendendmodule②预置数计数module setcount(clk,rst,F,out);input clk,rst,F;output reg out;reg[3:0]count; always@(posedge clk or posedge rst) beginif (rst) begin out<=0;count<=0;end else if(F==1) count<=10;else if (count>=15) beginCount<=o; out<=1;endelse begincount<=count+1; out<=0;end endendmodule8.触发器T=1时翻转①T触发器T=0时保持翻转module D_FF(T,clk,rst,Q,Q n);input T,clk,rst;output reg Q, Q n ;always@(posedge clk or posedge rst) if (rst) beginQ<=0;Q n<=1;endelse if(T) beginQ<=~Q Q n<=~Q n ; endelse beginQ<=Q; Q n<=Q n ; end endmodule②D触发器Q n+1=D(保持D)module D_FF(D,clk,rst,Q,Q n);input D,clk,rst;output reg Q,Q n;always@(posedge clk or posedge rst) ef (rst) begin Q<=0; Q n<=1;end else begin Q<=D; Q n<=~D;end endmodule ③JK触发器module JK_FF(J,K,clk,rst,Q,Q n);input J,K,clk,rst;output Q,Q n ;always@(posedge clk or posedge rst)if(rst) beginQ<=0; Q n<=1 endelse if (J==1&&K==0) beginQ<=1; Q n<=0; endelse if ((J==0&&K==1) beginQ<=0; Q n<=1; endelse if ((J==0&&K==0) beginQ<=Q ; Q n<=Q n ; endelse beginQ<=~Q ; Q n =~Q n ; endendmodule9.测试程序(异或门测试)… timescale 1ns/1psmodule test;reg c,a,b;always@(a or b)c=a^b;initial begina=0; b=0;#10 b=1;#10 a=1;#10 b=0; endalways@(a or b or c)$display(“a=%d,b=%d,c=%d,a,b,c)endmoduleJ=1 K=0时Q=1 置1J=0 K=1时Q=0 置0J=K=0时Q=Q 保持J=K=1时Q=~Q 取反转10.二选一测试程序…include “muxtwo.v”module t;reg ain, bin, select;reg clock;wire outw;initial beginain=0 ;bin=0; select=0; clock=0; endalways #50 clock =~clock;always @(posedge clock)beginain={$random}%2;#3‟bin={$random}%2; endalways #1000 select=~select;muxtwom(.out(outw), .a(ain), .b(bin) .sl(select)); endmodule11.自动售货机module sale(input clk,input rst,input k1,input k2,input k5,input k,output reg out,output reg [2:0] out0);reg [2:0] state;parameters0=3'b000,s1=3'b001,s2=3'b010,s3=3'b011,s4=3'b100;always @(posedge clk or posedge rst)beginif(rst) begin state<=s0;out<=0;out0<=0; endelsecase(state)s0: if(k1==1)beginstate<=s1; out<=0; out0<=0;endelse if(k2==1)begin out<=0; out0<=0;endelse if(k5==1)beginstate<=s0;out<=1; out0<=0;endelse if(k==1) beginout<=0; out0<=0; ends1: if(k1==1)beginstate<=s2;out<=0;out0<=0;endelse if(k2==1)begin state<=s3;out<=0;out0<=0;endelse if(k5==1)begin state<=s1;out<=1;out0<=0;endelse if(k==1) beginout<=0; out0<=1; ends2: if(k1==1)beginstate<=s3;out<=0;out0<=0;endelse if(k2==1)begin state<=s4;out<=0;out0<=0;endelse if(k5==1)begin state<=s2;out<=1;out0<=0;endelse if(k==1) beginout<=0; out0<=2; ends3: if(k1==1)beginstate<=s4;out<=0;out0<=0;endelse if(k2==1)beginstate<=s0;out<=1;out0<=0;endelse if(k5==1)begin state<=s3;out<=1;out0<=3;endelse if(k==1) beginout<=0; out0<=3; ends4: if(k1==1)beginstate<=s0;out<=1;out0<=0;endelse if(k2==1)beginstate<=s1;out<=1;out0<=0;endelse if(k5==1)beginstate<=s4;out<=1;out0<=0;endelse if(k==1) beginout<=0;out0<=4; endendcaseend。