人教版八年级上册数学综合测试题(一)
人教版数学八年级上册 全册全套试卷测试题(Word版 含解析)
人教版数学八年级上册全册全套试卷测试题(Word版含解析)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.3.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.4.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.5.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.6.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.二、八年级数学三角形选择题(难)7.若△ABC 内有一个点P 1,当P 1、A 、B 、C 没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC 内有两个点P 1、P 2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC 内有n 个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A .n·180°B .(n+2)·180°C .(2n-1)·180°D .(2n+1)·180°【答案】D【解析】【分析】 当△ABC 内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC 内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC 内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α 【答案】C【解析】【分析】 根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212A α∠=,3312A α∠=,由此可归纳出12n nA α∠=,易知7A ∠. 【详解】 解:ABC ∠与ACD ∠的平分线交于点1A1111,22A BC ABC ACD ACD ∴∠=∠∠=∠ 111ACD A BC A ∠=∠+∠ 11122ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠111222ACD ABC A ∴∠=∠+∠ 11122A A α∴∠=∠= 同理可得21211112222A A αα∠=∠=⨯=,3231122A A α∠=∠=,…,由此可知12n n A α∠=, 所以7712128A αα∠==. 故选:C.【点睛】本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.9.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.12.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()A.12 B.15 C.12或15 D.18【答案】B【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.【详解】由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3,周长为6+6+3=15,故选B.【点睛】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.三、八年级数学全等三角形填空题(难)13.如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是______度.【答案】24【解析】【分析】在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明△ABD≌△AED即可求解.【详解】如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,BD EDADB ADEAD AD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△AED(SAS).∴AB=AE,∠B=∠AED.又∵CD=AB+BD,CD=DE+EC∴EC=AB∴EC=AE,∴∠C=∠CAE∴∠B=∠AED=2∠C又∵∠B+∠C=180°-∠BAC=72°∴∠C=24°,故答案为:24.【点睛】本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.14.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为____________.【答案】6【解析】【分析】由角平分线和三角形的内角和定理可得∠AFC=135°,由△AFC≌△DFC可得∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,过点F作FP⊥AB于点P,FQ⊥BC于点Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.【详解】解:过点F作FP⊥AB于点P,FQ⊥BC于点Q,过点F作FG⊥FM,交BC于点G.∵点F是∠BAC和∠BCA的角平分线交点,∴FP=FQ=3,∵∠ABC=90°,∴四边形BPFQ是正方形,∴BP=BQ=3.在Rt△ABC中,∠BAC+∠BCA=90°,∵AF、CF是角平分线,∴∠FAC+∠FCA=45°,∴∠AFC=180°-45°=135°.易证△AFC≌△DFC(SAS),∴∠AFC=∠DFC=135°,∴∠ADF=90°,同理可得∠EFC=90°,∴∠MFN=360°-90°-90°-135°=45°.∵∠PFM+∠MFN=90°,∠MFN +∠QFG=90°,∴∠PMF=∠QFG,∵∠FPM=∠FQG=90°,FP=FQ,∴△FPM≌△FQG(ASA),∴PM=QG,FM=FG.在△FMN和△FGN中45FM FGMFN GFNFN FN=⎧⎪∠=∠=⎨⎪=⎩∴△FMN≌△FGN(SAS),∴MN=NG,∴MN=NG=NQ+QG=PM+QN,∴△BMN的周长为:BM+BN+MN= BM+BN+ PM+QN=BP+BQ=3+3=6.故答案为:6.【点睛】本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.15.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,点D是射线OA上的一个动点,则PD的最小值为_____.【答案】2【解析】【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】当PD⊥OA时,PD有最小值,作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=12PC=12×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.16.如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E, F在射线AC与射线CB上运动,且满足AE=CF,∠EDF=90°;当点E运动到与点C的距离为1时,则△DEF的面积为___________.【答案】52或132【解析】解:①E在线段AC上.在△ADE和△CDF中,∵AD=CD,∠A=∠DCF,AE=CF,∴△ADE≌△CDF(SAS),∴同理△CDE≌△BDF,∴四边形CEDF面积是△ABC面积的一半.∵CE=1,∴CF=4﹣1=3,∴△CEF的面积=12CE•CF=32,∴△DEF的面积=12×22×22﹣32=52.②E'在AC延长线上.∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=22,∴∠DCE'=∠DBF'=135°.在△CDE'和△BDF'中,∵CD=BD,∠DCE′=DBF′,CE′=BF′,∴△CDE'≌△BDF'(SAS),∴DE'=DF',∠CDE'=∠BDF'.∵∠CDE'+∠BDE'=90°,∴∠BDE'+∠BDF'=90°,即∠E'DF'=90°.∵DE'2=CE'2+CD2﹣2CD•CE'cos135°=1+8+2×22×22=13,∴S△E'DF'=12DE'2=13 2.故答案为132或52.点睛:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF和△CDE≌△BCF是解题的关键.17.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB,垂足为点E.已知AB=12,则△DEB的周长为_______.【答案】12【解析】根据角平分线的性质,由AD是∠CAB的平分线,DE⊥AB,∠C=90°,可得到CD=ED,然后根据直角三角形的全等判定HL证得Rt△ACD≌Rt△AED,再由全等的性质得到AC=AE,然后根据AC=BC,因此可得△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=12.故答案为:12.点睛:此题主要考查了全等三角形的性质和角平分线的性质,解题时根据全等三角形的性质和角平分线的性质得到相等的线段,然后再代还求解即可.18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难) 19.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83C .113D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE = 设BC=5x ,则CE=3x∴BE=BC +CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.20.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个①BF AC =;②12AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.A .5个B .4个C .3个D .2个【答案】B【解析】【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.【详解】∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°−45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中BDF CDA A DFBBD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△BDF ≌△CDA (AAS ),∴BF =AC ,故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC ,∴∠A =∠BCA =67.5°,故③正确,∴BA =BC ,∵BE ⊥AC ,∴AE =EC =12AC =12BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,∴∠ABE =∠CBE =22.5°,∵∠BDF =∠BHG =90°,∴∠BGH =∠BFD =67.5°,∴∠DGF =∠DFG =67.5°,∴DG =DF ,故④正确.作GM⊥AB于M.∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故⑤错误,∴①②③④正确,故选:B.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.21.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.22.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键23.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD∠∠=,则BAC∠=( )A.70B.45C.60D.48【答案】D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.24.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR=PS,∵PR⊥AB,PS⊥AC,∴点P在∠BAC的角平分线上,∴PA平分∠BAC,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.五、八年级数学轴对称三角形填空题(难)∥,25.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.26.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.27.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=43AD=BE=32BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,3S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442--5353.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.28.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.29.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】 ∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.30.如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠=_______度.【答案】72.【解析】【分析】根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.【详解】解:∵五边形ABCDE 是正五边形,(52)1801085EAB ABC ︒︒-⨯∴∠=∠==,BA BC =,36BAC BCA ︒∴∠=∠=,同理36ABE ∠︒=,363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.故答案为:72【点睛】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.六、八年级数学轴对称三角形选择题(难)31.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④【答案】C【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.32.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC BCACD BCECD CE⎪∠⎪⎩∠⎧⎨===∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②设CD与BE交于F,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵∠CFE=∠DFO,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=12AD,BN=12BE,∴AM=BN,在△ACM和△BCN中AC BCCAM CBNAM BN⎪∠⎪⎩∠⎧⎨===∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC不一定是等边三角形,故③不符合题意;④过C作CG⊥BE于G,CH⊥AD于H,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,∴△CGE≌△CHD(AAS),∴CH=CG,∴OC平分∠AOE,故④正确,故选:B.【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.33.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P 共有( )A .6个B .5个C .4个D .3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB 为等腰三角形,∴可分为:PA=PB ,PA=AB ,PB=AB 三种情况,如图所示:∴符合条件的点P 共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.34.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】 先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可.【详解】 根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE ,又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE ,∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.35.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )A .201532 B .201632 C .2017327 D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=3OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=3B1A2=1232⨯,以此类推,可知第2017个等边三角形的边长为:2017201513()4322⨯=.故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.36.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.2C.2D2-1【答案】B 【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22;第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为1122122++=+.故答案为B.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.。
人教版数学八年级上册《全等三角形》单元综合检测题含答案
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
人教版八年级数学第一学期期末综合复习测试题(含答案)
人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。
人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案
人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案一、选择题(每题4分,共40分)1. 已知数列:2, 4, 6, 8, 10, ...,该数列的第20项是()A. 40B. 42C. 38D. 412. 下列函数中,正比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 5xD. y = x^33. 若平行线l1:3x - 4y + 5 = 0,l2:6x - 8y + 10 = 0,则两平行线的距离为()A. 5/2B. 5/3C. 10/3D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = x^35. 若直角坐标系中,点A(a, b)关于原点的对称点是B,则B的坐标是()A. (-a, b)B. (-a, -b)C. (a, -b)D. (b, a)6. 已知函数y = kx + b(k≠0)的图像经过第一、二、四象限,则()A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b <0 D. k < 0, b > 07. 下列说法中,正确的是()A. 两个一次函数的图像平行,则它们的斜率相等B. 两个一次函数的图像垂直,则它们的斜率乘积为1C. 两个一次函数的图像重合,则它们的斜率相等D. 两个一次函数的图像相交,则它们的斜率之和为08. 下列图形中,一定是中心对称图形的是()A. 矩形B. 等边三角形C. 梯形D. 平行四边形9. 下列关于勾股定理的说法,正确的是()A. 直角三角形的两条直角边的平方和等于斜边的平方B. 直角三角形的两条直角边的平方差等于斜边的平方C. 直角三角形的斜边的平方等于两条直角边的平方和D. 直角三角形的斜边的平方等于两条直角边的平方差10. 若a^2 + b^2 = 25,且a > 0, b < 0,则a + b的取值范围是()A. a + b > 5B. a + b < 5C. a + b = 5D. a + b ≠ 5二、填空题(每题4分,共40分)11. 已知数列:3, 6, 9, 12, 15, ...,该数列的通项公式是an = _______。
人教版八年级上册数学第十一章综合测试题
AD B C 八年级数学试卷(一)(第十一章:三角形)一、选择题(本大题共10题,每小题3分,共30分)1、以下列各组线段为边,能组成三角形的是( )A .3cm ,4cm ,5cmB .4cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm2、等腰三角形的一边长等于4,一边长等于9,则它的周长是( )A .17B .13C .17或22D .223、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为( )A 、6B 、8C 、10D 、124、在下图中,正确画出AC 边上高的是( ).A B C D5、如图,线段AD 把△ABC 分为面积相等的两部分,则线段AD 是( ). A 、三角形的角平分线 B 、三角形的中线C 、三角形的高D 、以上都不对6、适合条件C B A ∠=∠=∠21的三角形是( ) A 、锐角三角形 B 、等边三角形 C 、钝角三角形 D 、直角三角形7、过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( ) A 、8 B 、9 C 、10 D 、118、若一个多边形的内角和等于1080°,则这个多边形的边数是( ).8 C9、n 边形的每个外角都为24°,则边数n 为( )A 、13B 、14C 、15D 、1610、如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 等于( )A 、90°B 、135°C 、270°D 、315°11、 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°D F AECB120︒40︒C A A 10题 11题12.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( )° °° °二、填空题(每小题3分,共15分)13、如图1,共有______个三角形.14、如图2,∠CAB 的外角等于120°,∠B 等于40°,则∠C 的度数是_______.15、如图3,∠1,∠2,∠3是△ABC 的三个外角,则∠1+∠2+∠3=_______图2 图316、一个多边形的内角和的度数是外角和的2倍,这个多边形是 。
人教版八年级数学上册全册综合测试题含答案
人教版八年级数学上册全册综合测试题一、选择题(本大题共7小题,每小题3分,共21分.在每小题列出的四个选项中,只有一项符合题意)1.计算(-12)0-4的结果是( )A .-1B .-32C .-2D .-522.下列长度的三条线段,不能组成三角形的是( ) A .9,15,8 B .4,9,6 C .15,20,8 D .3,8,4 3.下列计算正确的是( )A .(-x 3)2=x 5B .(-3x 2)2=6x 4C .(-x )-2=1x2 D .x 8÷x 4=x 24.衡阳市某生态示范园计划种植一批梨树,原计划总产量为30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x -361.5x =10B.30x -301.5x =10C.361.5x -30x =10 D.30x +361.5x=10 5.如图1,在△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下列结论:①BD =DC ;②DE =DF ;③AD 上任意一点到AB ,AC 的距离相等;④AD 上任意一点到点B 与点C 的距离不等.其中正确的是( )A .①②B .③④C .①②③D .①②③④图16.如图2①是长方形纸带,∠DEF =30°,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中∠CFE 的度数为( )A .60°B .90°C .120°D .150°图27.如图3,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,当△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .130°B .120°C .110°D .100°图3二、填空题(本大题共7小题,每小题3分,共21分) 8.0.000608用科学记数法表示为__________.9.在平面直角坐标系中,将点A (-1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是________.10.已知a +b =32,ab =1,则(a -2)(b -2)=________.11.一个多边形的内角和是四边形内角和的4倍,则这个多边形的边数是________. 12.如图4,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数为________.413.如图5,在△ABC 中,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =6,则CD =________.图514.请你写一个能先用提公因式法,再用公式法来分解因式的三项式,并写出因式分解的结果:____________________.三、解答题(共58分)15.(8分)计算:(1)(-2x3y2-3x2y2+2xy)÷2xy;(2)(x+2y-3)(x-2y+3)(运用乘法公式).16.(8分)解分式方程:xx-1-1=2x3x-3.17.(9分)先化简,再求值:8x2-4x+4÷(x2x-2-x-2),其中||x=2.18.(10分)如图6,在平面直角坐标系中,每个小正方形的边长均为1,点A 的坐标为(-3,2).(1)把△ABC 向下平移4个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,则点A 1的坐标是________; (2)画出△ABC 关于y 轴对称的△A 2B 2C 2,则点C 2的坐标是________; (3)求△ABC 的面积.图619.(11分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件.20.(12分)已知△ABC 为等腰三角形,AB =AC ,点D 为直线BC 上一动点(点D 不与点B ,C重合).以AD为边作△ADE,且AD=AE,连接CE,∠BAC=∠DAE.(1)如图7①,当点D在边BC上时,试说明:①△ABD≌△ACE;②BC=DC+CE.(2)如图②,当点D在边BC的延长线上时,其他条件不变,探究线段BC,DC,CE之间存在的数量关系,并说明理由.图71.A 2.D 3.C 4.A 5.C 6.B 7.B 8.6.08×10-49.(2,-2) 10.2 11.10 12.37° 13.314.答案不唯一,如9x 3+6x 2y +xy 2=x (9x 2+6xy +y 2)=x (3x +y )215.解:(1)原式=-2x 3y 2÷2xy -3x 2y 2÷2xy +2xy ÷2xy =-x 2y -1.5xy +1.(2)原式=[x +(2y -3)][x -(2y -3)]=x 2-(2y -3)2=x 2-(4y 2-12y +9)=x 2-4y 2+12y -9.16.解:方程左右两边同乘3(x -1),得 3x -3(x -1)=2x . 3x -3x +3=2x . 2x =3.x =1.5.检验:当x =1.5时,3(x -1)≠0. ∴原分式方程的解为x =1.5.17.解:原式=8(x -2)2÷⎣⎢⎡⎦⎥⎤x 2x -2-(x +2)(x -2)x -2=8(x -2)2÷x 2-x 2+4x -2 =8(x -2)2·x -24=2x -2. ∵||x =2,∴x =±2.∵x -2≠0,∴x =2舍去,即x =-2. 当x =-2时,2x -2=-12. 18.解:(1)△A 1B 1C 1如图所示. 由图可知A 1(-3,-2).。
人教版八年级上册数学《三角形》单元综合测试题(带答案)
人教版数学八年级上学期《三角形》单元测试(时间:120分钟满分:150分)一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A. 2B. 3C. 5D. 62.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A. 1个B. 2个C. 3个D. 4个3.下列说法正确的是()A. 三角形的三条中线交于一点B. 三角形的三条高都在三角形内部C. 三角形不一定具有稳定性D. 三角形的角平分线可能在三角形的内部或外部4.下列线段长能构成三角形的是()A. 3、4、8B. 2、3、6C. 5、6、11D. 5、6、105.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A. 75°B. 60°C. 45°D. 40°6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A. 45°B. 55°C. 65°D. 75°7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A. 30°B. 40°C. 45°D. 50°8.将一个四边形截去一个角后,它不可能是()A. 六边形B. 五边形C. 四边形D. 三角形9.如果n边形的内角和是它外角和的4倍,则n等于()A. 7B. 8C. 10D. 910.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A. 100米B. 110米C. 120米D. 200米二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是_____.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是_____.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于_____度,若∠A=60°时,∠BOC又等于_____14.如图,∠1,∠2,∠3的大小关系是_____.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.16.一个多边形的各内角都相等,且每个内角与相邻外角的差为100°,那么这个多边形的边数是__________.17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为_____.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=_____.三.解答题(共8小题)19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.25.(1)已知一个多边形的内角和是它的外角和的3 倍,求这个多边形的边数.(2)如图,点F 是△ABC 的边BC 延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF 的度数.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为”8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的”8字型”有个,以点O为交点的”8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为”∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.参考答案一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A. 2B. 3C. 5D. 6【答案】C【解析】【分析】根据不在同一直线上的三条线段首尾相接所构成的图形叫作三角形,直接得到答案.【详解】解:如图,三角形有:△ABE、△BCE,△CDE,△ABC,△BCD.故选C.【点睛】本题考查了三角形的定义.2.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】根据高线的定义,是三角形的顶点到对边所在直线的垂线段,即可解答.【详解】解:∵BD是△ABC的高,∴BD⊥AC,∴∠BDC=∠BDA=90º,∴DG是△AGC的高,CD是△BGC的高,AD是△ABG的高;∵EF∥AC,∴BG⊥EF,∴BG是△EBF的高,∴正确的有①②③④.故选D.【点睛】本题考查了三角形高的定义.3.下列说法正确的是()A. 三角形的三条中线交于一点B. 三角形的三条高都在三角形内部C. 三角形不一定具有稳定性D. 三角形的角平分线可能在三角形的内部或外部【答案】A【解析】【分析】根据三角形的性质、角平分线、高和中线的定义判断即可.【详解】解:A、三角形三条中线相交于一点正确,故本选项正确;B、只有锐角三角形三条高都在三角形内部,故本选项错误;C、三角形具有稳定性,故本选项错误;D、三角形的三条角平分线一定都在三角形内部,故本选项错误.故选A.【点睛】本题考查了三角形的稳定性、高线、中线、角平分线,是基础题,熟记概念是解题的关键.4.下列线段长能构成三角形的是()A. 3、4、8B. 2、3、6C. 5、6、11D. 5、6、10【答案】D【解析】【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【详解】解:A、3+4<8,不符合三角形三边关系定理,故本选项错误;B、2+3<6,不符合三角形三边关系定理,故本选项错误;C、5+6=11,不符合三角形三边关系定理,故本选项错误;D、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确;故选D.【点睛】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A. 75°B. 60°C. 45°D. 40°【答案】C【解析】【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A = 60°,∠B = 75°,所以∠C=180°–60°–75°=45°.【点睛】三角形内角和定理是常考的知识点.6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A. 45°B. 55°C. 65°D. 75°【答案】C【解析】【分析】利用三角形的外角的性质即可解决问题.【详解】在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°-80°=65°,故选C.【点睛】本题考查三角形的外角,解题的关键是熟练掌握基本知识.7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A. 30°B. 40°C. 45°D. 50°【答案】B【解析】【分析】由直角三角形的两锐角互余,可得另一个角的度数.【详解】另一个锐角的度数为90°-50°=40°.,故选B.【点睛】本题考查了直角三角形中两个锐角互余,熟练掌握这一性质是解答本题的关键.8.将一个四边形截去一个角后,它不可能是()A. 六边形B. 五边形C. 四边形D. 三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.9.如果n边形的内角和是它外角和的4倍,则n等于()A. 7B. 8C. 10D. 9【答案】C【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×4,再解方程即可.【详解】由题意得:180(n-2)=360×4,解得:n=10,故选:C.【点睛】考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A. 100米B. 110米C. 120米D. 200米【答案】A【解析】【分析】根据多边形的外角和即可求出答案.【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是_____.【答案】7<a<12【解析】【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点睛】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是_____.【答案】AE【解析】【分析】根据三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【详解】解:∵BE⊥AC,∴AE⊥BE,∴△BHA中边BH上的高是AE.故答案为:AE.【点睛】本题考查了三角形的高的概念.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于_____度,若∠A =60°时,∠BOC又等于_____【答案】(1). 84 (2). 120°【解析】【分析】根据三角形内角和定理易得,利用角平分线定义可得:进而利用三角形内角和定理可得∠A度数;【详解】解:(1)∵∠ABC与∠ACB的平分线相交于O点,(2),,故答案为:84,120°.【点睛】本题考查的是三角形内角和定理,角平分线的定义,熟知三角形内角和是180°是解答此题的关键.14.如图,∠1,∠2,∠3的大小关系是_____.【答案】∠1<∠2<∠3【解析】【分析】根据三角形外角的性质判断出∠1与∠2的大小,再判断出∠2与∠3的大小即可.【详解】解:如图,∵∠2是△ABD的外角,∴∠2>∠1,同理,∵∠3是△BCD的外角,∴∠3>∠2,∴∠1<∠2<∠3.故答案为:∠1<∠2<∠3.【点睛】本题考查的是三角形外角的性质,即三角形的外角大于任何一个与之不相邻的内角.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【解析】【分析】利用三角形的外角性质得∠6+∠7=∠8,在两个四边形中减掉(∠10+∠9),即可解题.【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.16.一个多边形的各内角都相等,且每个内角与相邻外角的差为100°,那么这个多边形的边数是__________.【答案】9【解析】【分析】设这个多边形的内角为n°,则根据题意列出方程求出n的值,再根据多边形的外角和等于360度和多边形的内角和公式求出多边形的边数和内角和.【详解】设这个多边形的内角为n°,则根据题意可得:n−(180−n)=100,解得:n=140.故多边形的外角度数为:180°−140°=40°,∵多边形的外角和等于360度,∴这个多边形的边数为:360°÷40°=9,故答案为9.【点睛】本题考查的是多边形,熟练掌握多边形的边形内角和与外角和是解题的关键.17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为_____.【答案】120°【解析】【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【详解】解:在△ABD中,∵∠A=60º,∠ABD=25º,∴∠CDE=∠A+∠ABD=60º+25º=85º,∴∠BEC=∠DCE+∠CDE=35º+85º=120º.故答案为:120º【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,两次利用性质是解题的关键.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=_____.【答案】50°【解析】【分析】首先依据邻补角的定义求得∠CDE的度数,然后在△EDC中依据三角形的内角和定理可求得∠C=50º,由∠B=∠C可得到∠B=50º,在△BEF中可求得∠FEB的度数,最后依据∠FED=180º-∠FEB-∠DEC求解即可.【详解】解:∵∠ADE=140∘,∴∠EDC=40º,∵DE⊥BC,∴∠DEC=90º,∴∠C=180º−90º−40º=50º,∴∠B=∠C=50º,∵EF⊥AB,∴∠EFB=90º,∴∠BEF=40º,∴∠FED=180º−40º−90º=50º.故答案为:50º.【点睛】本题考查了三角形内角和定理,垂直的性质.三.解答题(共8小题)19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?【答案】共有2种不同的折法.【解析】【分析】根据三角形的三边关系即可得到结论.【详解】解:共有2、4、4;3,3,4;2种不同的折法.故答案为:共有2种不同的折法.【点睛】本题考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.【答案】画图见解析.【解析】【分析】分别根据角平分线、三角形高线作法以及垂直平分线的作法得出答案即可.【详解】解:由题意画图可得:【点睛】本题主要考查了复杂作图中线段垂直平分线的作法、角平分线作法以及过直线外一点作已知直线的垂线的作法等知识,熟练掌握作图方法是关键.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数【答案】∠B=40°.【解析】【分析】先根据AE是角平分线,求出∠CAD的度数,由AD是高,求出∠C的度数,再根据三角形内角和定理即可得出结论.【详解】解:∵AD是高,∴∠ADC=90°,∵AE是角平分线,∠BAC=80°,∴∠CAE=∠BAC=40°,∵∠EAD=10°,∴∠CAD=30°,∴∠C=60°,∴∠B=180°﹣∠BAC﹣∠C=40°.故答案为:40°.【点睛】本题考查了三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟练于心,难度适中.22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.【答案】(1)65;(2)45;(3)40;(4)∠P=90°-∠A,理由见解析.【解析】试题分析:(1)若∠A=50°,则有∠ABC+∠ACB=130°,∠DBC+∠BCE=360°-130°=230°,根据角平分线的定义可以求得∠PBC+∠PCB的度数,再利用三角形的内角和定理即可求得∠P的度数;(2)、(3)和(1)的解题步骤类似;(4)利用角平分线的性质和三角形的外角性质可求出∠BCP=(∠A+∠ABC),∠CBP=(∠A+∠ACB);再利用三角形内角和定理即可求出∠A与∠P的关系.考点:三角形内角和定理;三角形的外角性质.点评:本题主要考查三角形内角和定理,三角形的外角性质.关键是熟练掌握三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【答案】∠CAD=36°.【解析】【分析】根据多边形的内角和公式先求出每个内角的度数,再根据已知和三角形内角和等于180º分别求出∠1、∠2的度数,从而得到∠ACD与∠ADC的度数,最后由三角形内角和定理求出∠CAD度数.【详解】解:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.故答案为:36°.【点睛】本题考查多边形的内角和计算公式,等边对等角的性质及三角形内角和定理,有一定的难度.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【答案】这个多边形的每一个内角的度数为140°,它的边数为9.【解析】【分析】外角度数等于每个内角度数的,内角与相邻的外角互补,因而外角是40度,内角是140度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140º,它的边数为9.故答案为:140º,9.【点睛】多边形外角和与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.25.(1)已知一个多边形的内角和是它的外角和的3 倍,求这个多边形的边数.(2)如图,点F 是△ABC 的边BC 延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF 的度数.【答案】(1)8;(2)80°.【解析】【分析】根据多边形的外角和为360°,内角和公式为:(n-2)•180°,由题意可知:内角和=3×外角和,设出未知数,可得到方程,解方程即可.在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【详解】(1)设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点睛】本题主要考查三角形内角和定理,三角形的外角性质,多边形内角与外角,熟悉掌握是关键. 26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为”8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的”8字型”有个,以点O为交点的”8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为”∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的”8字形”有3个,以O为交点的”8字形”有4个;②根据(1)的结论,以M为交点”8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点”8字型”中,∠P+∠BAP =∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的”8字型”有3个:以点O为交点的”8字型”有4个:②以M为交点”8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点”8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点”8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点”8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析. 【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.。
八年级上册数学《全等三角形》单元综合检测(含答案)
10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()
A.AD+BC=ABB.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×16−3×4−6×3=50.
故选A.
【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.
9.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()
①②④为条件,根据SSS,可判定 ;可得结论③;
①③④为条件,SSA不能证明 ,
②③④为条件,SSA不能证明 ,
最多可以构成正确结论2个,故选B.
【点睛】本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.
6.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()
A.60°B.55°C.50°D. 无法计算
【答案】B
【解析】
试题解析:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
B. 两个角是β,它们的夹边为4
人教版八年级上册《数学》第十二章综合测试卷(全等三角形)第一套
,6.ABD 与 ,6.ADC 的面积比是
.
A
y
p
C 丿/二 彩旗
彩纸
A
。
BD
X
(第 16 题)(第 17 题)(第 18 题)
17. 八年级 (1) 班的篮球啦啦队,为了在明天的比赛中给同学加油
助威,每个人提前制作了 一 面同 一 规格的三角形彩旗.放学回
家后,小颖发现自己的彩旗破损了 一 角,她想用彩纸重新制作
B. 2 个
C. 3 个
D. 4 个
10. (2022. 山东临沂兰山区期末)如图, A,B 分别是乙 NOP, 乙MOP 平
分线上的点, AB_l_OP 于点 E,BC_l_MN 千点 C,AD_l_MN 于
点 D, 则下列结论错误的是(
).
A. AD+BC=AB
B. 乙AOB=90°
C. 与乙 CEO 互余的角有 2 个 D. 0 是 CD 的中点
与点 C 对应.如果 AC=6 cm,AB=3 cm, 那么 DC 的长为( ).
A. 3 cm
B. 5 cm
C. 6cm
D. 无法确定
C ~ (第 2 题 B )(第 3 题)
3. 如图,已知 L::,ABC竺 L::.A'B'C, 乙ACB=90°,LB=50°, 点 B' 在
线段 AB 上, AC,A'B' 交千点 O, 则乙 COA' 的度数是( ) .
).
A. 等于 100 m
B. 大于 100 m
C. 小于 100 6 题)(第 7 题)
7. 如图,已知 AE=CF, 乙AFD= 乙 CEB, 那么添加下列一个条件
人教版八年级上册数学《全等三角形》单元综合测试卷(含答案)
人教版数学八年级上学期《全等三角形》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是( )A. B. C. D.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )学*科*网...A. 3B. -3C. 2D. -23. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是( )A. 5B. 8C. 10D. 154. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?( )A. ①B. ②C. ③D. ④5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是( )A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边6. 已知图7中的两个三角形全等,则∠α的度数为( )A. 105°B. 75°C. 60°D. 45°7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是( )A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是( )A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是( )A. 5B. 4C. 3D. 2第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB=________.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE=12 cm,则DE的长为________cm.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.参考答案一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是()A. B. C. D.【答案】B【解析】【分析】根据全等图形的定义:能够完全重合的两个图形是全等图形.【详解】根据全等图形的定义可得:B选项中图形能够与已知图形完全重合,故选B.【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...A. 3B. -3C. 2D. -2【答案】A【解析】【分析】过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得: DE=OD=3, 即点D到AB的距离是3.【详解】如图,∵点D的坐标是(0,-3),∴OD=3,过点D作DE⊥AB于E,∵AD是∠OAB的平分线,∴DE=OD=3,即点D到AB的距离是3,故选A.【点睛】本题主要考查角平分线的性质,解决本题的关键是要熟练掌握角平分线的性质.3. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A. 5B. 8C. 10D. 15【答案】A【解析】分析:由全等三角形对应边相等可得AC=EF,所以AC-EC=EF-EC,即CF=AE=15-10.详解:因为,△ABC≌△EDF,DF=BC,AB=ED,所以,AC=EF,所以,AC-EC=EF-EC,所以,CF=AE=15-10=5.故选:A点睛:本题考核知识点:全等三角形性质. 解题关键点:熟练掌握全等三角形性质并运用.4. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?()A. ①B. ②C. ③D. ④【答案】D【解析】试题分析:根据两角和一边可以确定唯一的一个三角形.考点:三角形的确定5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是()A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边【答案】B【解析】【分析】在两个直角三角形中,斜边和任意一条直角边分别对应相等,两直角三角形全等,即HL定理.【详解】需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),故选B【点睛】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理.6. 已知图7中的两个三角形全等,则∠α的度数为()A. 105°B. 75°C. 60°D. 45°【答案】B【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为两个三角形全等,所以∠α=180°-45°-60°=75°,故选B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD【答案】C【解析】利用三角形的全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.解:A、增加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、增加∠A=∠DEF,AE=ED可利用ASA判定△ABC≌△EFD,故此选项不合题意;C、增加AE=ED,AB=EF,不能判定△ABC≌△EFD,故此选项合题意;D、增加∠ABC=∠EFD,BC=FD,可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选C.8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是()A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误【答案】A【解析】试题分析:AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是直角边长是b.故小惠正确,小雷错误.故选A.考点:作图—复杂作图.10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A. 5B. 4C. 3D. 2【答案】B【解析】考点:全等三角形的判定.分析:根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.解答:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个.共3+0+1=4个,故选D.点评:本题考查了全等三角形的判定的应用,找出符合条件的所有三角形是解此题的关键.第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB =________.【答案】70【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为△ABC≌△ADE,∴∠ACB=∠E=180°-24°-54°=102°,∴∠ACF=180°-102°=78°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即24°+∠DGB=16°+78°,解得∠DGB=70°.故答案为:70°.【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.【答案】125【解析】【分析】由于在Rt△ABC中,∠C=90°,∠B=20°,先根据三角形内角和可计算出∠CAB=70,再根据角平分线的定义可得∠CAD=∠BAD=35°,最后根据三角形内角和可计算出∠ADB=180°-20°-35°=125°.【详解】由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°,故答案为:125°.【点睛】本题主要考查三角形的内角和和角平分线的定义,解决本题的关键是要熟练掌握三角形的内角和和角平分线的定义.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE =12 cm,则DE的长为________cm.【答案】12【解析】连接BE,∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB =CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.【答案】①②③【解析】试题解析:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.【答案】7【解析】【分析】先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据,可得,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得==7.【详解】如图,过点P作PF⊥AB于G,因为∠ABC和∠ACB的外角平分线BP,CP交于P,所以PF=PG=PE=2,因为,所以,解得BC=2,因为△ABC的周长为11,所以AC+AB=11-2=9,所以,=,=7故答案为:7.【点睛】本题主要考查角平分线上的点到角两边的距离相等,解决本题的关键是要熟练掌握角平分线的性质.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当时,四边形FBCD周长最小为5+6+5=16三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)【答案】见解析【解析】【分析】根据平行的判定,直接过点A作一个角等于角B,即角所在直线即为所求直线.【详解】解:如图所示,作∠MAB=∠B,则直线MN即为所求.【点睛】本题主要考查过已知一点作已知线段的平行线,解决本题的关键是要熟练掌握作平行线的方法.18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.【答案】AD⊥BC,理由见解析【解析】【分析】由于△ABC≌△ADE,∠D=50°,根据全等三角形对应角相等可得∠B=∠D=50°,再根据三角形内角和定理可得:∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,即可求证.【详解】解:AD⊥BC.理由如下:∵△ABC≌△ADE,∠D=50°,∴∠B=∠D=50°.在△AOB中,∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,∴AD⊥BC.【点睛】本题主要考查全等三角形的性质和三角形内角和定理,解决本题的关键是要熟练掌握全等三角形的性质和三角形内角和定理.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.【答案】5【解析】【分析】由于△ACF≌△ADE.根据全等三角形对应角相等可得AF=AE,,再根据线段的和差关系可得:DF=AD-AF =AD-AE=9-4=5.【详解】解:∵△ACF≌△ADE,∴AF=AE,∴DF=AD-AF=AD-AE=9-4=5.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.【答案】见解析【解析】【分析】先由C是AB的中点,可得AC=CB,在△ACD和△CBE中,由AC=CB,AD=CE,CD=BE,根据全等三角形的判定方法可证△ACD≌△CBE,根据全等三角形的性质可得∠A=∠ECB,根据平行线的判定方法可得AD∥CE,再根据平行线的性质可得∠A+∠ECA=180°.【详解】证明:∵C是AB的中点,∴AC=CB,在△ACD和△CBE中,AC=CB,AD=CE,CD=BE,∴△ACD≌△CBE(SSS),∴∠A=∠ECB,∴AD∥CE,∴∠A+∠ECA=180°.【点睛】本题主要考查全等三角形的判定定理和性质,平行线的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质,平行线的判定和性质.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?【答案】相等,理由见解析.【解析】【分析】设AD,BC相交于点O,由于∠CAD=∠CBD,∠COA=∠DOB, 得∠C=∠D.再根据∠CAB=∠DBA=90°,∠C=∠D, AB=BA,可判定△CAB≌△DBA,根据全等三角形的性质可得: CA=DB.【详解】解:相等.理由:设AD,BC相交于点O.∵∠CAD=∠CBD,∠COA=∠DOB,∴由三角形内角和定理,得∠C=∠D.由已知得∠CAB=∠DBA=90°.在△CAB和△DBA中,∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA(AAS),∴CA=DB,∴海岛C,D到观测点A,B所在海岸的距离相等.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.【答案】见解析【解析】【分析】过点C分别作CG⊥OA于点G,CF⊥OB于点F,在△MOE和△NOD中,根据OM=ON,∠MOE=∠NOD,OE=OD,可判定△MOE≌△NOD,根据全等三角形的性质可得:S△MOE=S△NOD,继而可得S△MOE-S四边形ODCE=S△NOD -S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.由于OM=ON,OD=OE,所以DM=EN,CG=CF.根据CG⊥OA,CF⊥OB,可证点C在∠AOB的平分线上.【详解】证明:过点C分别作CG⊥OA于点G,CF⊥OB于点F,如图.在△MOE和△NOD中,OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS),∴S△MOE=S△NOD,∴S△MOE-S四边形ODCE=S△NOD-S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.∵OM=ON,OD=OE,∴DM=EN,∴CG=CF.又∵CG⊥OA,CF⊥OB,∴点C在∠AOB的平分线上.【点睛】本题主要考查全等三角形的判定定理和角平分线的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理和角平分线的判定定理.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.【答案】(1)①见解析;②垂直,相等;(2)成立,理由见解析.【解析】【分析】(1)①如图所示.②根据CD⊥EF,可得∠DCF=90°.由于∠ACB=90°,可得∠ACB=∠DCF,∠ACD=∠BCF.根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FB C,继而可得∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.(2)根据CD⊥EF,可得∠DCF=90°,由于∠ACB=90°,可证∠DCF=∠ACB,所以∠DCF+∠BCD=∠ACB+∠BCD,继而可得∠BCF=∠ACD,根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FBC,所以∠ABF=∠ABC+∠FBC =∠ABC+∠BAC=90°,即BF⊥AD.【详解】解:(1)①如图所示.②∵CD⊥EF,∴∠DCF=90°.∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF.又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FB C,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直,相等.(2)成立.证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF=∠ACB,∴∠DCF+∠BCD=∠ACB+∠BCD,∴∠BCF=∠ACD,又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)现根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,继而可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.(2)先根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,可得AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.【详解】(1)因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.(2)(1)中结论成立,理由为:因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年度第一学期八年级数学单元考试试卷(一)
(第十一章:全等三角形)
班级:___________ 座号:_________ 姓名:__________ 分数:____________ 一、选择题(每小题4分,共32分) 1.下列说法正确的是( )
A 、全等三角形是指形状相同大小相等的三角形;
B 、全等三角形是指面积相等的三角形
C 、周长相等的三角形是全等三角形
D 、所有的等边三角形都是全等三角形
2. 已知,如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是( )
A.AC=DF
B.AD=BE
C.DF=EF
D.BC=EF
3.下列各组图形中,是全等形的是( ) A 、两个含60°角的直角三角形; B 、腰对应相等的两个等腰直角三角形; C 、边长为3和5的两个等腰三角形; D 、一个钝角相等的两个等腰三角形 4.如图所示:△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )
A 、4cm
B 、5cm
C 、6cm
D 、以上都不对
5.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是( ) A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC
A B
C
A
B F
C
D
第6第6题 第5题图
第6题图
6. 如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添
一个条件仍不能证明△ABC ≌△DEF 的是( )
A.AB=DE
B. DF ∥AC
C. ∠E=∠ABC
D. AB ∥DE 7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
A. SSS
B. SAS
C. AAS
D. ASA
8、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A 、带①去; B 、带②去; C 、带③去; D 、①②③都带去. 二、填空题(每题4分,共20分)
9.能够____ 的两个图形叫做全等图形. 10.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则
AC = .
11.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对
全等三角形.
12.如图,△ABC ≌△ADE ,则,AB = ,∠E = ∠ .
若∠BAE =120°,∠BAD =40°,则∠BAC = .
13.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点
D 到AB 的距离是________.
B
A
C
B
A
E
D
第11题图 第12题图
③
①
②
三、解答题(共48分)
14.(8分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. 证明: ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
∵⎪⎪⎩
⎪⎪⎨
⎧
∴△ABD ≌△ACD ( )
15.(10分)在如图所示的方格纸中,动手画出△DEF 和△DEG(F 、G 不能重合),使得△ABC ≅△DEF ≅△DEG .
16.(10分)已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .
求证:△ABD ≌△CDB.
17、(10分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.
求证:∠A=∠D.Array
18.(10分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282
cm,AB=20cm,AC=8cm,求DE的长.。